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ABSTRACT The g-good neighbor connectivity κg(G) and g-good-neighbor diagnosability tg(G) are two
important parameters to evaluate the reliability and fault tolerance for an interconnection network G. So far,
almost all known results about κg(G) and tg(G) are about special g except the hypercubes, the star graphs,
the k-ary n-cubes, and so on. In this paper, we focus on κg(HHCn) and tg(HHCn) for the n-dimensional
hierarchical hypercube network HHCn for 1 ≤ g ≤ m − 1 and m ≥ 2, where n = 2m + m. We show that
κg(HHCn) = 2g(m+ 1− g) for 1 ≤ g ≤ m− 1. In addition, we show that tg(HHCn) = 2g(m+ 2− g)− 1
under the PMC model and MM∗ model for 1 ≤ g ≤ m− 1.

INDEX TERMS Fault tolerance, connectivity, diagnosability, PMC model, MM∗ model.

I. INTRODUCTION
For multiprocessor systems, they usually take interconnec-
tion networks as underlying topology. An interconnection
network is usually modeled by a connected graph G =
(V ,E), where vertices represent processors and edges rep-
resent communication links between processors. The con-
nectivity κ(G) of a graph G is defined as the minimum
number of vertices whose removal disconnects the graph G
and the edge connectivity λ(G) is defined as the minimum
number of edges whose deletion disconnects the graph G.
They are two important parameters to evaluate the reliability
of a network. Xu [26] showed that the higher these parameters
are, the reliable the network is. However, these parameters
always underestimate the resilience of a network. To over-
come the shortcoming, Esfahanian [2] introduced the concept
of restricted connectivity, which is a parameter to evaluate the
fault tolerance of the network in terms of vertex failure. Later,
Latifi et al. [7], Oh and Choi [12] generalized the parameter
to g-good neighbor connectivity κg(G).
For a connected graph G = (V ,E), a subset S ⊆ V (G)

is called a g-good neighbor vertex cut of G if G − F is
disconnected and any vertex inG−F has at least g neighbors
in G−F . The g-good neighbor connectivity is the size of the
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minimum g-good neighbor vertex cut and denoted by κg(G).
There are some results about g-good neighbor connectivity
κg(G) of networks G, one can refer [17], [28]–[30].
In addition, as the processors may fail and create faults

in the large multiprocessor system. Hence, node fault iden-
tification is also of great importance for the system. The
first step to deal with faults is to identify the faulty proces-
sors from the fault-free ones. The identification process is
called the diagnosis of the system. A system is said to be
t-diagnosable if all faulty processors can be identifiedwithout
replacement, provided that the number of faults presented
does not exceed t . The diagnosability t(G) of a systemG is the
maximum value of t such thatG is t-diagnosable [1], [3], [6].

To identify the faulty processors, some diagnosis mod-
els were proposed. One of which was introduced by
Preparata et al. [14] in 1967 and it is called the PMC diag-
nosis model. The diagnosis of the system is achieved through
two linked processors testing each other. Another is the
MM∗ diagnosis model, which was proposed by Maeng and
Malek [11] in 1981. For the MM∗ model, to diagnose the
system, a node sends the same task to two of its neighbors
and then compares these responses. In 2005, Lai et al. [6]
introduced the restricted diagnosability of a system, which
is called conditional diagnosability. They consider the situ-
ation that any faulty set cannot contain all neighbors of any
vertex in the system. In 2012, Peng et al. [13] proposed a

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

54015

https://orcid.org/0000-0002-1978-949X


S.-L. Zhao, R.-X. Hao: Reliability Assessment of Hierarchical Hypercube Networks

new measurement for fault diagnosis of the system, that is,
the g-good-neighbor diagnosability. This kind of diagnosis
requires that every fault-free node contains at least g fault-free
neighbors and they studied the g-good-neighbor diagnosabil-
ity of the n-dimensional hypercube under the PMC model
in [13]. In addition, there are some results about the g-good-
neighbor diagnosability of other networks. For example,
Wang et al. [24] studied the 1-good-neighbor connectivity
and diagnosability of Cayley graphs generated by complete
graphs; Wang and Han studied the g-good-neighbor diag-
nosability of the n-dimensional hypercube under the MM∗

model in [21]; Yuan et al. [27] studied the g-good-neighbor
diagnosability of the k-ary n-cube under the PMC model and
MM∗ model; Wang et al. [22] studied the 1-good-neighbor
diagnosability of Cayley graphs generated by transposition
trees under thePMC model andMM∗model;Wang et al. [23]
studied the 2-good-neighbor diagnosability of Cayley graphs
generated by transposition trees under the PMC model and
MM∗ model; Xu et al. [25] studied the reliability of complete
cubic networks under the condition of g-good-neighbor and
Zhou et al. [32] studied the conditional fault diagnosis of
hierarchical hypercubes etc..

In this paper, we focus on the g-good neighbor connectivity
κg(HHCn) and the g-good neighbor diagnosability tg(HHCn)
for the n-dimensional hierarchical hypercube network HHCn
for 1 ≤ g ≤ m− 1 and m ≥ 2, where n = 2m + m. We show
that κg(HHCn) = 2g(m+1−g) for 1 ≤ g ≤ m−1. In addition,
we show that tg(HHCn) = 2g(m+ 2− g)− 1 under the PMC
model and MM∗ model for 1 ≤ g ≤ m− 1.

