
Received February 23, 2019, accepted March 17, 2019, date of publication April 22, 2019, date of current version May 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2912182

Overlapping Community Detection Algorithm
Based on Coarsening and Local
Overlapping Modularity
ZHANGHUI LIU1,2,3, BINGJIE XIANG 1,2,3, WENZHONG GUO 1,2,3, YUZHONG CHEN1,2,3,
KUN GUO1,2,3, AND JIANNING ZHENG4
1College of Mathematics and Computer Sciences, Fuzhou University, Fuzhou 350116, China
2Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350116, China
3Key Laboratory of Spatial Data Mining Information Sharing, Ministry of Education, Fuzhou 350116, China
4State Grid Info-Telecom Great Power Science and Technology Co., Ltd., Xiamen 350200, China

Corresponding author: Kun Guo (gukn123@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61300104, Grant 61300103, and Grant
61672158, in part by the Fujian Province High School Science Fund for Distinguished Young Scholars under Grant JA12016, in part by the
Program for New Century Excellent Talents in Fujian Province University under Grant JA13021, in part by the Fujian Natural Science
Funds for Distinguished Young Scholar under Grant 2014J06017 and Grant 2015J06014, in part by the Major Production and Research
Project of Fujian Scientific and Technical Department, Technology Innovation Platform Project of Fujian Province, under Grant
2009J1007 and Grant 2014H2005, in part by the Fujian Collaborative Innovation Center for Big Data Applications in Governments, in part
by the Natural Science Foundation of Fujian Province under Grant 2013J01230 and Grant 2014J01232, in part by the Fujian
Industry-Academy Cooperation Project under Grant 2014H6014 and Grant 2017H6008, and in part by the Haixi Government Big Data
Application Cooperative Innovation Center.

ABSTRACT Community detection is an important research direction in the field of complex network
analysis. It aims to discover community structures in complex networks. Algorithms based on dynamic
distance mechanism can find stable communities with various shapes. However, they still cannot discover
overlapping or outlier communities. This paper proposes an overlapping community discovery algorithm
based on coarsening and local overlapping modularity. First, to reduce the running time, a new equation
for computing the local overlapping modularity increment is derived. This equation finds the overlapping
communities, accurately and quickly. Second, a new similarity measuring strategy is designed to reduce
the number of outlier communities. The experiments on artificial and real datasets show that the proposed
algorithm can discover the overlapping communities, accurately and efficiently.

INDEX TERMS Community detection, overlapping communities, triangle coarsening, local overlapping
modularity.

I. INTRODUCTION
In the real world, the relationships among many things
are complicated and can be represented by complex net-
works. Therefore, complex network analysis has become a
trending research topic. Complex networks, such as litera-
ture reference networks, scientific collaboration networks,
protein–protein interaction networks, and urban transporta-
tion networks, have become the research subjects of many
scholars. As an important feature of complex networks, com-
munity structure is characterized by the tight connections
among nodes inside the same communities and the loose
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connections among nodes in different communities [1]. The
goal of community discovery is to discover communities
from complex networks efficiently and accurately. With com-
munity discovery, researchers can understand the internal
mechanisms of complex networks well. This understanding
has great value to our everyday life.

Early community detection algorithms can only discover
non-overlapping communities. However, in the real world,
a node can belong to multiple communities. For example,
a person can both be a member of his/her friendship and
colleague circles. Hence, detecting overlapping communi-
ties is important to reveal complex community structures.
At present, overlapping community detection algorithms can
be divided various types, such as label propagation-based
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algorithms (LPAs), seed expansion-based algorithms, and
edge clustering-based algorithms. LPAs have the merits of
low computation complexity and easy parallelization, though
they can easily create fragment communities. Generated com-
munities are also unstable. Seed expansion-based algorithms
are capable of generating communities with various shapes.
However, they are sensitive to the selection of seeds. Edge
clustering-based algorithms can discover overlapping natu-
rally but have high time complexity. Recently, a series of com-
munity detection algorithms based on dynamic distance was
proposed. These algorithms achieve community detection by
computing the influence of neighbors to nodes’ distance to
determine whether edges are preserved or cut off. The type of
algorithms is based on a simple but effective theory that can
find stable communities. However, their convergence speed
is slow. To solve the problem, an overlapping community
detection algorithm based on coarsening and local overlap-
ping modularity (CDCLM) is proposed. It can quickly detect
overlapping communities by introducing the coarsening strat-
egy and the local overlapping modularity.

The main contributions of this paper are as follows.
(1) the equation of the local incremental overlapping mod-

ularity is deduced to discover the overlapping communities
accurately and quickly. Existing algorithms based on tradi-
tional modularity either fail to find overlapping communi-
ties or require global information. The proposed equation
improves the efficiency of modularity calculation and the
quality of the overlapping communities.

(2) A new community optimization strategy is adopted to
merge similar communities and reduce the number of outlier
communities. Existing algorithms without the optimization
may result in excessive community overlaps. The new strat-
egy can improve the accuracy of community division.

