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ABSTRACT With the increasing penetration of distributed photovoltaics (PVs), the operation and control
of distribution networks (DNs), especially voltage control, have become more complicated. To deal with
the voltage violation problem caused by large-scale PV access, this paper presents a fully distributed
optimization method that combines the alternative direction multiplier method (ADMM) with the branch
and bound method (BBM) for regional DNs. The total cost of active power losses and PV generation losses
is minimized by making full use of the voltage regulation resources, e.g., reactive power compensators,
step voltage regulators (SVR), and PV inverters, and the ADMM is employed to realize the intra-regional
optimization and inter-regional coordination. To overcome the non-convex problem that is introduced by
the SVR, the constraints of real-value tap positions are reformulated as linear inequality constraints of
boundary voltages and added to the original problem, then the integer optimal solutions of SVR tap positions
are obtained by BBM. The effectiveness of the proposed method is verified via numerical simulations on a
practical 32-bus DN in China and a modified IEEE123-bus system.

INDEX TERMS Active distribution networks, distributed optimization, voltage control, step voltage
regulator.

NOMENCLATURE
ACRONYMS
DN Distribution network
PV Photovoltaic generator
RPC Reactive power compensator
SVR Step voltage regulator

INDICES AND SETS
i, j Indices of nodes in DN
a, b, c, d Indices of boundary nodes in each region
n Index of regions, from1 to R
k Iteration index for distributed calculation
k Iteration index for distributed calculation
N Set of nodes in DN
NB Set of boundary nodes in all regions
Rn Set of boundary nodes in region n
LB Set of inter-regional interconnected lines

The associate editor coordinating the review of this manuscript and
approving it for publication was Peng-Yong Kong.

VARIABLES
Pdec,j Active power curtailment amount of PV units at

node j
QG,j Reactive power generated by PV units at node j
QC,j Reactive power generated by RPC at node j
Iij, lij Current amplitude flowing from node i to
node j and its square
Uj Voltage amplitude of node j
Pij, Qij Active and reactive power flowing from node i

to node j
Pj, Qj Active and reactive power of net loads at node j
g SVR tap position
P∗ab,Q

∗
ab Transmission active and reactive power of

branch ab, regarded as virtual load for upstream
region, ∀ab ∈ LB

Pab,Qab Transmission active and reactive power of
branch ab, ∀ab ∈ LB
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VECTORS
y, z Global variable vectors of transmission

active and reactive power between
regions

λP/λP∗/λQ/λQ∗ Lagrange multiplier vectors
corresponding to equality constraints of
transmission active and reactive
power between regions

r, s Primal residual and dual residual
vectors

PARAMETERS
Pmax
L,l , Q

max
L,l Active and reactive power of full load

r0, x0 Resistance and reactance per unit length
1Umax Maximum allowed voltage loss rate
πPV Unit power generation revenue of PV,

including government subsidies
πP Unit on-grid price
Rij, Xij Resistance and reactance of branch ij
PL,j, QL,j Active and reactive power of loads at node j
Umax, Umin Upper bound and lower bound of voltage

amplitude
Qmax
C,j , Q

min
C,j Upper and lower bound of the reactive

power generated by RPC at node j
SG,j Installation capacity of PVs inverter at

node j
dstep Adjustment amount per tap position of SVR
ρ Penalty parameter
δd Predefined threshold for iterative

termination of ADMM

I. INTRODUCTION
With the increasing penetration of distributed photo-
voltaics (PVs), distribution networks (DNs) are gradually
transforming from passive networks with unidirectional
power flow to active distribution networks (ADNs) with bidi-
rectional power flow [1]. The reverse power flow and voltage
violation caused by excess PV power have brought significant
challenges to the operational stability of DNs, and thus the
optimization approach for ADNs to deal with these problems
has become a hot topic of research in recent years [2]–[4].

The voltage optimization of ADNs is typically for-
mulated as a mixed-integer non-linear optimization prob-
lem (MINOP) as it includes both continuous and discrete
decision variables, e.g. the scheduling power of reactive
power compensators (RPCs), distributed generators (DGs)
and tap positions of step voltage regulator (SVR). Many
approaches have been proposed to solve the MINOP,
including artificial intelligence algorithms and mathemati-
cal programming methods. In [5], a hybrid particle swarm
optimization (HPSO) method is proposed to deal with the
reconfiguration problem of DNs coupled with reactive power
control of DGs, and the fuzzy adaptive inference is inte-
grated into HPSO to avoid being trapped in local optima.
Reference [6] develops a genetic algorithm for the joint

optimization of network reconfiguration and capacitor con-
trol. Taking into account the control of capacitor banks,
voltage regulators, and under-load tap changers (ULTCs),
a mixed-integer quadratically constrained programming
problem is formulated in [7] to achieve the goals of
loss reduction and voltage profile improvement etc. Refer-
ence [8] proposes a mixed-integer second-order cone pro-
gramming (MISOCP) relaxation approach for the AC optimal
transmission switching problem, and Reference [9] combines
VAR optimization with network reconfiguration and converts
it to a MISOCP.