II. PRELIMINARIES
In this section, we will introduce some definitions and nota-
tions needed for our discussion.

Let G = (V ,E) be a non-complete undirected graph, the
degree of a vertex v ∈ V (G), denoted by dG(v), is the number
of edges incident with v. The minimum degree of a vertex v
in G is denoted by δ(G). For any subset F ⊆ V , the notation
G−F denotes a graph obtained by removing all vertices in F
fromG and deleting those edgeswith at least one end vertex in
F , and the notation V (G)\F denotes deleting the vertex set F
from V (G). The neighborhoods of the vertex v inG is denoted
by NG(v). Let S ⊂ V (G), we use NG(S) to denote the vertex
set

⋃
v∈S

NG(v) \ S. Let NG[S] = NG(S)
⋃
S. If for any vertex

v ∈ V (G), dG(v) = k , then the graph is called k-regular.
Let F1,F2 ⊆ V (G),F1 M F2 = (F1

⋃
F2) \ (F1

⋂
F2). The

subgraph induced by V ⊆ V (G), denoted by G[V ], is a graph
whose vertex set isV and the edge set is the set of all the edges
of G with both ends in V . A faulty set F ⊂ V (G) is called a
g-good-neighbor faulty set if for any vertex v ∈ V (G) \ F ,
|N (v)

⋂
(V \ F)| ≥ g.

Let [n] = {1, 2, 3, . . . , n}. The hypercube is one of
the most fundamental interconnection networks. An n-
dimensional hypercube, shortly n-cube, is an undirected
graph Qn = (V ,E) with |V | = 2n and |E| = n2n−1. Each
vertex can be represented by an n-bit binary string. There is

an edge between two vertices whenever their binary string
representation differs in only one bit position. Let m be an

integer and m =
s∑
i=0

2ti be the decomposition of m such that

t0 = [log2 m] and ti = [log2(m−
i−1∑
r=0

2tr )] for i ≥ 1. Let X

be a vertex set of Qn and |X | = m. We denote by exm
2 the

maximum size (the number of edges) of the subgraph (of Qn)
induced by m vertices, i.e., exm = max{2|E(Qn[X ])| : X ⊂
V (Qn) and |X | = m}, is the maximum sum of the degrees of
the subgraph (of Qn) induced by m vertices.

For the hypercube network Qn, it suffers from a practical
limitation: as n increases, it becomes more difficult to design
and fabricate the nodes of a Qn network because of the
large fanout. To remove the limitation, the cube-connected
cycles (CCC for short) network [15] was designed as a sub-
stitute for the hypercube network. The node degree of a
CCC network is restricted to three. However, this restriction
degrades the performance of a CCC network at the same
time. For example, a CCC network has a greater diameter
than a hypercube network with the same number of nodes.
Taking both the practical limitation and the performance
into account, the hierarchical hypercube (HHCn for short)
network [8]–[10] was proposed as a compromise between
the hypercube network and the CCC network. An HHCn
network, which has a two-level structure, takes hypercubes
as basic modules and connects them in a hypercube manner.
An HHCn network has a logarithmic diameter, which is the
same as a hypercube network. Since the topology of anHHCn
network is closely related to the topology of a hypercube
network, it inherits some favorable properties from the latter.

An n-dimensional hierarchical hypercube network HHCn,
where n = 2m + m and m ≥ 1 is an integer, can be obtained
by replacing each vertex, say P, of Q2m with one Qm, where
each vertex ofQm is uniquely connected to an adjacent vertex
of P. Each vertex of HHCn can be identified with a two-tuple
(S,P), where S = sn−m−1sn−m−2 . . . s0 is a binary sequence
of length n−m telling which Qm the vertex is located in and
P = pm−1pm−2 . . . p0 is a binary sequence of length m giving
the address of the vertex in the located Qm.

For a binary sequence X = xn−1xn−2 . . . x0, we let X l =
xn−1 . . . xl . . . x0 and dec(X ) be the decimal value of X , where
0 ≤ l ≤ n − 1 and n denotes the length of X . Following,
the definition of the n-dimensional hierarchical hypercube
network HHCn will be introduced.
Definition 1: An n-dimensional hierarchical hypercube

network HHCn with vertex set {(S,P)|S = sn−m−1
sn−m−2 . . . s0 and P = pm−1pm−2 . . . p0 are two binary
sequences of lengths n − m and m, respectively}, where n =
2m + m and m ≥ 1. A vertex (S,P) in HHCn is linked to

(1) (S,Pl) for all 0 ≤ l ≤ m− 1 or
(2) (S(dec(P)),P).
By the definition of the hierarchical hypercube network

HHCn, the edges defined by (1) are referred to as inter-
nal edges, and those defined by (2) are referred to as
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external edges. Each internal edge is contained in a Qm,
and each external edge connects two distinct Q′ms. Let
H1,H2, . . . ,H22m be the m-cubes of HHCn, then any vertex
of Hi has a neighbor outside Hi, which is called the outside
neighbor, where i ∈ [22

m
]. The HHC6 is shown in Fig.1,

where m = 2.

FIGURE 1. Illustration of the 6-dimensional hierarchical hypercube
network HHC6.

There are some results about hierarchical hypercube net-
work, one can refer [8]–[10], [18], [19] etc. for the detail.

The paper is organized as follows. In section 3, the g-good-
neighbor connectivity of HHCn is determined. In section
4, the g-good-neighbor diagnosability of HHCn under the
PMC model is determined. In section 5, the g-good-neighbor
diagnosability ofHHCn under theMM∗ model is determined.
In section 6, the paper is concluded.

III. THE g-GOOD NEIGHBOUR CONNECTIVITY OF HHCn
The following results about the hierarchical hypercube net-
works HHCn are useful.
Lemma 2 [8]–[10]: LetHHCn be the n-dimensional hier-

archical hypercube network andH1,H2, . . . ,H22m be the 22
m

m-cubes of HHCn, where n = 2m + m and m ≥ 1. Then the
following results hold.

(1) HHCn has 22
m
+m vertices and it is (m+ 1)-regular.