(3) The comprehensive experiments conducted on the arti-
ficial and real datasets demonstrate the effectiveness and
practicability of the proposed algorithm.

II. RELATED WORK
Algorithms for overlapping community detection can be
divided into different types, including methods based on
label propagation [2]–[7], methods based on generative
model [8]–[11], link-based methods [12]–[16], methods
based on seed expansion [17]–[23], methods based on
game theory [24]–[26], methods based on dynamic dis-
tance [27]–[30], and so on.

The basic idea of label propagation algorithms is to initial-
ize a unique label for each node and update their labels itera-
tively. Nodes with the same label are in the same community.
In 2007, Raghavan et al. first proposed the RAK algorithm for
community detection. The primary idea is to assign a node to
the label adopted by most of its neighbors. When each node’s
label is iteratively updated until it no longer changes, nodes
with the same label are grouped into the same community [2].
Gregory proposed the COPRA algorithm to make LPA appli-
cable to overlapping community detection [3]. Xie et al. pro-
posed a label propagation algorithm based on neighborhood

strength driving. The algorithm adopts a new update strategy
to improve the computation efficiency and community parti-
tion quality [4]. In 2016, Zhang et al. proposed the COPRA-
EP algorithm to improve the COPRA algorithm by solving
the problem of unstable community detection results [5].

Algorithms based on a generative model assume that the
community relationships among nodes obey certain distri-
butions. Statistical inference methods are used to find the
optimal parameters of the distributions and obtain the com-
munities’ generation models. Newman et al. proposed a
hybrid probability model to describe the community struc-
tures and used EM algorithms to find overlapping communi-
ties [8]. Airoldi et al. proposed a model of mixed membership
stochastic block (MMSB). The model extends block models
for relational data to ones that capture mixed membership
latent relational structure. Thus, it provides an object-specific
low-dimensional representation [9]. Xing et al. proposed a
dynamic model of the MMSB (dMMSB) that can analyze
the dynamic tomography of time-evolving networks [10].
In 2016, Xin et al. proposed the ARWS algorithm, which can
adaptively update the affected nodes and communities when
dynamic events occur [11].

Algorithms based on link clustering aim to transform the
nodes of the networks into edges and convert discovered edge
clusters into node clusters. In 2004, Pereira-Leal et al. first
proposed a link clustering algorithm that applied to group
identification in protein networks [12]. In 2013, Shi et al. pro-
posed the GaoCD algorithm that applied genetic operation to
link clustering [13]. Zhu et al. proposed a new density-based
link clustering algorithm called DBLINK. Their proposed
algorithm can identify isolated edges and assign them to
relevant communities to improve the accuracy of community
discovery [14]. He et al. proposed a generative model for
link clustering and the NMFIB algorithm. The algorithm
depends on the importance of each node to describe the
structure of link communities when forming links in each
community [15]. Guo et al. proposed the OCDEDC algo-
rithm, which solves the problems of obscure belongingness
of the nodes on community borders and the excessive overlap
of communities [16].

Algorithms based on seed expansion depend on the design
of certain strategies to find seed nodes or seed communities
in the networks. The seeds are then expanded in accordance
with the local information to discover communities. In 2008,
Lancichinetti et al. proposed the LFM algorithm based on
local optimization [18]. Kanawati et al. proposed the Licod
algorithm based on the concept of communitymember prefer-
ence list [19]. In 2017, Su et al. proposed the RWA algorithm
that used the strategy of randomwalk for seed expansion [22].

In 2010, Chen et al. applied the game theory to com-
munity detection [24]. Algorithms based on game theory
model the community formation process as a community
formation game. Each node increases its profit by joining
and leaving and transforming communities until the algo-
rithm reaches the equilibrium status and discovers the final
communities. In 2017, Bu et al. proposed the SLA algorithm.
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TABLE 1. Overview of the variables.

The algorithm can start from arbitrary initial clusters and find
the corresponding balanced solution of attributed graph clus-
tering, where all nodes and clusters are satisfied with the final
cluster configuration [25]. In 2019, Bu et al. proposed a novel
and powerful graph K-means framework. It can effectively
integrate both the topological and the attributive information
in SMNs for community detection [26].

Algorithms based on dynamic distance automatically spots
communities in the networks by verifying the changes of
the ‘‘distance’’ between nodes (i.e. dynamic distance). The
idea of the algorithms is to envision the target network as an
adaptive dynamical system where each node interacts with
its neighbors. The interaction changes the distance between
nodes and the changed distance affects the interactions. The
interplay eventually leads to a stable distribution of node
distance. Nodes in the same community move towards each
other. Nodes in different communities keep far away from
each other. The nodes with 0 distance are assigned to the same
communities. In 2015, Shao et al. proposed the Attractor
algorithm based on dynamic distance [27]. In 2016, Meng
et al. proposed the I-Attractor algorithm. This algorithm
solves the problem of the Attractor algorithm, which ignores
the cohesiveness difference of each node’s neighbors and
converges slowly [28]. In 2018, Chen et al. proposed the
L-Attractor algorithm. The Attractor algorithm cannot detect
the overlapping structure. L-Attractor tries to solve the prob-
lem by transforming the original graph to a link graph [29].
In 2019, Xiang et al. proposed the CDTD algorithm. The
algorithm uses the triangle roughening strategy and the simi-
larity strategy to enhance its time efficiency [30].