The abovementioned literatures show greater loss reduc-
tion and better voltage profiles through comprehensive
coordination of RPCs, voltage regulators and network
reconfiguration, whereas the problems are formulated in
a centralized manner, which are however, expected to
encounter significant technical challenges, e.g. communica-
tion bottleneck for incremental data volume caused by large-
scale integration of DGs, weak robustness for cyber-physical
system failure, and expensive communication costs to solve
the centralized optimization problems [10]. Considering
these significant challenges, a fully distributed optimization
algorithm for ADNs is preferred, which only requires local
and adjacent areas’ information and can achieve the goal of
global optimum by coordinating iteration among regions.

The key points of distributed optimization algorithm for
ADNs lie in two aspects: optimization within a region
and inter-regional coordination. For the regional schedul-
ing, the optimization problem is essentially nonconvex and
NP-hard due to the quadratic relationship between voltage
and power injection, etc. and may not converge when solv-
ing it directly by distributed algorithm. Therefore, many
convexification techniques have been proposed to overcome
this restriction. The LinDistFlow is applied to approximate
the original nonlinear power flow constraints and make the
problem convex in [11], but the accuracy is not satisfac-
tory in some application scenarios, especially for ADNs.
To compensate the approximation error of the LinDistFlow
equation, the boundary data is updated after parallel opti-
mization by power flow calculation in each region in [12].
The semi-definite relaxation (SDR) and second-order cone
relaxation (SOCR) are also employed to relax the original
nonconvex problem in [13], [14] and [8]–[10], [15], respec-
tively. However, SDR involves additional large-scale vari-
ables andmay not appropriate for ADNswith large number of
PV access. The accuracy condition of SOCR is satisfied when
the objective is strictly increasing in branch current [16].
For DNs with high penetration of distributed PV, however,
this may result in undesirable loss of PV power generation,
as the accuracy condition is no longer satisfied when taking
the PV curtailment minimization as a part of the objective.
Faced with various optimization goals in practice, it is nec-
essary to improve the conic relaxation to obtain an effective
solution, e.g. adding increasingly tight cutting planes [17] or
leaf branch current cut [18] into the constraints. The inter-
regional coordination can be transformed into an optimization
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problem with equality consistency constraints. Existing algo-
rithms can basically be classified into three categories accord-
ing to the way of dealing with consistency constraints: the
primal domain algorithm [19]–[22], the dual domain algo-
rithm [23], [24], and the primal-dual algorithm [25]–[27].
The alternative direction multiplier method (ADMM), as a
promising distributed algorithm for ADNs optimization,
is a typical dual domain algorithm, whose equality con-
sistency constraints are satisfied by dual iterations. The
literatures [10]–[12] and [14] apply SOCR, LinDistFlow
approximation and SDR to relax power flow equations before
using ADMM, respectively. These literatures mainly focus
on continuous variables, whereas discrete variables, such as
SVR tap positions, are not considered. Actually, in the over-
voltage scenario caused by redundant PV power, SVR can
lower the feeder voltage and avoid the PV active power
curtailment (APC). In addition, SVR can improve the feeder
voltage in the low voltage scenario, reducing the network
losses. Unfortunately, taking SVR into consideration will
introduce integer variables, i.e. the tap positions, into the
optimization problem and make it nonconvex. As a result,
the convergence condition of ADMM is no longer satisfied.

FIGURE 1. Comparisons with previous works related to distributed
optimization of ADNs.

Fig. 1 summarizes the main drawbacks of previous works
that using distributed algorithm to solve the voltage optimiza-
tion of ADNs. Asmentioned above, considering SVR devices
can significantly improve the control flexibility and system
benefits, but the nonconvexity introduced by SVR makes
the distributed algorithm unable to converge. To solve this
problem, a distributed optimization method that combines
ADMM with branch and bound method (BBM) is proposed
in this paper. The inter-regional coordination is realized via
ADMM, and the nonconvexity introduced by SVR is handled
through BBM. The main contributions of this paper are as
follows.

1) A comprehensive optimal model that considers the
scheduling of PV active and reactive power, RPCs and SVR
is established. The relaxation problem (RP) of the original
nonconvex problem is obtained by SOCR and cutting planes
constraints. The voltage regulation resources are fully utilized

in the region, resulting in the reduction of undesirable loss of
PV power.

2) The optimization of ADNs is conducted in a fully dis-
tributed manner. The inter-regional coordination, including
the optimal real-value solution of SVR tap position, is solved
by ADMM. Then, the tap constraint based on the real-value
solution is transformed into linear inequality constraints of
the regional boundary voltage and added to the RP. Finally,
the optimal integer solution of SVR tap position is realized
by BBM, disposing of the nonconvexity problem introduced
by SVR.