(2) HHCn has the vertex connectivity of m+ 1.
(3) HHCn is a bipartite graph.
(4) Any vertex of Hi has exactly one outside neighbor

and the outside neighbors of vertices in Hi belong to
different copies of Qm.

(5) There is at most one cross edge between Hi and Hj for
i 6= j and i, j ∈ [22

m
].

Observation 3: Let HHCn be the n-dimensional hierar-
chical hypercube network for n = 2m + m and let
H1,H2, . . . ,H22m be the m-cubes of HHCn. By contracting
each of the m-cube of HHCn as a vertex, then the resulting
graph is isomorphic to a 2m-cube Q2m .

As HHCn is an invariant of the n-cube Qn, some properties
on the n-cube Qn are very useful for the proofs of the main
results.
Lemma 4 [31]: Any two vertices in V (Qn) have exactly

two common neighbors for n ≥ 2 if they have any.
Lemma 5 [4]: Let X be a vertex set of Qn with size

m. Then exm =
s∑
i=0

ti2ti +
s∑
i=0

2 · i · 2ti , where exm =

max{2|E(Qn[X ])| : X ⊂ V (Qn) and |X | = m}.
Lemma 6 [20]: If X is a subgraph of Qn and δ(X ) ≥ g,

then |X | ≥ 2g.
Lemma 7 [5]: If X is a subgraph ofQn and δ(X ) ≥ g, then
|X | + |NQn (X )| ≥ 2g(n+ 1− g).
Lemma 8 [20]: κg(Qn) = 2g(n− g) for 0 ≤ g ≤ n− 1.
By Lemma 2(2), we obtain that κ0(HHCn) = κ(HHCn) =

m+1. Following, we determine the g-good neighbor connec-
tivity of HHCn for 1 ≤ g ≤ m− 1 to avoid duplication.
Lemma 9: Let HHCn be the n-dimensional hierarchical

hypercube network for n = 2m + m and m ≥ 2, then
κg(HHCn) ≤ 2g(m+ 1− g) for 1 ≤ g ≤ m− 1.

Proof: For convenience, let x1Qm, x2Qm, . . . , x22mQm be
the m-cubes of HHCn instead of H1,H2, . . . ,H22m , where xi
is a n−m binary string for each i ∈ [22

m
]. For a fixed g with

1 ≤ g ≤ m−1, let x1Qg be a subgraph of x1Qm induced by the
vertex set {(S,P)|S = x1 and P = pm−1pm−2 . . . p0, where
pi = 0 for each 0 ≤ i ≤ m−g−1}. Let S = NHHCn (V (x1Qg)),
see Fig. 2, then HHCn − S is disconnected. By the choice of
x1Qg, we obtain that |NHHCn (V (x1Qg))| = 2g(m− g)+ 2g =
2g(m+ 1− g).

FIGURE 2. Illustration of the proof of Lemma 9.

Next, we show that S is a g-good neighbor vertex cut,
that is, any vertex of HHCn − S has at least g neighbors.
By Lemma 2(5), there is at most one cross edge between
xiQm and xjQm for different i, j and i, j ∈ [22

m
]. Thus,

|S ∩ V (xjQm)| ≤ 1 for j 6= 1.
For any j 6= 1, let z ∈ V (xjQm). As |S ∩ V (xjQm)| ≤ 1

for j 6= 1, then z has at most one neighbor in S ∩ V (xjQm).
By Lemma 2(4), z has exactly one outside neighbor inHHCn,
say z′, and it is possibly z′ ∈ S ∩ V (xlQm), where l ∈
[22

m
] \ {1, j}. Thus, z has at least m+ 1− 2 ≥ g neighbors in

HHCn − S.
Let S1 = V (x1Qm) ∩ S and T1 = x1Qm − (V (x1Qg) ∪ S1).

Following, we need to show that any vertex in x1Qm− S1 has
at least g neighbors in HHCn − S. Obviously, any vertex in
x1Qg has at least g neighbors. If T1 = ∅, then we are done.
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Following, let T1 6= ∅ and let w ∈ V (T1), then g ≤ m − 2.
Ifw has no neighbor in S1, then it has at leastm ≥ g neighbors
in HHCn − S and we are done. Suppose w has one neighbor
in S1. By the definition of x1Qg, there is exactly one 1 for
pis of the vertices in S1, where S1 = {(S,P)|S = x1 and
P = pm−1pm−2 . . . p0} and 0 ≤ i ≤ m − g − 1. Let T1 =
{(S,P)|S = x1 and P = pm−1pm−2 . . . p0}, then there are
exactly two 1s for pis for 0 ≤ i ≤ m− g− 1, which implies
that w has at most two neighbors in S1. Thus, w has at least
m− 2 ≥ g neighbors in HHCn − S.

Hence, for any vertex u of HHCn − S, it has at least g
neighbors in HHCn − S. That is, S is an g-good neighbor
vertex cut of HHCn. Thus, κg(HHCn) ≤ |S| = 2g(m+ 1− g)
for 1 ≤ g ≤ m− 1.
Theorem 10: Let HHCn be the n-dimensional hierarchical

hypercube network for n = 2m + m and m ≥ 2, then
κg(HHCn) = 2g(m+ 1− g) for 1 ≤ g ≤ m− 1.

Proof: By Lemma 9, we just need to show κg(HHCn) ≥
2g(m+ 1− g).

Let F be the minimum g-good neighbor vertex cut of
HHCn, X be the minimum connected component of HHCn−
F and let Y = V (HHCn) \ (F ∪X ). Let H1,H2, . . . ,H22m be
them-cubes ofHHCn, and letXi = X∩V (Hi),Yi = Y∩V (Hi)
and Fi = F ∩ V (Hi). Let JX = {i ∈ [22

m
]|Xi 6= ∅},

JY = {i ∈ [22
m
]|Yi 6= ∅} and J0 = JX ∩ JY .

