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ABSTRACT With Android applications (apps) becoming increasingly popular, there exist huge risks lurking
in the appmarketplaces as most malicious software attempt to collect users’ private information without their
awareness. Although these apps request users’ authorization for permissions, the users can still face privacy
leakage issues due to their limited knowledge in distinguishing permissions. Thus, accurate and automatic
permission checking is necessary and important for users’ privacy protection. According to previous studies,
analyzing app descriptions is a helpful way to examine whether some permissions are required for apps.
Different from those studies, we consider app permissions from a more fine-grained perspective and aim
at predicting the multiple correspondent permissions to one sentence of app description. In this paper,
we propose an end-to-end framework for assessing the consistency between descriptions and permissions,
named Assessing Consistency based on neural Network (AC-Net). For evaluation, a new dataset involving
the description-to-permission correspondences of 1415 popular Android apps was built. The experiments
demonstrate that AC-Net significantly outperforms the state-of-the-art method by over 24.5% in accurately
predicting permissions from descriptions.

INDEX TERMS Android security, app descriptions, app permissions, consistency assessment, text classifi-
cation, deep learning.

I. INTRODUCTION
As the mobile internet is booming, mobile apps are becom-
ing an integral part of peoples’ daily life, providing func-
tions including file sharing, message sending, and recreation.
Users download apps from app markets, such as Apple’s
App Store and Google Play Store, and install them with
permissions granted on their mobile phones. Some of
these granted permissions (e.g., contact list and photo
gallery access) are related to users’ privacy. They allow the
apps to obtain sensitive information, leading to potential
information leakage and privacy breach [1]. For example,
in March 2018, the Facebook-Cambridge Analytica data
scandal was reported involving the collection of 87 million
Facebook users’ personally identifiable information through

The associate editor coordinating the review of this manuscript and
approving it for publication was Huan Zhou.

apps [2], [3], which triggered heated public discussion and
made people pay much more attention to the protection of
private information.

To tackle these problems, the previous Android versions
adopt the install-time permission mechanism, i.e., show a list
of claimed permissions to users and request for their autho-
rization before installation. However, most of the users only
focus on the functionality itself, but few patiently check and
make out the declared permissions [4]. Recently, the official
Android system proposes a new runtime permission mecha-
nism that users are asked to grant the dangerous permissions
at runtime instead of being notified of the permissions during
installation [5], [6]. Even so, users may lack the knowledge to
decide which permissions are necessary for an app. For exam-
ple, facing a map app, some users would grant its malicious
READ_CONTACT permission request, leading to possible
privacy leakage for them.
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To detect malicious app and assist users’ decision-making
process, some previous work resorts to exploring the relation-
ships between source code and privacy-related resources such
as requested permissions [7], [8], privacy policies [9]–[12],
and app description topics [13]. In this paper, we aim at
disclosing apps’ privacy to users and focus on exploiting
app descriptions to check permissions’ necessity, commonly
termed as description-to-permission fidelity [14]. In addition
to helping users understandwhether an app is over-privileged,
such fidelity checking can also assist developers in writing
high-quality descriptions [15], and enhance the trustworthi-
ness of the app stores.

Accurately predicting permission usage from app descrip-
tions is challenging. Although unsupervised semantics-based
methods are labor-saving, they generally require sufficient
semantic information (e.g., API documents [16] and descrip-
tions [14]), and are prone to generate false correlations,
i.e., encountering some patterns with high relevance score but
actually meaningless. For instance, if many anti-virus apps
declare the permission GET_TASK, the noun ‘‘antivirus’’
may frequently appear with this permission together, thereby
forming a relational pattern which may not reasonable [14].
Supervised methods tend to achieve better performance
by learning knowledge from labeled data, but they usu-
ally need huge manual labor in building training dataset
(e.g., description-privacy pairs). To alleviate the labor cost
in supervised methods, we focus on accurately measuring
description-to-permission fidelity by using a relatively small
training dataset.

In our work, we leverage the natural language process-
ing (NLP) technique and propose an end-to-end framework
for Assessing Consistency based on neural Network, named
AC-Net. AC-Net takes app descriptions as input and outputs
the consistency between app descriptions and permissions.
We propose a novel learning model called TextGRU to learn
semantic representations of app descriptions better. Instead
of directly adopting deep learning models, we combine
multilevel features during implementation. Through learn-
ing, the model predicts the permissions corresponding to a
description sentence.

Furthermore, we pay more attention to the degree of con-
sistency between an app’s description and declared permis-
sions instead of providing a simple ‘‘yes’’ or ‘‘no’’ answer
as in existing studies. Such an output style has multi-fold
advantages: 1) For app evaluation systems of app mar-
kets, fidelity measurement based on the degree of consis-
tency is more tolerant for some app descriptions lack of
details; 2) For users, they can personally choose the apps
with acceptable fidelity besides the fewer apps with 100%
fidelity; and 3) During mobile app development, developers
can update app descriptions sentence-by-sentence according
to the degree of consistency.

The main contributions of this paper are summarized
below:
• We leverage techniques in the field of NLP and propose
a deep learning based framework named AC-Net. It is

the first attempt to apply deep learning techniques in
assessing the description-to-permission consistency of
mobile apps.

• We manually labeled permissions of nearly 25,000
description sentences for 1,415 popular Android apps
for evaluation of our model.1 Comprehensive experi-
ments show that AC-Net achieves significantly better
performance than the state-of-the-art methods, with over
24.5% improvement in accurate consistency assessment.