The remainder of this paper is organized as follows:
Section II describes the inter-regional coordination frame-
work as well as the boundary interaction information.
Section III detailed the intra-regional optimization model.
ADMM and BBM are applied in Section IV to perform dis-
tributed inter-regional coordination. In Section V, the effec-
tiveness of the proposed method is verified via numerical
simulations on a practical 32-bus system in JinZhai, China
and a modified IEEE123-bus system. Section VI outlines the
main conclusions.

II. INTER-REGIONAL COORDINATION FRAMEWORK
The SVR is considered in this paper to provide flexible
control means for various operation scenarios of the system.
The installation position should take account the network
topology and power flow distribution to ensure the nodal
voltage within a predetermined range, especially the terminal
nodes of long-feeder under full load condition. Therefore,
we can employ the following formula to decide the instal-
lation position of SVR:

Pmax
L,l · (r0l)+ Q

max
L,l · (x0l)

U0 · U0
≤ 1Umax (1)

where Pmax
L,l and Qmax

L,l represent the maximum active and
reactive power under full load condition, respectively; U0 is
the feeder nominal voltage; l denotes the SVR installation
point distance. The left term of (1) approximates the voltage
drop before installation point of SVR and l should meet the
following constraint according to (1):

l ≤
1Umax

· U2
0

Pmax
L,l · r0 + Q

max
L,l · x0

(2)

The cluster control method has been proved to be an
effective way to realize global optimization and overcome
the technical challenges of centralized optimization for long-
feeder DNs [28], [29]. A detailed cluster partition method
that considers the voltage amplitude sensitivity with respect
to active and reactive power is introduced in our previous
work [12], based on which an inter-regional coordination
framework is proposed in this paper, as illustrated in Fig. 2.
It is worth noting that the distributed algorithm proposed in
this paper is applicable for other cluster partition schemes that
contain SVRs, here we employ this framework as an example
to better describe our modeling process.
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FIGURE 2. Inter-regional coordination framework.

Each region is equipped with a local controller to achieve
intra-regional optimization and inter-regional coordination.
For region_n and its upstream region_n-1 (n ≥2), the interac-
tive information consists of the transmission active/reactive
power of inter-regional interconnected lines (we define
the transmission active/reactive power as virtual load from
the view of upstream region and mark it with super-
script ∗), the primal residual and dual residual of each region,
the boundary node voltage, the objective function value
of regional optimization problem and the real solution of
SVR tap positions of each region. All these variables are
related to ADMM and BBM and will be detailed explained
in Section IV. The interactive process between regions is
summarized as:

1) Each regional controller seeks for its optimal operation
scheme in parallel and then transmits the transmis-
sion active/reactive power, the primal residual and dual
residual to each other;

2) According to the received information, each regional
controller performs a new round of intra-regional opti-
mization until the primal residual and dual residual are
reduced to a predefined threshold;

3) After the intra-regional optimization converges,
regional controller_n-1 sends the boundary node volt-
age and the sum of the objective function value of
itself and its upstream to regional controller_n, while
regional controller_n sends the boundary node voltage
and the sum of the objective function value of itself and
its downstream to regional controller_n-1;

4) Each regional controller calculates the real-value solu-
tion of SVR tap positions based on the voltage ratio.
Then regional controller_n-1 sends the tap positions of
itself and its upstream to regional controller_n, while
regional controller_n sends the tap positions of itself
and its downstream to regional controller_n-1. Finally,
BBM is applied to determine whether a branch is
required based on the taps.

III. INTRA-REGIONAL OPTIMIZATION FORMULATION
A. ORIGINAL OPTIMIZATION MODEL
The regional controller is optimized in parallel to obtain the
boundary data required for coordination between regions.
The intra-regional optimization model is as follows:

1) OBJECTIVE FUNCTION
We aim to minimize the cost of network power losses and
PV power generation losses in region n, which can be
expressed as:

fn = min
QC,j,Pdec,j,QG,j

πPV∑
j∈Rn

Pdec,j + πP
∑

j∈Rn,∀i:i→j

RijI2ij


(3)

where QC,j, Pdec,j, and QG,j are the decision variables of the
intra-regional optimization problem. The first term indicates
the lost revenue due to APC of PV units; the second term
denotes the active power losses cost of region n.

2) POWER FLOW EQUATIONS
∑

i:i→j

(
Pij − RijI2ij

)
− Pj =

∑
o:j→o Pjo∑

i:i→j

(
Qij − XijI2ij

)
− Qj =

∑
o:j→o Qjo

U2
j = U2

i − 2
(
RijPij + XijQij

)
+

(
R2ij + X

2
ij

)
I2ij

(4a)

and {
Pj = PL,j −

(
Pmax
G,j − Pdec,j

)
Qj = QL,j − QG,j − QC,j

(4b)

I2ij =
P2ij + Q

2
ij

U2
i

(4c)

where i → j denotes the directional relation between node i
and node j; PL,j and QL,j are the active and reactive power of
loads at node j, including the active/reactive power of virtual
loads; Pmax

G,j represents the maximum active power generated
by PV units under maximum power point tracking strategy.