III. PRELIMINARIES
Given an undirected graph G = (V , E , W ) where V denotes
the set of nodes, E denotes the set of edges,W denotes the set
of weight. An overview of the variables is shown in Table 1.
Definition 1: NB(Ci) is defined as

NB(Ci) = ∪v∈CiNB(v)− Ci. (1)

Definition 2: The Jaccard distance between node u and
node v, d(u, v), is defined as

d(u, v) = 1−
|0(u) ∩ 0(v)|
|0(u) ∪ 0(v)|

, (2)

where | ∗ | indicates the size of set ∗.
For a weighted undirected graph, the Jaccard distance

between node u and node v, d(u, v), is defined as

d(u, v) = 1−

∑
x∈(0(u)∩0(v))

(w(u, x)+ w(v, x))∑
(x,y)∈E;x,y∈(0(u)∪0(v))

w(x, y)
. (3)

Definition 3: Suppose an edge exists between node u and
node v, the common neighbors of the nodes, CN (u, v), are

CN (u, v) = NB(u) ∩ NB(v). (4)

Definition 4: Suppose an edge exists between node u and
node v, the exclusive neighbors of node u, EN (u), are

EN (u) = NB(u)− CN (u, v). (5)

Definition 5: Suppose the initial community division is
C = {C1,C2, . . . ,Cm}, the similarity between community
Cl and community Ck is defined as

intimacy (Cl,Ck ) =
|NB(Cl) ∩ NB(Ck )|

min(|NB(Cl)| , |NB(Ck )|)
. (6)

Definition 6: Suppose an edge exists between node u and
node v as well as node x ∈ NB(u), the influence factor of node
x on distance d(u, v) is defined as

ρ(x, u) =

{
1− d(x, v) if (1− d(x, v) ≥ λ)
1− d(x, v)− λ otherwise.

(7)

where λ is called the cohesion factor. This factor is used as
the threshold for judging the influence factor of exclusive
neighbors.
Definition 7: Suppose an edge exists between node u and

node v, the influence of node u and node v on distance d(u, v)
is defined as

DI = −(
f (1− d(u, v))

ku
+
f (1− d(u, v))

kv
). (8)

Definition 8: Suppose an edge exists between node u and
node v, the influence of the common neighbors of node u and
node v on the distance d(u, v) is defined as

CI = −
∑

x∈CN (u,v)


f (1− d(x, u)) · (1− d(x, v))

ku

+
f (1− d(x, v)) · (1− d(x, u))

kv

. (9)

Definition 9: Suppose an edge exists between node u and
node v, the influence of the exclusive neighbors of node u and
node v on distance d(u, v) is defined as

EI = −
∑

x∈EN (u)

f (1− d(x, u)) · ρ(x, u)
ku

−

∑
y∈EN (v)

f (1− d(y, v)) · ρ(y, v)
kv

. (10)
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FIGURE 1. Schematic of the CDCLM algorithm.

IV. COMMUNITY DETECTION BASED ON COARSENING
AND LOCAL MODULARITY
A. FRAMEWORK OF THE ALGORITHM
As shown in Fig. 1, the CDCLM runs in two stages:
Stage 1 (Initial Community Generation): The stage mainly

contains three steps.
Step 1 - network coarsening. The network is coarsened

according to the triangle structure characteristics. The end-
points of each traversed triangle are combined into one node.
A triangle is a three-complete graph that can be regarded as
the smallest stable community; as such, the coarsened trian-
gle structures exhibit strong community characteristics [31].
In this manner, the community feature of the compound node
is consistent with that of the combined nodes. As an important
feature of complex networks, community structure requires
that the nodes in a community be closely connected and
that the edge density of the community be high. Generally,
a triangle’s endpoints always belong to a community or the
overlapping areas among communities. They are less likely
to belong to different communities.

Step 2 - running Attractor. The Attractor algorithm with
dynamic distance is used to discover the initial communities.

Step 3 - reverse coarsening. The communities generated by
Step 2 are restored to the communities in the original network.
The nodes that constitute each compound node are assigned
to the community of the corresponding compound node to get
the final communities.
Stage 2 (Overlapping Community Detection): First,

the community belongingness of the boundary nodes is

determined based on the incremental overlapping modularity.
Nodes that belongs to multiple communities are called over-
lapping nodes. Second, the closeness of the outlier commu-
nities to other communities is calculated to further improve
the community quality. The outlier communities are merged
with the closest communities.

The framework of the CDCLM algorithm is summarized
as follows.