• Our labeled dataset is released online2 for making
our experiments reproducible and promoting future
research. To the best of our knowledge, the scale of our
released dataset, both the number of app’s description
sentences and the number of permissions, is the largest
in the field of fidelitymeasurement between descriptions
and permissions.

The rest of this paper is organized as follows. Section II
introduces the background knowledge and motivating exam-
ples. Next, we illustrate the detailed design of our AC-Net
framework in Section III. Section IV presents the design
of the empirical study followed by the experimental results
shown in Section V. Section VI discusses the threat to our
study, and then Section VII reports on related work. Finally,
we conclude the paper in Section VIII.

II. BACKGROUND AND MOTIVATION
To assist readers in better understanding the motivation of
our task and the involved methodology, we first introduce
permission-based privacy protection mechanisms, app per-
missions, and descriptions, then illustrate the importance
of well assessing the consistency of the two aspects, and
finally explain some NLP knowledge related to our proposed
methodology.

A. ANDROID ARTIFACTS
1) ANDROID SECURITY MECHANISMS
The core design of the Android security architecture is that
by default no app has the privilege to perform any operation
that adversely affects other apps or users [1]. This includes
reading or writing the user’s private data (such as contacts
or SMS), reading or writing files from other apps, accessing
network, keeping the device awake, etc. Since each Android
app runs in a process sandbox, the app must explicitly share
resources and data, declaring which permissions are required
to obtain additional functionality that is not provided by the
base sandbox. Apps statically declare the permissions they
need to get access to the resources, and the Android system
prompts the user for authorization.

The existing permission-based access control for Android
security is vulnerable to attack, such as privacy leakage (when
users grant permissions to malware and unknowingly allow

1This dataset is created for ensuring the correctness of the correspondence
between descriptions and permissions, which is discussed in Section VI.
In practice, the scale of the dataset can be easily extended for more
app descriptions and permissions.

2https://github.com/LinkyVon/AC-Net
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access to personal information) and even might be bugged
or be controlled (some malware can monitor the phone call
and SMS without user’s consent or send various commands
to remotely control the device) [1].

2) APP PERMISSIONS
Apps request permissions either during their installation time
(for Android 5.1.1 and below) or runtime (for Android 6.0 and
higher).

Install-time Permission Requests: Android introduces a
permission-based security model to limit access to system
resources and private data. All the needed permissions must
be declared in the AndroidManifest.xml file and granted dur-
ing install time. If the user denies these permissions request,
the system will cancel the installation of the app. On the
contrary, the app will have access to all those permissions.
However, there are quite a few developers overly specify their
permission requirements [17], and many users often fail to
make a better judgment due to their less expertise, which
increases the attack surface and causes additional security
risks from apps breach [18].

Runtime Permission Requests: From Android 6.0
(API level 23, runtime requests version) onward, system
permissions are divided into several levels of protection. The
most important levels are Normal and Dangerous.

The system will automatically grant access for Normal
Permissions which have little risk to user’s privacy. These
permissions cannot be revoked as well. For instance, users
are not notified about the authorization of the permis-
sion KILL_BACKGROUND_PROCESSES as it belongs to
Normal Permissions.

For Dangerous Permissions, users can grant them dur-
ing app runtime instead of in the period of app installa-
tion, which seems to be good news for users. However,
Wijesekera et al. [19] found that at least 80% of the partic-
ipants would tend to block at least one permission request
and most of them expressed a desire to prevent over a third of
requests following their expectations. Without necessary per-
missions granted, the user experience will be influenced by
the pop-up permission dialogues and limited functionalities.

Unlike normal and dangerous levels, Signature Per-
missions SYSTEM_ALERT_WINDOW and WRITE_
SETTINGS are particularly sensitive. If an app requires one
of these permissions, it must send an intent with action to
request the user’s approval.

3) APP DESCRIPTIONS
App descriptions are a crucial channel for developers to com-
municate apps’ information to users. Besides including app
functionality, app descriptions usually implicitly deliver the
permission usage information. An example of app description
for theCloudMagic Email (com.cloudmagic.mail), a commu-
nication app, is shown in Fig. 1. The feature list elaborates
the functionalities provided by the app and can indicate the
app’s permission usage. For example, the description sen-
tence ‘‘Download attachments in background’’ illustrates that

FIGURE 1. Snippet of the app description for CloudMagic Email.

FIGURE 2. Description sentences corresponding to the description
snippet in Fig. 1. The red fonts indicate permission-related words, and the
first two characters of each sentence denote the sentence identifier.

the app provides file downloading service, which means that
the app needsWRITE_EXTERNAL_STORAGEpermission.

B. MOTIVATING EXAMPLE
Assessing the consistency between app description and per-
missions bridge the semantic gap between app-stated func-
tions and the actual app permission usage. In our work,
AC-Net quantifies the correspondence between descriptions
and permissions, thereby can alert potentially malicious or
redundant permission declaration in advance.

To show how AC-Net works, we use the app CloudMagic
Email3 as an example, where we successfully detect suspi-
cious permission usage based on app descriptions. Cloud-
Magic Email’s declared permissions include:
p1: GET_ACCOUNTS;
p2: WRITE_EXTERNAL_STORAGE;
p3: READ_CALENDAR;
p4: READ_CONTACTS;
p5: ACCESS_FINE_LOCATION.
To illustrate that AC-Net can address the problem of false

and misleading advertising likewise, we take the permis-
sion p6: RECORD_AUDIO, which is not declared by this
app but within themeasuring range of AC-Net, as an example.