3) NODAL VOLTAGE CONSTRAINT
The nodal voltage should meet the limits as:

Umin
≤ Uj ≤ Umax (5)

where Umax and Umin are respectively the upper bound and
lower bound of voltage amplitude.

4) PV UNITS AND RPC OPERATION CONSTRAINTS
Formula (6a) and (6b) denote the operation constraints of PV
and RPC devices:

0 ≤ Pdec,j ≤ Pmax
G,j

QG,j ≤
(
Pmax
G,j − Pdec,j

)
tan θ

Q2
G,j ≤ S

2
G,j − (Pmax

G,j − Pdec,j)
2

(6a)

Qmin
C,j ≤ QC,j ≤ Q

max
C,j (6b)

where θ=cos−1PFmin is the power factor angle corresponding
to the minimum power factor PFmin.
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B. CONVEX RELAXATION MODEL
The original optimization model (3)-(6) is nonconvex and
cannot be directly solved by ADMM. The SOCR method
is employed to transform it into a convex problem. Firstly,
the voltage square termU2

i and the current square term I2ij are
replaced with ui and lij, respectively. Then we have:

fn = min
QC,j,Pdec,j,QG,j

πPV∑
j∈Rn

Pdec,j + πP
∑

j∈Rn,∀i:i→j

Rijlij


(7)

∑
i:i→j

(
Pij − Rijlij

)
− Pj =

∑
o:j→o Pjo∑

i:i→j
(
Qij − Xijlij

)
− Qj =

∑
o:j→o Qjo

uj = ui − 2
(
RijPij + XijQij

)
+

(
R2ij + X

2
ij

)
lij

(8)

lij =
P2ij + Q

2
ij

ui
(9)

(
Umin

)2
≤ uj ≤

(
Umax)2 (10)

Due to the product of variables, (9) is still nonconvex and
can be relaxed to the following form by SOCR:∥∥∥∥∥∥

2Pij
2Qij
lij − ui

∥∥∥∥∥∥
2

≤ lij + ui (11)

To deal with the problem that the relaxation accuracy of
SOCR is insufficient under high PV penetration conditions,
a cutting plane constraint formulated as (12a) is considered:∑

i:i→j
Rijlij ≤

∑
i:i→j

RijLkij k ≥ 1 (12a)

and

Lk
ij
=

(
Pkij
)2
+

(
Qkij
)2

uki
(12b)

where the superscript k represents the iterative counter
of ADMM, which will be introduced in Section IV.

After the above process, the revised optimization model
given by (4b), (6)-(8), (10)-(12) becomes a second-order cone
programmingmodel and can be solved quickly and accurately
by convex optimization method.

IV. INTER-REGIONAL COORDINATION FORMULATION
A. ADMM FOR THE OPTIMAL POWER FLOW
The regional controller needs to achieve not only the optimal
operation within its region, but also the coordination between
regions. For the inter-regional coordination, the equality con-
straints of boundary node voltage and transmission power of
interconnected lines should be considered, so that each region
can carry out independent parallel optimization and ensure
the convergence of inter-regional distributed optimization.
As demonstrated in Fig. 1, SVR constraints between adjacent
regions is expressed as (13a), and (13b) and (13c) correspond

to transmission power equation constraints between adjacent
regions.

Ua = Ub
(
1+ g · dstep

)
(13a)

P∗ab = yab, yab = Pab ∀ab ∈ LB (13b)

Q∗ab = zab, zab = Qab ∀ab ∈ LB (13c)

where yab and zab are the global variables of transmission
active and reactive power of branch ab.

This paper applies ADMM to achieve distributed optimiza-
tion between regions. Since the SVR constraint (13a) makes
the problem nonconvex and does not satisfy the convergence
condition of ADMM, we remove the constraint (13a) and
ignore the boundary node voltage equation constraint firstly.
Then the relaxation problem of the original problem, defined
as RP, is obtained. ADMM algorithm guarantees the consis-
tency equality constraints by dual iteration, so that the global
optimal solution is obtained by coordinating the solution of
the subproblems. Set λPab, λ

P∗
cd , λ

Q
ab, λ

Q∗
cd as the Lagrange

multipliers of transmission power equation constraints of
adjacent regions, respectively. The augmented Lagrangian
function of (7) can be revised as

Ln = fn

+

∑
ab∈LB,b∈Rn

 ρ2 (yab − Pab)2 + λPab (yab − Pab)
+
ρ

2
(zab − Qab)2 + λ

Q
ab (zab − Qab)



+

∑
cd∈LB,c∈Rn

 ρ2 (P∗cd − ycd)2 + λP∗cd (P∗cd − ycd)
+
ρ

2

(
Q∗cd − zcd

)2
+ λ

Q∗
cd

(
Q∗cd − zcd

)


(14)

where ρ > 0 is the penalty parameter, used to ensure the
convergence of boundary data between adjacent regions.