Algorithm 1 CDCLM
Input:network G = (V , E , W ), threshold δ
Output:community set C ′

1: C = originalComDetection(G, δ);
// The stage of initial community division

2: C ′ = overlapComDetection(G, C);
// The stage of overlapping community detection

3: OUTPUT C’

In Algorithm 1, threshold δ represents the coarsening rate
in the first stage. Function originalComDetection(G, δ) is
used to discover communities based on triangle coarsening
and the Attractor algorithm with dynamic distance. Function
overlapComDetection(G, C) is responsible for discovering
overlapping communities by local incremental modularity
calculation. The details of the functions are described in the
following sections.

B. INITIAL COMMUNITY GENERATION
The section describes the three steps of initial community
generation processing in detail.

(1) First, the initial network G is traversed. For each trian-
gle encountered in the network, the endpoints of the triangle
are fused into a composite node. Second, the neighbors of the
composite node and the weights of its edges are updated, and
the edge relationship mapping of the endpoints is fused into
the composite node. Specifically, the coarsening graph G1 is
generated after the first layer is coarsened. Second,G1 is used
as the initial network for the second layer coarsening. The
above steps are repeated to generate the subsequent coarsened
networks. When the coarsening rate (Gm − Gm−1) / G of
the m-th coarsening is smaller than the given coarsening rate
threshold δ, the coarsening ends. The final coarsened graph
G′ is the output.
(2) The Attractor mechanism with dynamic distance is

used to discover the community structure of the coarsening
network. First, the distances of the endpoints of all the edges
are initialized in accordance with Equation (2). Then, they are
updated based on three types of neighbor influence. Neighbor
influence can be divided into three types.

(a) Influence of direct neighbors, DI. This type reflects the
influence of node u and node v on distance d(u, v), which is
calculated according to Equation (8).

(b) Influence of common neighbors, CI. This type reflects
the influence of the common neighbors of node u and
node v on distance d(u, v), which is calculated according to
Equation (9).
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(c) Influence of exclusive neighbors, EI. This type reflects
the influence of the exclusive neighbors of node u and
node v on distance d(u, v), which is calculated according to
Equation (10).

The distance will converge finally to 0 or 1. The edges with
the distance of 1 are cut off. The nodes in the same component
are grouped in the same community.

(3) The reverse operation is used to restore the final com-
munity structures. First, the communities of composite nodes
are restored to the communities of nodes in the original net-
work according to the map containing the relations between
the coarsened nodes and the original nodes generated by
Step 1. Second, the initial community set C of the original
network is obtained by combining the relation with the initial
community set in the coarsened network returned in Step 2.

The details of initial community generation are shown as
follows.

The input of function 1, network G(V , E , W ), is an undi-
rected weighted graph. If an unweighted network exists, then
the weight of each edge is 1. The function Coarsening(G, δ)
achieves network coarsening, that is, traversing the triangle
in the network, combining the three nodes of the triangle to
one node, and finally obtaining the coarsening network. δ
is used to control the threshold of network coarsening. The
value of δ is among 0–1. The function findComponent(G’) is
used to find the component ofG’. The function regress(Gcoar )
is adapted to reverse, which restores the communities of
composite nodes to the communities of nodes in the original
network.

C. OVERLAPPING COMMUNITY DETECTION
1) UPDATE OF INCREMENTAL OVERLAPPING MODULARITY
In 2005, Shen et al. proposed the concept of overlapping
modularity (EQ), which is based on traditional modularity [1]
for evaluating the quality of overlapping community detec-
tion [32]. The closer the value of EQ is to 1, the higher the
quality of the communities discovered by the algorithm. The
equation of EQ is as follows:

EQ =
1
2m

c∑
l=1

∑
i,j∈Cl

1
OiOj

[Aij −
kikj
2m

], (11)

where m is the number of edges in the network, c is the num-
ber of communities,Cl is the lth community,Oi is the number
of communities to which node i belongs, ki is the degree of
node i, andAij is used to indicate the connection between node
i and node j. If an edge connecting these two nodes does exist,
then Aij takes a value of 1; otherwise, it is 0.
At present, many algorithms are being developed based on

the global perspective of modularity optimization. Therefore,
these algorithmsmust calculate the incremental modularity of
all communities after the communities of the node changes.
The measure causes the time complexity to be quite high.
In fact, the local perspective considers the incremental mod-
ularity of the community associated with each node before
and after the change of its membership relationship when it