We split description into seven sentences, as depicted in
Fig. 2, and predict the permission usage of each sentence.
The predicted results can be shown as a sentence-permission
matrix, i.e., Table 1. Each row in the matrix represents the
probability distributions of the permission usage expressed
by the corresponding sentence, with the last row sum-
marizing the permission distribution of all the sentences.

3This is a free communication app. The version we crawled was released
on December 21, 2015 and had an average rating of 4.47 out of 89281 down-
loads. This app renamed as ‘Newton Mail’ is still available in Google Play
now.
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TABLE 1. Prediction results of permission usage based on the description
sentences in Fig. 2. Each row represents the probability distributions of
the studied permissions, with the last row summarizing the probabilities
of permission usage expressed by the whole description. The bold values
indicate the maximum ones by column, and the column highlighted in
grey means that the corresponding permission is not declared by this
app but within the detecting range of the system.

According to the matrix, It can be found that the descrip-
tion strongly suggests the use of permissions p1 and p2, but
weakly relates to the permissions p4 (READ_CONTACTS)
and p5 (ACCESS_FINE_LOCATION). These weak relation-
ships are attributed to the unspecified location and contact
access in the description. In addition, since the permission p6
(RECORD_AUDIO) has no relation with the description at
all, AC-Net helps to clear off the suspicion that the app over-
states its functionalities. For end users, the assessment result
can help them make decisions following their own privacy
preferences. For the app developers, they can improve the
description or modify the requested permissions accordingly.

Moreover, one description sentence may imply more
than one permission request in some cases. For example,
S5 strongly relates to p1, p2, and p3. Although S5 is most
involved with p2 (with probability at 0.89), its moderate
relation to p3 determines that the whole description probably
requests p3. According to the one-to-one correspondence in
previous studies [16], the entire description would be unre-
lated to p3. Thus, predicting the multiple correspondent per-
missions of one description sentence is helpful for accurate
description-permission fidelity measurement.

C. NLP PRELIMINARIES
1) WORD EMBEDDING
Word embeddings are a set of language modeling tech-
niques that represent words into a continuous vector space
with much lower dimension. Word2vec is a typical word
embedding proposed by Mikolov et al. [20] and has been
widely adopted in the field of NLP [21]. The vector rep-
resentations obtained by Word2Vec are learned by two-
layer neural networks to reconstruct linguistic contexts of
words. The distance (e.g., cosine distance) between two word
vectors in the low-dimension space indicates the semantic
similarity of these words. GloVe [22] utilizes global word-
word co-occurrence counts to learn the word vector repre-
sentations. Mikolov et al. [23] further proposed crawl to
improve the quality of word vectors using a combination
of known tricks, such as position-dependent weighting and
phrase representations.

FIGURE 3. Illustration of a simple RNN model with gated recurrent
units (GRUs).

2) RECURRENT NEURAL NETWORK (RNN)
Recurrent neural networks (RNN) [24], where the internal
states can better express the contextual information by pro-
cessing sequences of inputs, is commonly used in the NLP
field [25]–[27]. As shown in Fig. 3, overall, it consists of a
hidden state h, receiving the current input xt and activated
by the state of the previous time stamp. At each time stamp,
the recurrent hidden state ht of RNN is updated by

ht = φ(ht−1, xt )), (1)

where φ is a non-linear activation function, typically set
as a complex recurrent unit, e.g., Long short-term memory
(LSTM) [24] and Gated recurrent unit (GRU) [26]. LSTM
and GRU are two popular extensions of RNN, and we choose
GRU in this paper due to its simpler structure and good
performance in many NLP tasks [28], [29].

GRU is one recurrent unit on sequence modeling using
a gating mechanism to learn long-term dependencies [26].
As shown in Fig. 3, for the t-th time stamp, the two gates
(i.e., the reset gate rt and the update gate zt ) in GRU are
computed by

rt = σ (Wr · [ht−1, xt ]), (2)

zt = σ (Wz · [ht−1, xt ]), (3)

where σ is the logistic sigmoid function, and Wr and Wz
are weight matrices. The reset gate determines whether the
candidate hidden state h̃t combines the new input xt with the
previous state ht−1:

h̃t = tanh(W · [rtht−1, xt ]). (4)

Finally, the update gate controls howmuch the hidden state ht
updates based on candidate state h̃t and previous state ht−1.
The activation of the t-th state ht is computed by

ht = ztht−1 + (1− zt )h̃t . (5)

III. DESIGN OF AC-NET
In this section, we present AC-Net in details. Figure 4 gives
an overview of our framework. There are two main phases
of the AC-Net: model training of the deep neural network
for classification and consistency assessment. In the training
phase, we take in a set of app’s description along with their
each permission labels (whether it is indicated or not) as
input. The descriptions are then subject to preprocessor and
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FIGURE 4. Framework overview of AC-Net.

model construction. We pre-process the descriptions at first
in the preprocessor to format the sentences. The preprocessed
sentences can be fed into the proposed neural network, named
TextGRU, to train the classifier in the model construction
step. In the assessing phase, an unknown app’s description
is adopted as input and again pre-processed as in the train-
ing phase. The model application process finally applies the
learnedmodel to classify every sentence and output the binary
probability distributions for each declared permission. The
output indicates the correlation between the app description
and permissions of this unknown app. Detailed explanations
are presented in the following.