Clearly, if J0 6= ∅, then Xi 6= ∅ and Yi 6= ∅ for each i ∈ J0,
which means that Fi is a vertex cut of Hi. As F is a g-good
neighbor vertex cut ofHHCn, any vertex in Xi∪Yi has at least
g neighbors in HHCn − F . Note that any vertex of HHCn
has exactly one outside neighbor, then Fi is a (g − 1)-good
neighbor vertex cut of Hi. As Hi is an m-cube, by Lemma 8,
we have |Fi| ≥ 2g−1(m+1−g) for each i ∈ J0. By Lemma 6,
we obtain that |Xi| ≥ 2g−1 and |Yi| ≥ 2g−1 for each i ∈ J0.
Following, we show that |F | ≥ 2g(m + 1 − g) for 1 ≤

g ≤ m− 1 according to |J0| and the following two cases are
considered.

Case 1. |J0| ≥ 2
As |J0| ≥ 2, then |F | ≥

∑
i∈J0
|Fi| ≥ 2 · 2g−1(m+ 1− g) =

2g(m+ 1− g) and the result holds.
Case 2. 0 ≤ |J0| ≤ 1.
Let |JX \ J0| = a, |JY \ J0| = b and |[22

m
]\ (JX ∪ JY )| = c.

If c ≥ 1, then there exists some i such that V (Hi) ⊆ F
as F is a vertex cut. Then |F | ≥ 2m ≥ 2g(m + 1 − g) for
1 ≤ g ≤ m− 1 and the result holds.
If c = 0, then a + b + |J0| = 22

m
. If a ≥ 1 and b ≥ 1,

then for j1 ∈ JX \ J0, j2 ∈ JY \ J0, if there is one cross edge
betweenHj1 andHj2 , one of its end vertex must be in F for the
cross edge as F is a vertex cut. Thus, by Observation 1 and
Lemma 5, we obtain that∑

i∈(JX∪JY )\J0
|Fi| ≥

∑
i∈JX \J0, j∈JY \J0

|E(Hi,Hj)| ≥ a · 2m −

exa −
∑

i∈JX \J0, j∈J0
|E(Hi,Hj)|.

Next, we consider the following two subcases for |J0| = 0
or |J0| = 1.
Subcase 2.1. |J0| = 0

In this case, it implies that a ≥ 1. If a ≥ 2, we obtain that
|F | ≥

∑
i∈JX∪JY

|Fi| ≥ a · 2m − exa ≥ 2g(m + 1 − g) for

1 ≤ g ≤ m− 1.
If a = 1, without loss of generality, let JX = {1}. Then

X1 ⊆ V (H1), all vertices in V (H1) \ X1 and all outside
neighbors of vertices in X1 are contained in F . Recall that
any vertex of X1 has exactly one outside neighbor, then |F | ≥
|V (H1)\X1|+ |X1| = 2m ≥ 2g(m+1−g) for 1 ≤ g ≤ m−1
and the result holds.

Subcase 2.2. |J0| = 1
In this case, a ≥ 0 and b = 22

m
− a − 1. Without loss of

generality, let J0 = {1}. If a ≥ 1, we obtain that
|F | ≥ |F1|+

∑
i∈(JX∪JY )\J0

|Fi| ≥ 2g−1(m+1−g)+a ·2m−

exa − 1 ≥ 2g(m+ 1− g).
If a = 0, then X ⊆ H1 and NHHCn (X ) ⊆ F . Note that

δ(H1[X ]) ≥ g and H1 is an m-cube, by Lemma 7, we have
|F | ≥ |X | + |NH1 (X )| ≥ 2g(m+ 1− g) and the result holds.

IV. THE g-GOOD NEIGHBOUR DIAGNOSABILITY OF
HHCn UNDER THE PMC MODEL
First, we introduce the PMC model. Under the PMC model,
a self-diagnosable system is often modeled as a directed
graph T = (V ,L), whereV represents the same set of vertices
as inG and L = {(u, v)|(u, v) ∈ E(G) and the vertex u tests the
vertex v}. The outcome of a test (u, v) is denoted by r(u, v).
If a tester u evaluates a tester v as faulty, we have r(u, v) = 1;
otherwise, r(u, v) = 0. If the tester u is faulty, then the testing
result is unreliable. For this reason, some assignments are
made: if r(u, v) = 1, at least one member of {u, v} is faulty;
otherwise, if r(u, v) = 0, both of u and v are fault-free.
The collection of all test results, defined as a function

�: L → {0, 1}, is called a syndrome. Suppose that a test
syndrome σ is on the multiprocessor system G = (V ,E).
A g-good-neighbor faulty set F is consistent with respect to
σ under the PMC model if the following conditions (1) and
(2) hold.

(1) r(u, v) = 0 for u ∈ V \ F and v ∈ V \ F ;
(2) r(u, v) = 1 for u ∈ V \ F and v ∈ F .
A g-good-neighbor faulty set F may produce different

syndromes because a faulty tester u may return an unreliable
result. For each subset F ⊆ V , which is the set of all faulty
vertices, let �(F) represent the set of syndromes that can
be produced. Two distinct g-good-neighbor faulty subsets F1
and F2 of V are distinguishable if �(F1) ∩ �(F2) = ∅;
otherwise, F1 and F2 are said to be indistinguishable. That
is, when F1 and F2 are distinguishable, for each syndrome σ
in �(F1) ∪ �(F2), exactly one of F1 and F2 is the unique
g-good-neighbor faulty set that is consistent with respect
to σ .
Definition 11 [13]: A system G = (V ,E) is g-good-

neighbor t-diagnosable if and only if for any two distinct
g-good-neighbor faulty subsets F1 and F2 of V such that
|F1| ≤ t and |F2| ≤ t , the sets F1 and F2 are distinguishable.
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Lemma 12 [14]: For any two distinct subsets F1 and F2 in
a system G = (V ,E), the sets F1 and F2 are distinguishable
if and only if there exists a vertex u ∈ V \ (F1