Function 1 originalComDetection(G, delta)
Input: network G = (V , E , W ), threshold δ
Output: initial community set C
1: G′ = Coarsening(G, δ); // network coarsening
2: FOR EACH e = {u, v} ∈ E ′ DO
3: Using Equation (2) to calculate d(u, v);
4: FOR EACH x ∈EN(u) DO
5: Using Equation (2) to calculate d(u, x);
6: END FOR
7: FOR EACH y ∈EN(v) DO
8: Using Equation (2) to calculate d(v, y);
9: END FOR
10: END FOR
11: flag = TRUE; // indicates whether there is a

change in the distance during the iteration. TRUE if
changed, otherwise FALSE

12: loop = 0; //Number of iteration
13: WHILE (flag) and (loop < 1000) DO
14: flag = FALSE;
15: FOR EACH e = {u, v}∈ E ′ DO
16: Using Equation (8)(9)(10)

to calculate DI,CI,EI, respectively;
17: dist = d(u, v) + DI +CI + EI;
18: IF (0 < d(u, v) < 1) THEN
19: IF (dist > 1) THEN
20: d(u, v) = 1;
21: END IF
22: IF (dist < 0) THEN
23: d(u, v) = 0;
24: END IF
25: IF (0 < dist < 1) THEN
26: d(u, v) = dist;
27: END IF
28: flag = TRUE;
29: END IF
30: END FOR
31: loop = loop+ 1;
32: END WHILE
33: FOR EACH e = {u, v}∈ E ′ DO
34: IF (d(u, v) < 1) THEN
35: d(u, v) = 0;
36: END IF
37: IF (d(u, v) >= 1) THEN
38: G′ = G′ - e;
39: END IF
40: END FOR
41: Ccoar = findComponent(G′); // Discover the

connected components on G′ and add it as a commu-
nity to C

42: C = regress(Ccoar ); // use the reverse operation to
restore the final community structure

43: RETURN C ;

joins (or leaves) a community. In this manner, the calculation
cost can be greatly reduced. On this basis, Equation (11) is
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expressed as Equation (12) with the node’s local overlapping
modularity.

EQ =
1
2m

∑
i

gi

gi =
∑
s

∑
j∈Cs

1
OiOj

(Aij−
kikj
2m

), (12)

where gi is the local modularity of node i, which represents
the contribution of node i to the modularity of the entire
network community division from a local perspective; and Cs
describes the communities of node i.
For ∀ i ∈ V , gi is only related to the community Cs, and the

global overlapping modularity EQ increases monotonically
with gi. To prove this assumption, we submit the following
proposition.
Proposition 1: Let the current community of networkG(V ,

E) beC . For ∀i ∈ V , suppose that the community set to which
node i belongs changes from si to sj after an iteration, and
node i leaves community set P = si − sj = {P1, . . . ,Pn}
and joins community set T = sj - si ={T1,. . . , Tq}. Then,
the incremental modularity of the network is

1EQ =
1gii
m
+

1
2m

∑
w

∑
x∈Pw

O′i − Oi
OxOiO′i

(Axi−
kxki
2m

). (13)

Proof: For any node i, if the community in which it is
located changes, then the value of its corresponding gi will
also change. Therefore, the changes in the label set of i will
cause the changes of the values of gis corresponding to the
nodes in H = P1∪ · · ·∪Pn∪T1∪ · · ·∪Tq. Hence, the nodes
inH can be divided into three types, and the values of gis can
be updated as follows:

(a) ∀x ∈ H&&x 6= i, x ∈ Pw (w ∈ {1, . . . , n}), the local
incremental overlapping modularity 1gix can be calculated
as

1gix = −
1

OxO′i
(Axi−

kxki
2m

). (14)

(b) ∀y ∈ H&&y 6= i, y ∈ Tr (r ∈ {1, . . . , q}), the local
incremental overlapping modularity 1giy can be calculated
as

1giy =
1

OyO′i
(Ayi−

kyki
2m

). (15)

(c) For node i, the local incremental overlapping modular-
ity 1gii can be calculated as

1gii =
∑
r

∑
e∈Tr

1
OeO′i

(Aei−
keki
2m

)

−

∑
w

∑
h∈Pw

1
OhOi

(Ahi−
khki
2m

) (16)

Therefore, the derivation of change of value, 1gi, in the
entire network caused by the change of label set of the node
i is as follows in 1gi, as shown at the top of the next page.

In general, the change of EQ in the overall network caused
by the change of the label set of the node i can be calculated
as follows:

1EQ = EQ(C ′)− EQ(C)

=
1
2m

∑
i

1gi

=
1gii
m
+

1
2m

∑
w

∑
x∈Pw

O′i − Oi
OxOiO′i

(Axi−
kxki
2m

).

Therefore, unlike the traditional EQ update strategy,
the CDCLM algorithm only considers the local information
associated with the node when judging the influence of the
network structure on node i. As a result, it reduces the time
complexity of the algorithm. The original overlapping modu-
larity is calculated by Equation (12). The global incremental
overlapping modularity is obtained by calculating the incre-
mental modularity of all communities after the community
membership of node changes. The process needs to traverse
all the edges in the community. Thus, the time complexity
is O(m). Equation (16) is obtained by updating incremental
overlapping modularity. The process only needs to consider
the incremental overlapping modularity of the community
where i is related. The total time complexity is O(ni), where
ni indicates the number of nodes in the community where
i is located, ni << m. Therefore, the updated incremental
overlapping modularity reduces the cost of calculation and
greatly reduces the time complexity.