A. PREPROCESSING
The preprocessor accepts the natural-language description
of both unknown app and collected apps. Then, it converts
the sentences into sequences of word indices consistently
for further model training or assessment. In particular, the
preprocessor performs the following tasks:

1) SENTENCES SPLIT
Accurate detection of sentence boundaries is critical for split-
ting app description into sentences. In simplistic English,
characters such as ‘.’, ‘!’, ‘?’ mark the end of a sentence, and
others like ‘?’, ‘•’ or ‘*’ may list bullet points are also con-
sidered as sentence separators. In particular, we use regular
expressions to filter decimals, ellipsis, shorthand notations,
URLs, and E-mail addresses at first, since these charac-
ters have other legal usages except for sentences separation.
After sentences splitting, we’ll get a set of sentences S =
{s0, s1, ..., sn}, including N items.

2) STOP WORDS REMOVAL AND STEMMING
Some high-frequency words which appear to be of little
value in analyzing permission usage are excluded from the

vocabulary entirely. These words are called stop words.
We remove a group of stopwords, which contains 127 generic
stop words in NLTK [30] and Top 50 words in Domain-
specific stop words list created by Watanabe et al. [31].
After that, we apply to the stemming, i.e., convert English
words into its purest form, to improve the performance of
text classification tasks. Here we use Porter Stemmer tools
in NLTK to employ stemming.

3) WORD VECTORS INITIALIZATION
We initialize word vectors with our pre-trained word embed-
dings trained on 69941 Android app descriptions col-
lected from Google Play. The vectors have a dimensionality
of 100 and were produced by Word2Vec model which is a
shallow, two-layer neural network. Compared to the some-
what popular embeddings such as GloVe [22] (400 thousand
word vectors trained on Wikipedia) and crawl [23] (2 million
word vectors trained on Common Crawl), ours fully retains
domain-specific characteristics of statements.We compute an
index mapping words to known embeddings as a dictionary.
Then create another word index mapping words to integers
for all input text. We truncate the sequences to a maximum
length of L words. So far, we format our sentences to a tensor
TN×L that can be fed into a neural network. The individual
items in it are integers of word index.

FIGURE 5. Model architecture of TextGRU.

B. MODEL CONSTRUCTION
We propose a deep neural network model for text classifi-
cation called TextGRU. The model, shown in Figure 5, is a
variant of the RNN architecture with the GRU. The input of
the network is one of the sentences si, which is a sequence of
word indices [w0,w1, ...,wn]. The output of the network con-
tains the binary probability distributions for each permission.
We use Pr(pk ) to denote the probability whether the sentence
suggests permission pk . We divide the model into four layers
and give details for each layer in implementation.
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1) EMBEDDING LAYER
In this layer, we leverage our word index and the dic-
tionary mentioned above to compute embedding weights.
The Embedding Layer maps the integer inputs to the initial
embedding weights which can be fine-tuned during training
to improve the performance. At this point, the output of this
layer is a tensor TN×L×D, where D denotes the dimension-
ality of weights and is the same as the dimension of the
pre-trained word embeddings.

2) BI-GRU LAYER
In this layer, we utilize Bidirectional GRU (Bi-GRU) to cap-
ture the feature of future as well as past context. Bi-GRU
extends the unidirectional GRU networks by introducing the
layer in which the recurrent process is in the opposite direc-
tion.We denote the current hidden state outputs of the forward
pass and backward pass as

−→
h t and

←−
h t separately. Then the

output is concatenated by

ht =
−→
h t ⊕

←−
h t . (6)

3) CONCAT LAYER
In Concat Layer, we process the output of Bi-GRU Layer in
three different ways and merge them along the concatenation
axis. As illustrated in Figure 5, the Last Sequence part only
accepts the GRU hidden state output at the last time step.
At the same time, the Global Max Pooling part and the
Global Average Pooling part can both access the hidden state
output for each input time step, and then make global max
pooling operation and global average pooling operation for
temporal data respectively. After that, we merge them into a
concatenated vector hc:

hc = hL ⊕ hGMP ⊕ hGAP. (7)

4) OUTPUT LAYER
After applying dropout at the rate of 0.3 and normalizing the
activations of the previous layer at each batch for preventing
overfitting, we use the sigmoid function as the activation in a
fully connected layer to limit each item of final output Pr (p)
into [0, 1], since Pr (pk ) is considered as the probability that
the input sentence indicates the permission pk .

Pr (pk ) = σ (W|rateĥc), (8)

whereW|rate randomly set input units to 0 by the probability
of rate and ĥc is normalized data.

5) MODEL TRAINING
We consider the decision of each permission as a binary clas-
sification instead of macro multi-class classification. To learn
the parameters of the network, we should calculate the binary
cross-entropy [32] of predictions and true labels for each class
and minimize the sum. The definition of loss function as
follows:

L(ŷ, y) = −
N∑
i=1

C∑
j=1

[yij ln ŷ
i
j + (1− yij) ln(1− ŷ

i
j)], (9)

where ŷij is prediction probability that the i-th sentence indi-
cates the j-th permission and yij is the corresponding ground-
truth label. N and C denote the number of training samples
and class number severally.

C. MODEL APPLICATION: CONSISTENCY ASSESSMENT
The assessment process is based on the trained model. When
a new app comes, after preprocessing its app description and
performing text classification on each sentence, the model
outputs the binary probability distributions of each declared
permission for each sentence. In addition to the sentence
level, we consider the maximum values of each permission
as consistency degree for the entire app. Rather than a simple
‘‘yes’’ or ‘‘no’’ answer, we pay more attention to the degree
of consistency between app description and declared permis-
sions, whether the sentence level or the app level.