⋃
F2) and

v ∈ F11F2 such that (u, v) ∈ E .
By the proof of Theorem 10, the following result holds.
Lemma 13: Let HHCn be the n-dimensional hierarchical

hypercube network for n = 2m + m and m ≥ 2, and let
H1,H2, . . . ,H22m be the m-cubes of HHCn, X ⊆ V (Hi) and
HHCn[X ] ∼= Qg. Then |NHHCn (X )| = 2g(m + 1 − g) and
δ(HHCn − NHHCn [X ]) ≥ g for 1 ≤ g ≤ m− 1.

By Lemma 9 and the definition of the hierarchi-
cal hypercube network HHCn, the following lemma
holds.
Lemma 14: Let HHCn be the n-dimensional hierarchical

hypercube network for n = 2m + m and m ≥ 2 and let
H1,H2, . . . ,H22m be them-cubes ofHHCn. Then for any two
distinct vertices u and v of the hierarchical hypercube network
HHCn, one of the following conditions hold.

(1) If u and v belong to the same m cube and NHHCn (u) ∩
NHHCn (v) 6= ∅, then |NHHCn (u) ∩ NHHCn (v)| = 2.

(2) If u and v belong to different m cubes and NHHCn (u) ∩
NHHCn (v) 6= ∅, then |NHHCn (u) ∩ NHHCn (v)| = 1.

(3) If u and v belong to different m cubes and NHHCn (u) ∩
NHHCn (v) = ∅, then |NHHCn (u) ∩ NHHCn (v)| = 0.

Lemma 15: Let HHCn be the n-dimensional hierarchical
hypercube network for n = 2m + m and m ≥ 2. If X is
a subgraph of HHCn and δ(X ) ≥ g, then |X | ≥ 2g for
1 ≤ g ≤ m− 1.

Proof: Let H1,H2, . . . ,H22m be the m-cubes of HHCn.
Let I = {i|V (X ) ∩ V (Hi) 6= ∅} for i ∈ [22

m
]. To prove the

result, the following cases are considered.
Case 1. |I | = 1
Without loss of generality, let V (X ) ∩ V (H1) 6= ∅.

By Lemma 6, |X | ≥ 2g.
Case 2. |I | ≥ 2
As V (X ) ∩ V (Hi) 6= ∅ for each i ∈ I . By the definition of

HHCn, any vertex ofHHCn has exactly one outside neighbor.
Thus, dHi[V (X )∩V (Hi)](u) ≥ g − 1 for any vertex u ∈ V (X ) ∩
V (Hi) and i ∈ I . By Lemma 6, |V (X ) ∩ V (Hi)| ≥ 2g−1 for
each i ∈ I . Thus, |X | = | ∪i∈I (V (X ) ∩ V (Hi))| ≥ 2g−1 +
2g−1 = 2g. �
Following, we will determine the g-good neighbor diag-

nosability of HHCn under the PMC model.
Theorem 16: Let HHCn be the n-dimensional hierarchi-

cal hypercube network for n = 2m + m and m ≥ 2,
then the g-good neighbor diagnosability of HHCn under the
PMC model satisfies tg(HHCn) ≤ 2g(m + 2 − g) − 1 for
1 ≤ g ≤ m− 1.

Proof: Let H1,H2, . . . ,H22m be the m-cubes of HHCn.
Let X ⊆ V (H1) and HHCn[X ] ∼= Qg. Let F1 = NHHCn (X )
and F2 = NHHCn [X ]. By Lemma 13, both F1 and F2 are g-
good neighbor faulty sets. As |NHHCn (X )| = 2g(m + 1 − g),
we have

|F1| = 2g(m+ 1− g) ≤ 2g(m+ 2− g)

FIGURE 3. Illustration of the proof of Theorem 16 and Theorem 20.

and

|F2| = |F1| + |X |

= 2g(m+ 1− g)+ 2g

≤ 2g(m+ 2− g)

As F11F2 = X , there is no cross edge between HHCn −
(F1 ∪ F2) and F11F2 (see Fig. 3). By Lemma 12, the g-
good neighbor faulty sets of F1 and F2 are indistinguishable.
ByDefinition 11, then hierarchical hypercube networkHHCn
is not g-good neighbor 2g(m+ 2− g)-diagnosable under the
PMC model. Thus, tg(HHCn) ≤ 2g(m+ 2− g)− 1. �
Theorem 17: Let HHCn be the n-dimensional hierarchical

hypercube network for n = 2m + m and m ≥ 2, then the g-
good neighbor diagnosability ofHHCn under thePMC model
satisfies tg(HHCn) ≥ 2g(m+ 2− g)− 1 for 1 ≤ g ≤ m− 1.

Proof: Let H1,H2, . . . ,H22m be the m-cubes of HHCn.
To prove the result, we just need to show that for any two
distinct g-good neighbor faulty subsets F1 and F2 of HHCn
such that |F1| ≤ 2g(m+2−g)−1 and |F2| ≤ 2g(m+2−g)−1,
the setsF1 andF2 are distinguishable. By Lemma 12, we need
to show that there is an edge between V (HHCn) \ (F1 ∪ F2)
and F1

a
F2.

We prove the result by contradiction. That is, there are two
distinct g-good neighbor faulty subsets F1 and F2 of HHCn
such that |F1| ≤ 2g(m+2−g)−1 and |F2| ≤ 2g(m+2−g)−1,
but they are indistinguishable.