2) IMPLEMENTATION OF THE OVERLAPPING COMMUNITY
DETECTION
The phase detects overlapping communities in the initial
communities of the original network. First, we evaluate the
community ownerships of the nodes in accordance with the
incremental local overlapping modularity caused by the label
change of the node. Second, we conduct community opti-
mization, calculate the intimacy of outlier communities to
other communities, identify the most intimate communities,
and incorporate outlier communities into the communities.

The stage is implemented as a function as follows.
In Function 2, findBoundaryNode(G) is used to find the

boundary node set, which is the set of the responding node
with distance 1.

D. TIME COMPLEXITY
Let the number of nodes of the original network be n,
the number of edges be m, the average degree of nodes be k ,
the number of nodes after coarsening be n′, and the number
of edges after coarsening be m′.
In Function 1, the time complexity of traversing triangles

iteratively of step 1 is O(nlogn + Tk2m), where T is the
number of iterations of the coarsening. The time complexity
of initializing the distance of nodes from step 2 to 10 is
O(m′ + k ′m′). The time complexity of traversing the edges
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1gi =
∑
w

∑
x∈Pw

1gix+
∑
r

∑
y∈Tr

1giy+1gii

=


−

∑
w

∑
x∈Pw

1
OxO′i

(Axi−
kxki
2m

)+
∑
r

∑
y∈Tr

1
OyO′i

(Ayi−
kyki
2m

)

+

∑
r

∑
e∈Tr

1
OeO′i

(Aei−
keki
2m

)−
∑
w

∑
h∈Pw

1
OhOi

(Ahi−
khki
2m

)



=



−
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of the network from step 1 to 2 is O(m′). The time com-
plexity of traversing the exclusive neighbors of two adjacent
nodes from step 4 to 10 is O(k ′m′), where k ′ is the average
number of exclusive neighbors of two adjacent nodes. The
time complexity of iteratively updating the distance of nodes
from step 13 to 32 is O(T ′m′), where T ′ is the number of
iterations. The time complexity of the loop from step 33 to
40 is O(m′). Hence, the total time complexity from step 2 to
40 is O(2m′+k ′m′+T ′m′). Step 42 of reverse coarsening only
needs to traverse each node and restore the composite nodes.
As a result, the time complexity is O(n). Hence, the total time
complexity of the function 1 is O(nlogn+Tk2m+2m′+k ′m′+
T ′m′ + n).

Let the number of boundary nodes be nb, and the number
of communities be nc. In Function 2, the time complexity of
traversing nodes to find boundary nodes in step 1 is O(nb).
Step 3 is used to obtain the corresponding community. On this
basis, the incremental modularity reaches the maximum after
node v joins. Given that the communities of the neighbors of

node v is considered, the time complexity is O(k). The time
complexity of step 2 to 4 is O( knbni). The time complexity
of step 6 to 11 is O(nc). Hence, the time complexity of
Function 2 is O( knb + nc).
In summary, the total time complexity of the CDCLM

algorithm is O(nlogn + Tk2m + 2m′ + k ′m′ + T ′m′ + n+
knb + nc). For general complex networks, m′ < m, k ′ < k ,
T , T ′ << m, nb, nc << m′, and n < m. Therefore, the time
complexity of the CDCLM algorithm can be reduced to O
(nlogn+ m).

V. EXPERIMENTS
To verify the performance of the CDCLM algorithm, multiple
artificial networks and real networks are used in the experi-
ments. The hardware and software of the experiments are as
follows: a PC with 3.1 GHz Pentium 4 CPU, 12 G RAM,
64 bit, and Windows 7 64bit. The codes of all algorithms are
implemented in Python 3.6.
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Function 2 overlapComDetection (G,C)
Input: network G = (V ,E,W ), initial community set C
Output: final community set C’
1: Nodeover = findBoundaryNode(G);
2: FOR EACH v ∈ Nodeover DO // judgment of

boundary nodes
3: community = argmax

com
1EQ;

// Using Equation (11) to calculate 1EQ
4: community= community∪ {v};
5: END FOR
6: FOR EACH c1 ∈ C DO // merge intimate commu-
nities
7: IF c1 .size <= 5 THEN
8: c2 = argmax

com
{intimacy(c1, com)};

// com is the element of C
9: newc2=c1 ∪ c2;
10: C ′ = C - c1 - c2∪{ newc2}
11: END IF
12: END FOR
13: RETURN C ′;

TABLE 2. Information of real-world datasets.