IV. EMPIRICAL STUDY DESIGN
In this section, we illustrate the overall experimental design
before presenting the detailed results. Specifically, we first
show the research questions we aim to answer, then the
experimental datasets, and finally the evaluation metrics we
used to assess the results.

RQ1: Can AC-Net accurately predict app permissions
based on descriptions? We compare AC-Net with baseline
methods to answer this question.

RQ2: Can AC-Net outperform commonly-used classifica-
tion models such as SVM?

RQ3:What is the impact of word embeddings on themodel
performance? Here, we compare the word embeddings pre-
trained on our corpus, and the existing popular embeddings.

RQ4: What is the performance of AC-Net when evaluated
using WHYPER’s dataset [16]? We also include one avail-
able dataset which only considers three permissions, besides
validating on the dataset built by us and involving more
app permissions.

A. DATASET
We collected 69,713 Android apps from Google Play in
December 2015, which is a snapshot of popular apps
declaring at least one permission. Following previous
research [14], [16], [31], we selected partial app permissions
for study. Table 2 illustrates the 16 permissions involved
in our work, which can be classified into the official three
protection levels declared by Google: dangerous permissions,
normal permissions, and signature permissions [33].
Dangerous Permissions cover the areas where apps could

read or potentially write user’s private data or resources.
The 13 of 24 permissions which are the top risks with the
highest user concerns [34] are included. We consider the
WRITE_SETTINGS permission, one of the two Signa-
ture Permissions and also related to user-sensitive features.
It allows an app to read or write system settings and even
modify the permission status. Although Normal Permis-
sions poses little risk to privacy information, they may
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TABLE 2. App permissions included in our dataset.

not comply with user’s preferences as users cannot revoke
these permissions after installation. We include two of these
normal permissions that were also discussed in previous stud-
ies [14], [31]. Following these studies, we hypothesize that
the access of these permissions should be well reflected in
apps’ descriptions.4Moreover, we classify the 16 permissions
into 11 permission groups according to Google’s official
grouping strategy for dangerous permissions [33] and each
permission’s influence on users’ phones for other permission
levels, as shown in Table 2. In our work, we assess the
consistency between permissions and descriptions based on
the 11 permission groups.

In AC-Net, we pre-train the input word embeddings using
app descriptions of all the collected apps. Overall, the descrip-
tions contain 783,199 sentences and 39,800 unique words.
We experimentally set the embedding dimension as 100.
As manually labeling app permissions related to all descrip-
tion sentences is rather labor-intensive, we decided to choose
a subset of these apps as our experimental dataset for
model learning. We follow two principles below during app
selection:

1) Popularity - to ensure that the app descriptions are
credible. Also, the safety of these apps is crucial for
users because privacy leakage in them can influence
more users. Here, we removed the apps with user rating
counts fewer than the average (i.e., 24,715) in our
collection.

2) Rating and category - to involve apps with both positive
feedback and negative feedback, and mitigate the bias
caused by only one category. To do so, we picked
100 top-rated apps and 100 most poorly-rated apps for
each permission. The selected apps cover 40 categories,
with the quantity distribution shown in Table 3.

4Although some apps may have sketchy or even incredible descriptions,
detecting misleading descriptions is out of the scope of our work. We aim at
accurately predicting app permissions based on descriptions only without
combining other app repositories such as code and API documentation,
which is more technically changeable.

TABLE 3. Categories of selected apps.

Different from previous research [16], [31], which chooses
apps on each permission independently and only considers
one permission per app, our selected apps are intersected by
different permissions. Thus, after filtering non-English text,
it resulted in a subset containing total 1,415 unique apps with
24,726 sentences as shown in Table 5.

B. EVALUATION SETUP
In this part, we introduce the experimental dataset and the
evaluation metrics.

1) EXPERIMENTAL DATASET
Although there exist public datasets containing the correspon-
dence between description sentences and app permissions,
they all involve few permissions. So we determined to manu-
ally build the experimental dataset, in which we focus on the
11 permission groups depicted in Table 2 and label the per-
missions reflected by each description sentence. We invited
14 participants for the labeling task. They are all computer
science students who are familiar with app usage and devel-
opment, including app permission invoking. Their average
development experience is 1.7 years, with the maximum at
about three years and the minimum at one year. We ensured
that each sentence was assigned at least two students for the
permission labeling, and more students were included when
the agreement could not be reached. In ourwork, one sentence
needs at most three persons to label, and the sentences labeled
with permissions are called permission sentences. The whole
process lasted 5 to 10 days, and the average participation time
of the students was 6 hours.

We note that some sentences may suggest more than
one permissions. For example, an app’s description says
‘‘You can either block any caller or SMS from your con-
tacts list, call logs, and messages logs, or add unwanted
number manually’’. This sentence implies the usage of the
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TABLE 4. Example of annotation format.

TABLE 5. Statistics of manual checking.

permission READ_CONTACT (‘‘from your contacts list’’),
READ_CALL_LOG (‘‘from call logs’’), CALL_PHONE
(‘‘block call’’) and SMS permission group (‘‘block SMS’’
and ‘‘from messages logs’’), therefore, we annotate it as a
permission sentence related to each of these permissions.
We finally obtain the binary labels of the 11 permission
groups for each sentence. We list some examples in Table 4 to
show the annotation format. For each permission, permission
sentences are labeled as ‘‘1’’, and the remaining ones are
labeled as ‘‘0’’. Table 5 reports the statistics of the experimen-
tal dataset, including the number of apps, the total number
of sentences, and the number of permission sentences for
each permission group. As can be seen, 20.2% of descriptions
sentences reflect the usage of the studied permissions.