The primal residual and dual residual are adopted to judge
whether the solution process converges. The primal residual
represents the deviation of boundary data between adjacent
regions, and the dual residual indicates the vibration deviation
of the regional boundary data in sequent iterations, which are
formulated as:

rk+1n

=

∑
ab ∈ LB, b ∈ Rn
cd ∈ LB, c ∈ Rn


∣∣∣yk+1ab −P

k+1
ab

∣∣∣+ ∣∣∣zk+1ab −Q
k+1
ab

∣∣∣
+v

∣∣∣yk+1cd −P
∗,k+1
cd

∣∣∣+∣∣∣zk+1cd −Q
∗,k+1
cd

∣∣∣


(15)

sk+1n

=

∑
ab ∈ LB, b ∈ Rn
cd ∈ LB, c ∈ Rn


∣∣∣yk+1ab − y

k
ab

∣∣∣+ ∣∣∣zk+1ab − z
k
ab

∣∣∣
+

∣∣∣yk+1cd − y
k
cd

∣∣∣+ ∣∣∣zk+1cd − z
k
cd

∣∣∣

(16)
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where rk+1n and sk+1n denote the primal residual and dual
residual of region n at k+1-th iteration, respectively. Define
rk :=

{
rk1 , r

k
2 · · · r

k
R

}T
and sk :=

{
sk1, s

k
2 · · · s

k
R

}T
as the

column vectors composed of the primal residuals and dual
residuals of all regions at k-th iteration.
The penalty parameter in (14) greatly affects the conver-

gence speed. An excessively large penalty parameter will
increase the dual residual, whereas the primal residual will
increase if the penalty parameter is too small. Therefore,
the penalty parameter of each region should be adjusted
according to the relative size of the primal residual and dual
residual [10]. When the dual residual is significantly larger
than the primal residual, the penalty parameter needs to be
reduced, and the parameter should be set larger when the
primal residual is much larger than the dual residual, as given
by (17).

ρk+1n =


0.5ρkn ,

∥∥sk+1n

∥∥
2 ≥ 10

∥∥rk+1n

∥∥
2

2ρkn ,
∥∥rk+1n

∥∥
2 ≥ 10

∥∥sk+1n

∥∥
2

ρkn , others

(17)

Specific steps for ADMM-based distributed optimization
between regions are detailed below.

1) Initialization. The values of the global variables of
boundary data are initialized as

{
y0ij, z

0
ij,∀ij ∈ LB

}
according to the measured data of DN, and the initial
values of all Lagrangemultipliers are set to 0. Set k = 0
and initial value of penalty parameter as ρ0;

2) Intra-regional optimization. Each regional controller
independently solves the optimization problem of (18)
and gets the optimal solution of the decision variables
0 :=

{
Pdec,j,QC,j,QG,j

}
as well as the boundary data

with the upstream region Bup := {Pab,Qab} and the
downstream region Bdn :=

{
P∗cd ,Q

∗
cd

}
. The constraints

for intra-regional optimization include (4b), (6), (8),
and (10)-(12).{

0k+1,Bk+1up ,Bk+1dn

}
= argminLn (18)

3) Boundary data exchange. The region n transmits
the regional boundary data Bk+1up :=

{
Pk+1ab ,Qk+1ab

}
and

Bk+1dn :=
{
P∗,k+1cd ,Q∗,k+1cd

}
to region n-1 and region

n+1, and receives
{
P∗,k+1ab ,Q∗,k+1ab

}
from region n-1

and
{
Pk+1cd ,Qk+1cd

}
from region n+1, respectively.

4) Global variable update. Based on the received bound-
ary data, each region updates the global variables of
boundary data locally by:y

k+1
ab =

(
P∗,k+1ab + Pk+1ab

)/
2

zk+1ab =

(
Q∗,k+1ab + Qk+1ab

)/
2

(19a)

y
k+1
cd =

(
Pk+1cd + P

∗,k+1
cd

)/
2

zk+1cd =

(
Qk+1cd + Q

∗,k+1
cd

)/
2

(19b)

5) Lagrange multiplier update. The Lagrange multipliers
of boundary data in region n are updated by:λ

P,k+1
ab = λ

P,k
ab + ρ

k
n (y

k+1
ab − P

k+1
ab )

λ
Q,k+1
ab = λ

Q,k
ab + ρ

k
n (z

k+1
ab − Q

k+1
ab )

(20a)

λ
P∗,k+1
cd = λ

P∗,k
cd + ρ

k
n

(
P∗,k+1cd − yk+1cd

)
λ
Q∗,k+1
cd = λ

Q∗,k
cd + ρkn

(
Q∗,k+1cd − zk+1cd

) (20b)

6) Residuals and penalty parameters update. Each region
calculates the primal residual and dual residual of
boundary data between regions according to (15)
and (16), and then share the boundary data residuals
with adjacent regions by distributed communication.
Update penalty parameters by (17);

7) Iterative termination judgment. Set k = k + 1, repeat
steps (2)-(6) until the infinite norm of the primal resid-
ual vector rk and the dual residual vector sk are both
smaller than the predefined threshold δd.