A. EXPERIMENT DATASETS
1) REAL-WORLD DATASETS
To test the performance of the CDCLM algorithm on real-
world datasets, eight real networks are selected for compar-
ison, namely, Karate, a Zachary karate club network [33];
Polbooks, a network based on pages of books on American
politics sold on Amazon [1]; Dolphin, an undirected social
network of frequent associations between 62 dolphins in
a community living off Doubtful Sound [34]; Football, a
network of American football games between Division IA
colleges during regular season Fall 2000 [35]; Texas [36]
and Cornell [36], the WebKB dataset consisting of 877 sci-
entific publications classified into one of five classes; Cora,
a dataset consisting of 2708 scientific publications classi-
fied into one of seven classes [37]; Power, an undirected,
unweighted network representing the topology of theWestern
States Power Grid of the United States [38]; and CA-GrQC,

TABLE 3. Parameter description of the artificial networks.

TABLE 4. Parameter settings of the artificial networks.

the collaboration network of Arxiv General Relativity [39];
Astro-ph, Collaboration network of Arxiv Astro Physics [39];
CA-CondMat, Collaboration network of

Arxiv CondensedMatter category [39]. The information of
the networks is shown in Table 2.

2) ARTIFICIAL DATASETS
The artificial networks are generated by the LFR [40] bench-
mark to verify the performance of the CDCLM algorithm.
The parameters of the LFR artificial networks are shown
in Table 3.

Three sets of artificial networks are used in the experi-
ments. The parameter settings are shown in Table 4.

B. EXPERIMENTAL SCHEME AND EVALUATION METRICS
1) EXPERIMENTAL SCHEME
In the experiments, five classical comparison algorithms
are selected, namely, CDTD algorithm [30], Attractor algo-
rithm [27], MCL algorithm [41], CPM algorithm [42], and
DEMON algorithm [43], to verify the performance of the
CDCLM algorithm. We compare and analyze the experimen-
tal results of the algorithms on real-world networks and artifi-
cial networks. The parameter settings of the above algorithms
are shown in Table 5.

2) EVALUATION METRICS
Some assessments of a partitioned community structure are
researched [34]. In the experiments, the overlappingmodular-
ity EQ [34] is selected as the evaluation metric. The closer the
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TABLE 5. Settings of the algorithms’ parameters.

value of EQ is to 1, the higher the quality of the communities
discovered by the algorithm. The closer the value of EQ is
to 0, the worse the quality of the communities discovered.
EQ is calculated according to Equation (11).

To compare the accuracy of the above algorithms on the
networks whose true communities are given, the normalized
mutual information NMI [44] is used. The closer the value
of NMI is to 1, the higher the accuracy of the algorithm. The
closer the value of NMI is to 0, the lower the accuracy of the
algorithm. The equation of NMI is as follows:

NMI =

−2
CA∑
i=1

CB∑
j=1

Nij log(
NijN
Ni·N·j

)

CA∑
i=1

Ni· log(
Ni·
N )+

CB∑
j=1

N·j log(
N·j
N )

, (17)

where N is the confusion matrix; Nij is the element of the i-
th row and the j-th column in N , and its value represents the
number of common nodes of community i and community
j, respectively; Ni· is the sum of the elements of the ith
row of the matrix; N·j is the sum of the elements of the jth
column of the matrix; CA is the number of real communi-
ties; and CB is the number of communities found by the
algorithm.

C. EXPERIMENTS OF ALGORITHM’S PARAMETERS
Different values of parameter δ of the CDCLM algorithmwill
affect the accuracy of the algorithm. Thus, experiments are
conducted to determine the proper value of the parameter.
Network T1 is used in the experiments. The experimental
results are shown in Figure 2(a) illustrates that the accuracy
of the CDCLM algorithm increases rapidly and stabilizes
soon as the value of δ increases. The algorithm gets high
precision when δ = 0.2 − 0.6. As shown in Figure 2(b),
as the value of δ increases, the accuracy of the algorithm
increases gradually. The accuracy of the algorithm is high
when δ = 0.6− 0.94. In summary, if the parameter δ is set to
0.6, then the precision of the CDCLM algorithm is always at
a high level. Hence, the value of parameter δ is set to 0.6 in
subsequent experiments.

D. EXPERIMENTS OF ALGORITHM PRECISION
1) EXPERIMENTAL RESULT ON THE REAL-WORLD DATASETS
Table 6 shows the experimental results of modularity of
the CDCLM, CDTD, Attractor, MCL, CPM, and DEMON

FIGURE 2. Experimental results on parameter δ. (a) µ = 0.2. (b) µ = 0.4.

FIGURE 3. Experimental results of NMI on real-world dataset.

algorithms on the real-world datasets. As shown in the
table, the CDCLM algorithm is better than the compari-
son algorithms on most datasets. The EQ values of the
CDCLM algorithm are not as good as the CDTD and Attrac-
tor algorithms on Karate and Dolphin. However, as shown
in Figure 3, the NMI values of the CDCLM algorithm
on these two datasets are superior to those of CDTD and
Attractor because the NMI metric is more objective than
the EQ metric. On the basis of the results, our algorithm
can find more precise communities than the other two
algorithms.

Figure 3 shows the experimental results of NMI of the
CDCLM, CDTD, Attractor, MCL, CPM, and DEMON
algorithms on the four real-world datasets. As shown in
the figure, the CDCLM algorithm performs the best on
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TABLE 6. Overlapping modularity experimental results on real-world sets.