First, we show that V (HHCn) 6= F1 ∪ F2.
Suppose to the contrary, that is, V (HHCn) = F1 ∪ F2. For

1 ≤ g ≤ m− 1, we have

|F1 ∪ F2| = |F1| + |F2| − |F1 ∩ F2|

≤ 2[2g(m+ 2− g)− 1]

Let f (g) = 2g(m+2−g), then f ′(g) = 2g[(m+2−g)·ln2−1].
If f ′(g) = 0, then g = m + 2 − 1

ln2 > m and f ′(g) > 0 for
1 ≤ g ≤ m − 1. Thus, f (g) is monotonically increasing for
1 ≤ g ≤ m− 1. Thus,

f (g)max = f (m− 1)

= = 2m−1[m+ 2− (m− 1)]

= 3 · 2m−1.

Thus, we have

|F1 ∪ F2| ≤ 2(3 · 2m−1 − 1)

= 3 · 2m − 2.
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As |V (HHCn)| = 22
m
+m. Obviously, 22

m
+m > 3 · 2m − 2

for m ≥ 2, which is a contradiction.
Second, we prove the main result. Without loss of general-

ity, let F2\F1 6= ∅. As F1 is a g-good neighbor faulty set, then
for any vertex u of HHCn − F1, dHHCn[V (HHCn)\F1](u) ≥ g.
As there is no cross edge between HHCn − (F1 ∪ F2) and
F1

a
F2, then dHHCn[V (HHCn)\F1](u) = dHHCn[F2\F1](u) ≥ g.

Thus, for any vertex of u ∈ F2 \ F1, dHHCn[F2\F1](u) ≥ g.
By Lemma 15, |F2 \ F1| ≥ 2g. As F1 and F2 are both g-
good neighbor faulty sets, F1 ∩ F2 is also a g-good neighbor
faulty set. In addition, as there is no cross edge between
HHCn− (F1∪F2) and F1

a
F2, F1∩F2 is a g-good neighbor

faulty cut. By Theorem 10, |F1 ∩ F2| ≥ 2g(m+ 1− g). Thus

|F2| = |F2 \ F1| + |F1 ∩ F2|

≥ 2g + 2g(m+ 1− g)

= 2g(m+ 2− g)

By the hypothesis, |F2| ≤ 2g(m + 2 − g) − 1, which is a
contradiction. Thus, tg(HHCn) ≥ 2g(m+2−g)−1 form ≥ 1
and 1 ≤ g ≤ m− 1. �

By Theorem 16 and Theorem 17, the following theorem
can be obtained.
Theorem 18: Let HHCn be the n-dimensional hierarchical

hypercube network for n = 2m + m and m ≥ 2, then the g-
good neighbor diagnosability ofHHCn under thePMC model
is tg(HHCn) = 2g(m+ 2− g)− 1 for 1 ≤ g ≤ m− 1.

V. THE g-GOOD NEIGHBOUR DIAGNOSABILITY OF HHCn
UNDER THE MM∗ MODEL
In the MM model [11], [27], to diagnose a system, a vertex
sends the same task to two of its neighbors, and then compares
their responses. To be consistent with theMMmodel, we have
the following assumptions. In this paper, for consistency with
the MM∗ model, we have the following assumptions.
(1) All faults are permanent.
(2) A faulty processor produces incorrect outputs for each

of its given testing tasks.
(3) The output of a comparison performed by a faulty

processor is unreliable.
(4) Two faulty processors given the same input and task do

not produce the same output.
The comparison scheme of a system G is modeled as a

multigraph, denoted by M (V (G),L), where L is the labeled
edge set. A labeled edge (u, v)w ∈ L represents a comparison
in which two vertices u and v are compared by a vertex
w, which implies uw, vw ∈ E(G). The collection of all
comparison results in M (V (G),L) is called the syndrome,
denoted by σ ∗, of the diagnosis. If the comparison (u, v)w
disagrees, then σ ∗((u, v)w) = 1; otherwise, σ ∗((u, v)w) = 0.
Hence, a syndrome is a function from L to {0, 1}. The MM∗

model is a special case of theMM model. In theMM∗ model,
all comparisons of G are in the comparison scheme of G,
i.e., if uw, vw ∈ E(G), then (u, v)w ∈ L.
Lemma 19 [16]: Let G = (V ,E) be a system under

the MM∗ model. Two distinct subsets F1 and F2 of V are

FIGURE 4. Illustration of distinguishable sets F1 and F2 under the MM∗

model.

distinguishable if and only if at least one of the following
conditions holds:
(1) There are two vertices u,w ∈ V \ (F1

⋃
F2) and there

is a vertex v ∈ F11F2 such that uw ∈ E and vw ∈ E .
(2) There are two vertices u, v ∈ F1 \ F2 and there is a

vertexw ∈ V \(F1
⋃
F2) such that uw ∈ E and vw ∈ E .

(3) There are two vertices u, v ∈ F2 \ F1 and there is a
vertexw ∈ V \(F1

⋃
F2) such that uw ∈ E and vw ∈ E .

Theorem 20: Let HHCn be the n-dimensional hierarchical
hypercube network for n = 2m + m and m ≥ 2, then the g-
good neighbor diagnosability ofHHCn under theMM∗model
satisfies tg(HHCn) ≤ 2g(m+ 2− g)− 1 for 1 ≤ g ≤ m− 1.