B. BBM FOR SVR TAP POSITION
Once ADMM converges, the objective value of f k and the
optimal boundary voltage Ua, a ∈ NB of each region are
obtained. The boundary data is exchanged as demonstrated
in Fig. 2. The ideal SVR tap position g̃ of two adjacent regions
can be obtained as:

g̃ =
Ua
/
Ub − 1

dstep
∀ab ∈ LB (21)

Specific steps for BBM-based distributed optimization
between regions are detailed below.

1) Branch. Tap position g̃ tends to be a real-value and does
not satisfy the integer constraint. Select one g̃n, may as
well the first one from the substation that does not meet
the integer constraints of SVR tap, and construct the
following two constraints:

gn ≤
[
g̃n
]

(22a)

gn ≥
[
g̃n
]
+ 1 (22b)

where
[
g̃n
]
is the largest integer that does not exceed g̃n.

(22a) and (22b) correspond to two different branches
of BBM and can be firstly converted into boundary
voltage constraints of adjacent regions as (23a), (23b)
and (23c), (23d) respectively:

ub ≥ uka
/(

1+
[
g̃n
]
· dstep

)2 (23a)

ua ≤ ukb
(
1+

[
g̃n
]
· dstep

)2 (23b)

ub ≤ uka
/(

1+
([
g̃n
]
+ 1

)
· dstep

)2 (23c)

ua ≥ ukb
(
1−

([
g̃n
]
+ 1

)
· dstep

)2 (23d)

Then we add constraints (23a), (23b) and (23c), (23d)
to the intra-regional optimization model introduced
in portion IV-A respectively and generate two subse-
quent problems RP1 and RP2, which can be solved
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via ADMM. RP1 and RP2 will be branched in a similar
way as needed and then continue to solve the subse-
quent optimization problem until the optimal solution
for each integer tap position is obtained.

2) Bound. Each subproblem is taken as a branch and
marked with the result. The minimum objective func-
tion value of all subproblems is regarded as a new
lower bound and assigned to f0. The minimum objec-
tive function value of all subproblems that meet the
integer constraints of all SVRs is selected as the new
upper bound f ∗, i.e. f ∗ ≥ f ≥ f0.

3) Compare and cut. Cut off the branch if the optimal
objective value is larger than f ∗. The other branches
that have not been checked are potential branches with
optimal solution and defined as unretrieved branches.
If f ∗ has not been got yet, all branches are regarded
as unretrieved branches and no branches will be cut.
For the unretrieved branches, if the integer constraint
of tap position is not satisfied, go back to step 1) until
all potential branches have been retrieved. Finally,
the optimal integer solution g∗n of tap position with the
smallest objective function value can be realized.

The distributed coordinationmethod proposed in this paper
are summarized in Fig. 3, the dashed-line portion indicates
the process of ADMM. The cutting plane constraint of (12)
is considered after the first iteration (k ≥1) and the global
variables, Lagrange multipliers, residuals and penalty param-
eters are updated by (19), (20), (15)-(16) and (17) respectively
to realize the convergence of ADMM. The boundary voltage
constraints of (23), constructed by Branch process, will be
added to the optimization problem and start a new round of
iteration if the integer constraints of SVRs have not been
satisfied. During the BBM process, the upper bound of the
objective function value f ∗ requires to be obtained before
determining whether a branch needs to be cut, which means
a feasible solution with the integer constraints of all SVR
satisfied are required. Before the upper bound f ∗ is realized,
the branch with the minimum objective function value will be
retrieved first to accelerate the search process.

V. CASE STUDIES AND ANALYSIS
A. 32-BUS PRACTICAL CASE
In this paper, a 10kV radial feeder with high penetration of
distributed PVs in rural power grid of China is selected to
verify the proposed distributed coordination method. In the
studied case, as the load is relatively small in rural area,
reverse power flow always occurs at noon although the
PV installation capacity is not large. According to the his-
torical operation data, a serious overvoltage occurred at
12:30 on November 4, 2016. The net load power of all nodes
was 1.23 MW, and the PV active power was about 75% of
installed capacity. The outlet voltage of substation is about
1.03 p.u. At that time, the ratio of node voltage higher than
1.05p.u. is up to 64.5% in the network.

The topology of the feeder and the PV distribution are
displayed in Fig. 4. The voltage loss rate 1Umax is set as

FIGURE 3. Flow chart of the distributed coordination method.