FIGURE 4. Experimental results of NMI on T1.

most datasets. This result is largely because it uses the
mechanism of dynamic distance to update the distance
between nodes and finds overlapping community structure
on the basis of incremental modularity maximum. Therefore,
the CDCLM algorithm can find overlapping communities
with high precision.

2) EXPERIMENTAL RESULT ON THE ARTIFICIAL DATASETS
a: EXPERIMENTS WITH DIFFERENT VALUES OF µ
Figure 4 shows the experimental results of the algorithms
on artificial network T1. As shown in the figure, with the
increase of the value of µ, the NMI values of all the algo-
rithms gradually decrease. When the value of µ increases
to a certain value, the NMI value drops dramatically. The
boundaries of the communities are getting blurred as the
value of µ increases. As a result, most algorithms experience
difficulty when identifying communities accurately.

In Figure 4, except for µ = 0.1, the NMI values of the
CDCLM algorithm are higher than those of other algorithms.
The CDTD and Attractor algorithms are in the second place.
As the value of µ increases, the results of CDCLM become
stable, and the fluctuation is small. This result is because
the mechanism based on the dynamic distance considers the
influence of three types of neighbor nodes when handling the
influence of community nodes. Therefore, the robustness of
the algorithm is improved.

FIGURE 5. Experimental results of NMI on T2.

b: EXPERIMENTS WITH DIFFERENT VALUES OF ON
Figure 5 shows the experimental results of the algorithms on
artificial network T2. As shown in the figure, as the value
of on increases, the NMI value of each algorithm decreases
slightly or remains unchanged.

In Figure 5, the CDCLM algorithm always obtains the best
results no matter how the value varies. The results of CDTD
and Attractor decrease slightly. This result is because the
CDCLM algorithm uses incremental overlapping modularity
and performs community optimization. As such, it can better
discover the overlapping structures in the network than the
other algorithms.

3) SCALABILITY EXPERIMENTS
In the scalability experiments, five classical algorithms are
selected for comparison. Let the number of nodes of the
original network be n, the number of edges be m, the average
number of exclusive neighbors of two linked nodes be k ,
the number of time steps be T , and the maximum degree
be K . The time complexity of CDCLM, CDTD, Attractor,
MCL, DEMON and CPM is O(nlogn + m), O(nlogn + m),
O(m+ km + Tm), O(n3), O(nK 3−α) and O(αnβ ln(n)), sepa-
rately, where α, β are constants. In most cases, T satisfies
3 ≤ T ≤ 50. The time complexity of CDCLM and CDTD is
generally not very high.

Figure 6 shows the experimental results of the algorithms
on artificial network T3. It reflects the time cost of each
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TABLE 7. Scalability experimental results on real-world sets.

FIGURE 6. Experimental results of running time on T3.

algorithmwhen the size of the data set increases. The figure in
the upper-left corner of Figure 6 is the time comparison
diagram after removing the Attractor, MCL, and DEMON
algorithms. As shown in Figure 6, as the value ofN increases,
the time cost of each algorithm rises as well. The CDCLM
algorithm also performs well. Its time cost increases linearly
with the increase of the size of the datasets. This result is
consistent with the analysis of time complexity of the algo-
rithm in part D of Section IV. The CDCLM algorithm adopts
the strategy based on triangle coarsening. In this manner,
it can greatly reduce the network size while maintaining
the community information as much as possible. Therefore,
the running time of the algorithm can reduce greatly. The
CDTD, Attractor, CPM, and DEMON algorithms perform
relatively well. Although the time complexity of CPM is
not the lowest, it is very suitable for networks with many
complete subgraphs, that is, networks with dense edges.
By contrast, the MCL algorithm performs poorly due to its
high time complexity.

Table 7 shows the experimental results of the algorithms
on real-world datasets. The results are consistent with those
on the artificial networks. As shown in Table 7, CDCLM,
CDTD, CPM perform the best, followed by DEMON, Attrac-
tor and MCL.

VI. CONCLUSION
We propose the CDCLM algorithm in this paper. First, the
triangle-based coarsening strategy is adopted to reduce the

network scale. Second, the initial community detection is
performed on the coarsened network, and the mechanism of
Attractor with dynamic distance is adopted. Third, the initial
non-overlapping community structures are obtained by the
reverse coarsening. Finally, the overlapping structure in the
network is detected by the method based on local incremental
overlapping modularity. Then, the new intimacy calculation
strategy is used to optimize the community structure. Exper-
imental results show that the CDCLM algorithm can find
overlapping communities with high precisionwhilemaintain-
ing near linear time complexity. In future studies, we will
improve the performance of the CDCLM algorithm based
on the incremental analysis strategies and apply it to detect
communities in the dynamic social networks. In addition,
the MapReduce model will also be tried to parallelize the
CDCLM algorithm for discovering communities in large
networks.
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