For training our AC-Net model and evaluate its perfor-
mance, we conduct comprehensive experiments by employ-
ing the repeated holdout cross-validation approach. First,
we randomly select 200 app descriptions with about
3600 sentences of the pre-selected subset as the test set, and
the remaining part is regarded as the train set. Then, the test
set is used for the evaluation of our model as well as other
comparing methods, whereas the train set is split into training
and validation sets with the partition of 4:1 once again for bet-
ter model training. The random sampling process is repeated
10 times. Each time, all of the comparison experiments are
evaluated on the same randomly sampled test set. The final
results are the average values of them.

2) EVALUATION METRICS
Determining whether a sentence of app description is a
permission sentence, is a classification problem. As shown
in Table 5, the permission sentences represent a small part of

overall sentences for every permission group. When dealing
with the class imbalances, accuracy is an unsuitable metric
to use. Usually, there are two candidates as metrics: The area
under the receiver operating characteristic curve (ROC-AUC)
and precision-recall curve (PR-AUC).

The ROC-AUC value is equivalent to the probability that
a randomly chosen positive example is ranked higher than
a randomly chosen negative example [35]. The higher the
AUC value, the better the classification effect. The metrics
ROC-AUC can be calculated as follows:

ROC − AUC =

∑
i∈positive_class ranki −

Np×(Np+1)
2

Np × Nn
, (10)

where Np and Nn denote the number of positive and negative
samples, and ranki is the ranking of the i-th positive sample.

The precision-recall curve shows the trade-off between
precision and recall for the different threshold [36]. PR-AUC
is just the area under the PR curve. It can be approximated by
the integral with:

PR− AUC =
N∑
i=1

(Rn − Rn−1)Pn, (11)

where Pn and Rn are the precision and recall at the nth
threshold, and N is the number of samples.

V. EXPERIMENTAL RESULT
A. RESULTS OF RQ1: PERFORMANCE OF AC-NET
To demonstrate the efficiency of ourmodel, AC-Net, we com-
pare it with four relevant approaches: Keyword-based,
WHYPER [16], AutoCog [14] and ACODE [31].

1) By the Keyword-based method, we consider the sen-
tence which contains at least one keyword as the permission
sentence. Column ‘‘Key-Based’’ in Table 7 shows the key-
words that we obtained from permission-related APIs, five
words for each permission.

2) WHYPER [16] is a semantic-based approach extracting
semantic graph from Android API document to correlate
app description and permission semantics. They only con-
sidered three permissions. To extend the other permissions,
we manually extract the semantic pattern set from Android
API document like them.

3) AutoCog [14] automatically discovers a set of seman-
tic patterns for each permission from numerous permission-
related app descriptions based on the frequency. We apply it
on our test set by reusing the chosen patterns and integrating
11 permissions into 8 permission groups.

4) ACODE [31] is a variant of the keyword-based method.
They used a two-stage filter to distinguish relevant and
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TABLE 6. Evaluation results of different methods.

TABLE 7. Two kinds of keywords for permission groups.

non-relevant document for relevance weight calculation and
extract the keywords that have the largest relevance weights.
Their public results of Top 3 keywords are directly utilized,
shown in the column ‘‘ACODE’’ of Table 7.

The results are provided in Table 6. It can be observed that
neither of the keyword-based method and ACODE is com-
parable with AC-Net under the ROC-AUC measure because
of their inherent limitations such as words confusing and the
lack of semantic reasoning. For the PR-AUC values, AC-Net
surpasses the other approaches on most of the permissions,
except for permission group MICROPHONE evaluated by
ACOED. Further, it can be seen that keyword-based method
and ACODE get higher values of ROC-AUC and PR-AUC on
the permission groups of LOCATION and CALENDAR than
performance on other permissions. It can be explained that
these three permission groups have fewer but better keywords
to identify the permission sentence.

Clearly, WHYPER and AutoCog could not compete with
our approach under both ROC-AUC and PR-AUC mea-
sures. We have an assumption that the semantic graph gen-
erated from the API documents cannot cover the complete
semantic patterns. Moreover, being confined to the fixed
semantic patterns, WHYPER is likely applicable to standard

TABLE 8. T-test performance on ROC-AUC.

description sentences, whereas this type of text occupies a
minor proportion in reality. The failure of AutoCog can be
in large measure attributed to unsupervised learning which
has the drawback of choosing relationships that may not
appropriate, leading to many false positives.

To confirm whether the predictions of our AC-Net are
significantly better than those provided by another method,
we test the statistical significance of the ROC-AUC with
Wilcoxon Signed Rank Test [37], [38]. In particular, we test
the following Null Hypothesis: ‘‘The ROC-AUC provided
by the method Mi is significantly less than that of the
method Mj.’’, and set the confidence limit, α, at 0.05.
As shown in Table 8, the improvement of our AC-Net over
the four benchmarks is significant (P < 0.001) in 36 out
of 39 cases, which further prove the effectiveness of our
AC-Net.

B. RESULTS OF RQ2: THE IMPACT OF
DIFFERENT LEARNING MODELS
We also examine the impact of different learning models
on prediction effectiveness. We have tried several popular
learning models, including TextCNN [39], NBSVM [40], and
LR [41], by using their basic implementations. The evaluation
results in Table 9 show that all the learning models lead
to overall good ROC-AUC and PR-AUC values. In partic-
ular, NBSVM is an approach where an SVM is built over
Naive Bayes log-count ratios as feature vectors. LR and
NBSVM, as strong baselines, are commonly used in text
classification by using the representation of the bag of words
and a matrix of TF-IDF features. These traditional machine
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TABLE 9. Evaluation results of different learning models.