Proof: Let H1,H2, . . . ,H22m be the m-cubes of HHCn.
Let X ⊆ V (H1) and HHCn[X ] ∼= Qg. Let F1 = NHHCn (X )
and F2 = NHHCn [X ]. By Lemma 13, both F1 and F2 are g-
good neighbor faulty sets. As |NHHCn (X )| = 2g(m + 1 − g),
we have

|F1| = 2g(m+ 1− g) ≤ 2g(m+ 2− g)

and

|F2| = |F1| + |X |

= 2g(m+ 1− g)+ 2g

≤ 2g(m+ 2− g)

As F11F2 = X , there is no cross edge between V (HHCn) \
(F1 ∪ F2) and F11F2 (see Fig. 3). By Lemma 19, the g-
good neighbor faulty sets of F1 and F2 are indistinguishable.
By Definition 11, the hierarchical hypercube network HHCn
is not g-good neighbor 2g(m+ 2− g)-diagnosable under the
MM∗ model. Thus, tg(HHCn) ≤ 2g(m+ 2− g)− 1. �
Theorem 21: Let HHCn be the n-dimensional hierarchical

hypercube network for n = 2m + m and m ≥ 2, then the g-
good neighbor diagnosability ofHHCn under theMM∗model
satisfies tg(HHCn) ≥ 2g(m+ 2− g)− 1 for 1 ≤ g ≤ m− 1.

Proof: Let H1,H2, . . . ,H22m be the 22
m
m-cubes of

HHCn. To Prove the result, we just need to show that for
any two distinct g-good neighbor faulty subsets F1 and F2
of HHCn such that |F1| ≤ 2g(m + 2 − g) − 1 and |F2| ≤
2g(m+ 2− g)− 1, the sets F1 and F2 are distinguishable.
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We prove the result by contradiction. That is, there are two
distinct g-good neighbor faulty subsets F1 and F2 of HHCn
with |F1| ≤ 2g(m+2−g)−1 and |F2| ≤ 2g(m+2−g)−1, but
they are indistinguishable. Without loss of generality, assume
that F2 \F1 6= ∅. To obtain a contradiction, the following fact
and claim are useful.

Fact 1. V (HHCn) 6= F1
⋃
F2.

With a similar proof as Theorem 17, we obtain that
V (HHCn) 6= F1

⋃
F2.

Claim 1. There is no isolated vertex inHHCn− (F1
⋃
F2).

Proof of Claim 1.To prove the result, the following two cases
are considered.

Case 1. 2 ≤ g ≤ m− 1.
Suppose to the contrary, that is, HHCn − (F1

⋃
F2)

has at least one isolated vertex, say u. Obviously,
we have dHHCn−(F1

⋃
F2)(u) = 0 and dHHCn[F2\F1](u) =

dHHCn[V (HHCn)\F1](u). As F1 is a g-good neighbor faulty
set, then dHHCn[V (HHCn)\F1](u) ≥ g and dHHCn[F2\F1](u) =
dHHCn[V (HHCn)\F1](u) ≥ g ≥ 2, which satisfies condition (3)
of Lemma 19. Thus, the g-good neighbor faulty sets F1 and
F2 are distinguishable, a contradiction.

Case 2. g = 1 and m ≥ 2.
Suppose to the contrary. That is, HHCn − (F1

⋃
F2) has

at least one isolated vertex, say w. Let W be the set of all
isolated vertices in HHCn − (F1

⋃
F2) and H = HHCn −

(F1
⋃
F2 ∪W ).

If F1 \ F2 = ∅, then F1 ⊆ F2. As F2 is a 1-good
neighbor faulty set, dHHCn[V (HHCn)\F2](w) ≥ 1. As F1 ⊆ F2,
then dHHCn−(F1∪F2)(w) = dHHCn[V (HHCn)\F2](w) ≥ g ≥ 1,
which contradicts with the fact that w is an isolated vertex in
HHCn − (F1

⋃
F2).

FIGURE 5. Illustration of the proof of Case 2 of Claim 1.

Now, suppose that F1 \F2 6= ∅ (see Fig. 5). Recall that w is
an isolated vertex in HHCn− (F1

⋃
F2). Obviously, we have

dHHCn[V (HHCn)\(F1∪F2)](w) = 0 and dHHCn[F1\F2](w) =
dHHCn[V (HHCn)\F2](w). As F2 is a 1-good neighbor faulty set,
we have dHHCn[F1\F2](w) = dHHCn[V (HHCn)\F2](w) ≥ g = 1.

If dHHCn[F1\F2](w) ≥ 2, then it satisfies condition (2) of
Lemma 19. Then the g-good neighbor faulty sets F1 and F2
are distinguishable, a contradiction.

Thus, dHHCn[F1\F2](w) = 1. Let u ∈ F1 \ F2 such that
uw ∈ E(HHCn). Similarly, as F1 is a 1-good neighbor faulty
set, we have dHHCn[F2\F1](w) = 1. Let v ∈ F2 \ F1 such that
vw ∈ E(HHCn). Thus, dHHCn[F1∩F2](w) = (m + 1 − 2) and
|F1∩F2| ≥ (m+1)−2. For g = 1, |F2| ≤ 2g(m+2−g)−1 =
2m+ 1. Then we deduce that∑

w∈W

|NHHCn[F1∩F2](w)| = |W |[(m+ 1)− 2]

≤

∑
v∈F1∩F2

dHHCn (v)

= |F1 ∩ F2|(m+ 1)

≤ (|F2| − 1)(m+ 1)

= 2m(m+ 1)

Thus, we have |W | ≤ 2m(m+ 1)/(m− 1).
If H = ∅, then

|V (HHCn)| = 22
m
+m

= |F1
⋃

F2| + |W |

= |F1| + |F2| − |F1 ∩ F2| + |W |

≤ 2(2m+ 1)− (m+ 1− 2)

+ 2m(m+ 1)/(m− 1)

= 3m+ 3+ 2m(m+ 1)/(m− 1)

However, 22
m
+m > 3m+ 3+ 2m(m+ 1)/(m− 1) for m ≥ 2,

a contradiction. Thus, H 6= ∅.
For any vertex b1 ∈ H , as H has no isolated vertex, then

there exists some vertex b2 ∈ H such that b1b2 ∈ E(HHCn).
If b1v1 ∈ E(HHCn) for some vertex v1 ∈ F1

a
F2, then the

1-good neighbor faulty sets F1 and F2 are distinguishable by
condition (1) of Lemma 19, which is a contradiction. Thus,
b1v1 /∈ E(HHCn) for any vertex v1 ∈ F1

a
F2.