5% here. The voltage of the first node is set as 1.0 p.u.
The voltage of node 6 and node 22 are 0.9433 p.u. and
0.9503 p.u. respectively under full load and no PV genera-
tion condition. Therefore, two SVRs are installed between
node 5/node 6 and node 3/node 22, respectively, partition-
ing the feeder into three regions. The total capacity of PV
units is about 2.22MVA, distributed in 18 nodes. Among
them, the PV units in 12 nodes are controllable. There are
4 nodes equipped with RPC devices. The specific parameters
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FIGURE 4. Topology of the 32-bus practical case.

TABLE 1. Location and capacity of RPC devices and PV units.

are listed in Table 1. πPV and πP are set as U800/MW and
U400/MW. The voltage regulation range of SVR is 32 taps,
and the amplitude of each tap is 0.625% of the target voltage.
PFmin is set as 0.95. The initial penalty parameter is set to
ρ = 106 and the threshold δd is set as 10e-6.
ADMM and BBM are conducted to solve the distributed

coordination optimization problem for this system. The solu-
tion process is detailed as follows:

1) Solving the relaxation problem RP, then the optimal
solution of SVR tap of branch 3-22 and 5-6 is obtained
as g̃1 =

{
g̃11−3, g̃

1
1−2

}
= {−0.3105, 0.3027} with the

objective function f 1 = 11.4639. According to the
condition g1−3 ≤ −1 and g1−3 ≥ 0, RP is decomposed
into subproblems RP1 and RP2, and their lower bound
f0 is set as 11.4639.

2) Solving the problem RP1 and get the solution of g̃2 =
{−1,−0.1183} and f 2 = 54.4851. Solving the prob-
lem RP2 and get the solution of g̃3 = {0, 0.3027}
and f 3 = 11.4691. Then we have min

{
f 2, f 3

}
= f 3.

As g̃31−2 is real value, the problem RP2 is decomposed
into subproblems RP3 and RP4 according to the con-
straints g1−2 ≤ 0 and g1−2 ≥ 1, and their lower bound
is 11.4691.

3) Solving the problem RP3, we get g̃4 = {0, 0} and f 4 =
36.6984. Solving the problem RP4, the results are g̃5 =
{0, 1} and f 5 = 11.5744, min

{
f 4, f 5

}
= f 5. g̃4 and g̃5

are both feasible integer solutions of SVR tap position,
so f ∗ = 11.5744 is set as the upper bound.

4) As f 2 > f ∗, there is no need to branch RP1. The
optimal solution of SVR tap is g∗ = g5 = {0, 1}, and
the optimal objective value is f = f 5 = 11.5744.

The optimal SVR tap position is +1 for region 1-2 and
0 for region 1-3. During the distributed coordination opti-
mization, each region continuously adjusts the output pow-
ers of PV units and RPC devices within the region, and
finally converge to the global optimal solution. The final
APC amount of PV units is 0, and the total RPC amount is
398.1187 kVar. The highest voltage amplitude of the system
is 1.05p.u. at node 17 within the limits. The voltage profile is
displayed in Fig. 5, which clearly reflects the effectiveness of
the proposed method on voltage control.

FIGURE 5. Voltage profile of 32-bus practical case.

TABLE 2. Comparison results of centralized optimization and distributed
optimization in 32-BUS case.

Comparison results between the proposed distributed opti-
mization method and centralized optimization are listed
in Table 2. The performance of the distributed optimization
is close to that of centralized optimization. The maximum
voltage, APC amount of PV units and SVR tap position are
the same with centralized optimization. While the objective,
reactive power outputs of PV units and RPC are slightly
larger when compared to the centralized optimization, which
is caused by the primal and dual residuals. As stated in
portion IV-A, if the penalty parameter is not appropriately
chosen, convergence may be slow. A tuning technique of
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penalty parameter introduced in [10] is utilized in this paper
to balance the convergence accuracy and speed, which is
denoted as (17).

Comparison results of the proposed method in this paper
and the method in [12] are listed in Table 3. The result
of [12] is equivalent to the solution of abovementioned RP3.
It can be seen from the comparison results that the regional
coordination method makes full use of the adjustment advan-
tages of SVR, reduces or even avoids the PV generation
losses (0 kW VS 32.5032 kW) and reduces the total cost
(U11.5744 VS U36.6984).

TABLE 3. Comparison results with the method of [12] in 32-BUS case.

As we can see in Table 2 and Table 3, the computa-
tional time of the centralized optimization, the distributed
optimization method proposed in [12] and this paper are
6.391s, 96.3s and 296.918s, respectively. The distributed opti-
mization method takes more time to realize converge as an
iterative optimization between regions is needed for ADMM.
While the computational time of the distributed optimization
method proposed in this paper is larger than that proposed
in [12] because the BBM also takes time to determine the
optimal branch.