TABLE 10. Impact of word embeddings (ROC-AUC).

learningmodels work slightly worse in our particular settings.
For deep learning models, TextGRU outperforms TextCNN,
since TextGRU makes use of sequential information with the
output being depended on the previous computations, which
captures information about what has been calculated so far.
Besides, TextGRU requires fewer parameters catering to less
training data to generalize.

C. RESULTS OF RQ3: THE IMPACT
OF WORD EMBEDDINGS
We process the word embeddings in four different ways
including using the pre-trained word embeddings of our
corpus, GloVe [22], crawl [23], and all one’s initializa-
tion (ALL-1) that generates tensors initialized to 1 and
updates weight during training.

Table 10 shows the result under the ROC-AUC mea-
sure. Accordingly, it could be found that the AC-Net with
our pre-trained word embeddings performs well on most
of the permissions with high ROC-AUC values. Instead
of training weight only by input sentences in Embedding
layer, using pre-trained word embeddings can capture richer
external semantic information. What’s more, our domain-
specificword embeddings fully retain the rich semantics from
app descriptions rather than external corpus.

D. RESULTS OF RQ4: CROSS-DATASET EVALUATION
We validate the robustness of AC-Net model by using the
public external labeled dataset [16]. This dataset consists of
a set of annotations for permission sentences as well as the

TABLE 11. Robustness on external labeled dataset (ROC-AUC).

FIGURE 6. Proportions of apps that declare a permission and ones
actually refer to the permission after manual checking.

outputs of WHYPER on three permissions. Thus, we can
directly compare the performance of the two frameworks.
We utilize these sentences as the input and their labels as the
validation set to evaluate the performance of our model. The
metric is ROC-AUC as before.

It is evident that AC-Net outperforms WHYPER on
the external data under the ROC-AUC measure shown in
Table 11. Our model has a better effect and robustness, which
can maintain relatively high performance when applying to
different kinds of datasets.

VI. DISCUSSION
AC-Net model solves the problem of assessing the con-
sistency from a new point of view aims at learning real
correspondences between the semantic of descriptions and
the permissions usage. We notice that most of the declared
permissions are not much well described in their descriptions
from the official store (i.e., Google Play). Figure 6 illus-
trates the fractions of apps that relate a permission from the
official declaration as well as the ones frommanual checking.
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Furthermore, for apps overall consistency, human readers
could only find 14% of apps whose official descriptions
reveal all that declared permissions. Thus, it is inappropriate
to use the corresponding relationship between app descrip-
tion and declared permissions directly for pattern extraction
as AutoCog does, because some common patterns would
be wrongly selected under frequency-based measurement.
In this paper, we use the manually checked dataset as ground
truth to train the classification model, thereby ensuring the
correctness of the consistency.

A. THREATS TO VALIDITY
1) INTERNAL VALIDITY
With regards to the internal validity, the informativeness of
descriptions can impact the permission assessment. To reduce
the threat, we choose the comprehensible permissions that
developers should provide reasons in the description follow-
ing the latest writing tips [42], [43] and manually annotate the
sentence in our experiment.

TABLE 12. Efficiency comparison of different methods.

Then, as shown in previous studies [44], [45], deep neu-
ral models can consume much processing time practically
in spite of the good performance. Among the compari-
son methods in answering RQ1, we compare their effi-
ciency in training and predicting on the same machine with
Intel(R) CoreTM i7-5820k CPU (3.3GHz, 12 cores) and
128GB RAM. As shown in Table 12, AC-Net consumes
relatively less time (0.001s) for predicting the possible per-
missions of one sentence. The training process can be imple-
mented offline, and will not influence the online permission
prediction in practice.

Finally, there are some limitations in applying our model
practically. On one hand, it may raise false alerts for non-
related or shallow app descriptions which cannot detail all
behaviors [12]. Although these apps declaring with redun-
dant permissions are not always designed for malicious
purposes, the alert can remind developers to modify and
improve app descriptions. On the other hand, malicious apps
with feigned descriptions can escape discovery based on our
model. Predicting the permissions usage based only on the
description does have this drawback. As discussed in previous
work, however, even ordinary users are more likely to find
obviously abnormal function publicity in natural language
descriptions [14]. In addition, This work is only a small part
of the field and should be complemented by other detecting
methods such as code analysis to jointly promote the sound
development of mobile apps.

2) EXTERNAL VALIDITY
First, the 69,713 subject apps in this paper represent a small
proportion of apps on the whole app markets. To mitigate this

threat, we select popular apps from different categories and
declaring different permissions to guarantee the representa-
tiveness.

Second, the description-to-permission ground truth was
established by manual inspection. To alleviate the threat of
human assessment, we ensure that each sentence is indi-
vidually checked and reached a consensus by at least two
participants.

VII. RELATED WORK
Privacy and security of mobile app have always been a
research hotspot. Sajjad et al. [46] summarized the previous
works on adaptive security and privacy for mobile computing
and highlighted the future challenges of research including
self-protection for mobile devices, user-driven privacy deci-
sions, and context-aware security. Our work assists users to
know more about app privacy. Specifically, we predict the
declared permissions of an app to help users make privacy-
related decisions. Different from the iOS platform where
Apple reviews every app for the privacy data access, Android
transfers the responsibility to the end users for permission
checking [47]. Many researchers have carried out dynamic
analysis of suspicious permissions and run-time behaviors on
the Android platform [48], [49]. In the static analysis, text-
based features, such as app descriptions [14], [16], [31], pri-
vacy policy [11], [12], API documents [50], app reviews [51],
and source code as text [52], from app markets, are
commonly-adopted for predicting the actual app permission
usage [53], [54]. In the following, we first illustrate the
previous work on text analysis for mobile security and then
generally review typical models for text classification.