By the arbitrariness of v1 and b1, there is no edge between
H and F1

a
F2.

As both F1 and F2 are 1-good neighbor faulty sets, F1∩F2
is a 1-good neighbor faulty set. As there is no edge between
H and F1

a
F2, F1 ∩ F2 is a 1-good neighbor faulty cut.

By Theorem 10, |F1 ∩ F2| ≥ 2(m+ 1− 1) = 2m.
As |F1| ≤ 2m + 1, |F2| ≤ 2m + 1,F1 \ F2 6= ∅ and

F2 \ F1 6= ∅, we have |F1 \ F2| = 1 and |F2 \ F1| = 1.
Let F1 \F2 = {u} and F2 \F1 = {v}. By Lemma 14, u and

v have at most two common neighbors. Thus, |W | ≤ 2 as any
vertex of W is adjacent to both u and v.

If |W | = 2, let W = {w1,w2}. By Lemma 14 and
Lemma 2(3), no two vertices of u, v,w1 and w2 have a
common neighbor in F1 ∩ F2. Thus,

|F1 ∩ F2| ≥ |NHHCn (u) \ {w1,w2}| + |NHHCn (v) \ {w1,w2}|

+ |NHHCn (w1) \ {u, v}| + |NHHCn (w2) \ {u, v}|

= 4(m+ 1− 2)

= 4m− 4.

Then we have

|F2| = |F1 ∩ F2| + |F2 \ F1|
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≥ 4m− 4+ 1

> 2m+ 1

≥ |F2| for m ≥ 2,

which is a contradiction.
If |W | = 1, say W = {w}, then uv /∈ E(HHCn) by

Lemma 2(3). Then we have
|NHHCn[F1∩F2](u, v,w)| ≥ |NHHCn (u) \ {w}| + |NHHCn (v) \
{w}| + |NHHCn (w) \ {u, v}| − |(NHHCn (u) ∩ NHHCn (v)) \
{w}| − |NHHCn (u) ∩ NHHCn (w)| − |NHHCn (v) ∩ NHHCn (w)| +
|NHHCn (u) ∩ NHHCn (v) ∩ NHHCn (w)| = 2m+ (m+ 1− 2)−
1+ 0 = 3m− 2.

Thus, |F1 ∩ F2| ≥ |NHHCn[F1∩F2](u, v,w)| ≥ 3m− 2
and

|F2| = |F1 ∩ F2| + |F2 \ F1|

≥ 3m− 2+ 1

> 2m+ 1

≥ |F2| for m ≥ 2,

which is a contradiction.
The proof of Claim 1 is complete.
By Fact 1 and Claim 1, for any vertex u ∈ HHCn − (F1 ∪

F2), there exists some vertex v ∈ HHCn− (F1∪F2) such that
uv ∈ E(HHCn). If uw ∈ E(HHCn) for w ∈ F1

a
F2, it satis-

fies condition (3) of Lemma 19. Thus, the g-good neighbor
faulty sets F1 and F2 are distinguishable, a contradiction.
That is to say, uw /∈ E(HHCn). By the arbitrariness of u,w,
there is no edge between HHCn − (F1 ∪ F2) and F1

a
F2,

we have dHHCn[V (HHCn)\F1](w) = dHHCn[F2\F1](w) ≥ g. Thus,
by Lemma 15, |F2 \ F1| ≥ 2g.
As both F1 and F2 are g-good neighbor faulty sets, F1∩F2

is a g-good neighbor faulty set. In addition, as there is no edge
between HHCn− (F1 ∪F2) and F1

a
F2, F1 ∩F2 is a g-good

neighbor faulty cut. By Theorem 10, |F1∩F2| ≥ 2g(m+1−g).
Thus,

|F2| = |F1 ∩ F2| + |F2 \ F1|

≥ 2g(m+ 1− g)+ 2g

= 2g(m+ 2− g)

which contradicts with |F2| ≤ 2g(m+ 2− g)− 1.
The proof of the theorem is complete. �
By Theorem 20 and Theorem 21, the following theorem

can be obtained.
Theorem 22: Let HHCn be the n-dimensional hierarchical

hypercube network for n = 2m + m and m ≥ 2, then the g-
good neighbor diagnosability ofHHCn under theMM∗model
is tg(HHCn) = 2g(m+ 2− g)− 1 for 1 ≤ g ≤ m− 1.

VI. CONCLUDING REMARKS
As the hierarchical hypercube network HHCn has some
attractive properties to design interconnection networks.
In this paper, we focus on the g-good neighbor connectivity
κg(HHCn) and the g-good neighbor diagnosability tg(HHCn)
for the n-dimensional hierarchical hypercube network HHCn

for 1 ≤ g ≤ m− 1, where n = 2m + m and m ≥ 2. We show
that κg(HHCn) = 2g(m+1−g) for 1 ≤ g ≤ m−1. In addition,
we show that tg(HHCn) = 2g(m+ 2− g)− 1 under the PMC
model andMM∗ model for 1 ≤ g ≤ m−1. In the future work,
we would like to study g-good neighbor connectivity and the
g-good neighbor diagnosability of the balanced hypercubes
BHn under the PMC model and MM∗ model. This problem
could be meaningful and worthy of further investigation.
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