B. MODIFIED IEEE 123-BUS CASE
To verify the applicability of the regional distributed coor-
dination method to a large-scale network, a modified IEEE
123-bus system is selected for numerical test, where some
nodes are removed and renumbered. The voltage of the first
node is set to 1.0 p.u. The voltage of node 14 and node 68 are
0.9585 p.u. and 0.8963 p.u. respectively under full load and
no PV generation condition, thus three SVRs are installed on
branches 14-19, 14-54, and 62-68. The structure of the DN is
illustrated in Fig. 6.

1) OVERVOLTAGE SCENARIO
Assume that the system operates with high PV generation and
low load demand situation. As a result, some nodal voltages
exceed the upper limit. The voltage of the first node in sub-
station is 1.04p.u. and 12 distributed PV units generation are
close to full capacity in a certain scenario. The capacities and
installation locations of PV units are listed in Table 4.

FIGURE 6. Network structure of modified IEEE 123-bus case.

TABLE 4. Locations and capacities of PV units.

The penalty parameter ρ is set as 100, the other parameters
are the same with portion V-A. The solution process is shown
in Fig. 7(a) with all the branch trees listed.

After searching four branches, the optimal integer solution
of SVR tap position is obtained. The SVR tap positions are
+1,+2, and+1 for region 1-2, 1-3, and 3-4, respectively. The
voltage control performance is illustrated in Fig. 8(a). The
total APC amount of PV units is 28.5364 kW in this situation,
and the total reactive power compensation is 836.9341 kVar.
The highest voltage is 1.05p.u. at node 13 and node 23,
indicating that the voltage limits are satisfied.

Comparison results of centralized optimization and dis-
tributed optimization method are listed in Table 5. It is
obvious that the performances of the distributed optimiza-
tion method proposed in this paper are similar to that of
centralized optimization, and the error is small enough to
be negligible. The network maximum voltage and SVR
tap position of distributed optimization are the same with
those of centralized optimization, while the objective and
APC amount of PV units, the reactive power output of PV
units are slightly larger/smaller than centralized optimization,
respectively. The difference is mainly due to the convergence
accuracy.

Comparison results with the method proposed in [12] are
listed in Table 6. It can be seen that the APC amount, reactive
power output of PV units and the total cost are highly reduced
by the proposed method in this paper. The SVR tap action
changes the power flow distribution, thus the highest voltage
position of the network is different.

The computational time of the distributed optimization
method proposed in this paper increases significantly with
the expansion of the network scale. The problem is solved
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FIGURE 7. Solution process of modified IEEE 123-bus case.
(a) Overvoltage scenario, (b) low voltage scenario.

by IBM CPLEX in MATLAB R2013a environment, and the
computational time can be reduced significantly by paral-
lel computing of multiple regional controllers in practical
applications.

2) LOW VOLTAGE SCENARIO
The traditional long-feeder distribution network is prone to
the problem that the feeder voltage may lower than the
lower limit when the load is heavy and no PV generation at
night. In a certain scenario, the voltage of the first node is
1.04p.u. and the voltages of some nodes are lower than the
lower limit 0.95p.u., as shown in Fig. 8(b). In this situation,
the voltage profile can be improved by adjusting the SVR.
The solution process is shown in Fig. 7(b).

After searching four branches, the optimal integer solution
of SVR tap position is obtained. The SVR tap positions are
−7, −7, and −5 for region 1-2, 1-3, and 3-4, respectively.

FIGURE 8. Voltage profile of modified IEEE 123-bus case. (a) Overvoltage
scenario, (b) low voltage scenario.

TABLE 5. comparison results of centralized optimization and distributed
optimization of 123-BUS case in overvoltage scenario.

The voltage profile is significantly improved as presented
in Fig. 8(b). The voltage varies significantly at the regional
boundary and the voltage mutation is caused by SVR taps
action.

Table 7 summarizes the comparison results of the pro-
posed distributed coordination optimization method with
the centralized optimization. Similar to the overvoltage
scenario, the regional distributed coordination optimization
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TABLE 6. Comparison results with the method of [12] in 123-BUS case.

TABLE 7. Comparison results of centralized optimization and distributed
optimization of 123-BUS case in low voltage scenario.

can achieve almost the same performance with centralized
optimization and ensure the control precision.

VI. CONCLUSION
To deal with the voltage violation problem in long-feeder
DN with high penetration of PV, this paper utilizes network
characteristics to configure SVRs and establishes a fully
distributed optimization model to minimize the total cost
of network losses and PV generation losses. ADMM and
BBMare combined and employed to handle the inter-regional
coordination and nonconvex problem introduced by SVR tap
position. The simulation results of a practical 32-bus system
and a modified IEEE 123-bus system indicate that the pro-
posed method can mitigate the low voltage problem on heavy
load condition as well as the overvoltage problem caused by
high penetration of PV. The control performance is very close
to that of centralized optimization in a distributed manner.
Furthermore, the SVR tap action can reduce or even avoid PV
generation losses, thus reducing the total cost and improving
the PV permeability rate.
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