A. CONSISTENCY MEASUREMENT BETWEEN APP
DESCRIPTIONS AND PERMISSIONS
In this paper, we focus on studying the relevance between
app permissions and descriptions of mobile apps, which
has already been explored by a few previous studies. Most
of them are based on either keyword retrieval or semantic
analysis approach.

For bridging the semantic gap between app descriptions
and apps’ real functionalities, Pandita et al. [16] proposed a
semantics-based framework, namely WHYPER. They lever-
aged the first-order-logic (FOL) representation of a sentence
in the description and semantic graphs of Android permis-
sions to identify whether a permission is necessary for an
app. But WHYPER is limited by its based semantic infor-
mation which is inferred by extracting natural language key-
words in API documents. AutoCog proposed by Qu et al. [14]
automatically discovers a set of textual patterns correlated
with permissions from the app descriptions as well as flag
apps that have discrepancies according to these patterns
‘‘black or white’’. Nevertheless, since the textual patterns
are selected based on their frequencies in the whole descrip-
tion collection without supervision, AutoCog may raise false
alerts when the common patterns for a sensitive permission
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do not appear in the descriptions of the apps that request the
permission, or the patterns are wrongly selected.

Following WHYPER, Watanabe et al. [31] proposed
ACODE (Analyzing COde and DEscription), which com-
bines static code analysis and text analysis. ACODE lever-
ages keyword-based techniques to determine whether an
app description relates to privacy-sensitive resources, and can
be inevitably influenced by polyseme and lack of semantic
reasoning. Gorla et al. [13] also employed both app descrip-
tions and code information, but their proposed CHABADA
approach is more focused on analyzing the abnormal usage of
sensitive APIs by comparing apps with the others in the same
cluster identified by description topics. To prohibit permis-
sion abuse,Wang and Chen [55] proposed an Android seman-
tic permission generator called ASPG to get the minimum set
of permissions an app needs according to the app descrip-
tions. Similarly, Taylor and Martinovic [54] implemented
a framework called SecuRank to identify and suggest a
functionally-similar alternative that used fewer permissions.
App descriptions are assisted in generating popular search
queries by extracting functional keywords. AUTOREB [51]
and PACS [56] focus on assessing the review-to-behavior
fidelity of mobile apps. Both of them explore the user review
information to predict the risky behaviors, which requires
review collection firstly rather than giving suggestions at the
beginning of app release and also needs manual intervention
to achieve better performance. Yu et al. [12] developed a
system named TAPVerifier by analyzing four kinds of soft-
ware artifacts, including privacy policy, bytecode, descrip-
tion, and permission, to conduct cross-verification among
them automatically.

Whyper [16] and AutoCog [14] are most close to our
work. Different from them, we focus on assessing the per-
missions of finer-granularity descriptions, i.e., the multiple
correspondences between description sentences and permis-
sions. In addition, our work is the first attempt to extend
deep learning techniques to predict app permissions based
on description sentences. The experimental results further
confirm the effectiveness of our work.

B. CLASSIFICATION METHODS IN NLP
Text classification is one of the typical problems in NLP.
The traditional classification methods divide the task into
two types, i.e., feature engineering and model training. For
feature engineering-based studies, most of them use Bag Of
Words [57] or Vector Space Model [58] for text representa-
tion. For them, the classifiers are typically chosen as Naive
Bayes (NB) [59], Logistic regression (LR) [41], [60], [61],
or Support Vector Machine (SVM) [62], [63] and its vari-
ant Naive Bayes-Support Vector Machine (NBSVM) [40].
To alleviate the manual efforts for feature selection in fea-
ture engineering-based work, several kinds of deep neural
models for automatic feature extraction have been proposed,
such as fast text classifier (fastText) [64], convolutional neu-
ral network (TextCNN) [39], and recurrent neural network
(TextRNN) [65]. They take word embeddings [20], [66] in

the text sequence as the input. The output of the deep model
is the probability distribution over category labels.

VIII. CONCLUSION AND FUTURE WORK
To bridge the semantic gap and promote mobile app devel-
opment, we propose a framework AC-Net that combines
NLP and deep learning to assess the consistency between
mobile app descriptions and permissions. Instead of out-
putting a simple answer, we focus on the degree of consis-
tency.We evaluate our AC-Net on real-world app descriptions
that involve 16 typical permissions. Experimental results
show that AC-Net achieves better performance with the aver-
age ROC-AUC at 97.4% and the average PR-AUC at 66.9%.
In the future work, we will focus on the following topics:

More permissions. In this paper, our study only involves
16 common permissions, but AC-Net can be easily extended
over more permissions. Our proposed model can be adap-
tively trained on descriptionswith other permission labels and
infer the permissions of newly-arrival descriptions.

Practical implementation.We will encapsulate our well-
trained classification model and design an end-to-end tool.
Given an app description, the tool can visualize correspond-
ing permissions of each sentence and also global consistency
with the app’s declared permissions.

Semi-supervised learning. Although AC-Net can achieve
considerable results, it still requires a large number of labeled
descriptions. Since semi-supervised learning methods gen-
erally need relatively fewer training data, we will build an
improved classification model.
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