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ABSTRACT Particle filter techniques are common methods used to estimate the evolving state of nonlinear,
non-Gaussian time-variant systems by utilizing a periodic sequence of noisy measurements. The accuracy of
particle filter methods has often been shown to be superior to other state estimation techniques, such as the
extended Kalman filter (EKF), for many applications. Unfortunately, the high computational cost and highly
nondeterministic runtime behavior of particle filters often preclude their use in hard, real-time environments,
where filter response must meet the strict timing requirements of the application. Particle filter algorithms
are composed of three main stages: prediction, update, and resampling. General purpose graphics processing
units (GPGPUs) have been successfully employed in previous research to accelerate the computation of
both the prediction and update stages by exploiting their natural fine-grain parallelism. This research
focuses on accelerating the resampling stage for GPGPU execution, which has been much more difficult to
parallelize due to it’s apparent inherent sequentially. This paper introduces a novel GPGPU implementation
of the systematic and stratified resampling algorithms that exploit the monotonically increasing nature
of the prefix-sum and the evolutionary nature of the particle weighting process to allow the re-indexing
portion of the algorithms to occur in a two-phase, multi-threaded manner. This resulting measured factor of
performance improvement for the systematic and stratified algorithms was 15x and 32x, respectively, over
the serial implementations.

INDEX TERMS Graphics processing units, parallel algorithms, parallel architectures, parallel programming,
particle filters, state estimation, resampling.

I. INTRODUCTION
The concept of particle filtering [1] was introduced in 1993 to
numerically solve general nonlinear, non-Gaussian state-
space estimation problems. Since that time, the base par-
ticle filtering approach has been expanded and refined
as it has been successfully applied to such applications
as navigation [2], image and signal processing [3], [4],
robotics [5], economics [6] and self-localization [7]. Particle
filtering is an iterative method that utilizes a finite set of parti-
cles to represent the posterior distribution of some stochastic
process. It is composed of three main phases: 1) prediction,
the generation of new particles, 2) update, the computation of
particle weights, and 3) resampling, removing weights with
little significance. A major issue with particle filtering has
been the large amount of computation that is required.

Over the years, prediction and update steps have been
modified to utilize hardware that allows for parallelization.

The associate editor coordinating the review of this manuscript and
approving it for publication was Mouloud Denai.

Unfortunately, due to its serial nature, resampling has
remained a bottleneck of the particle filter. Common resam-
pling algorithms from literature include multinomial, resid-
ual, stratified, and systematic. There have been attempts to
mitigate this issue, such as Metropolis [8], a parallel resam-
pling method, and the Rao-Blackwellized [9] filter, which is
a hybrid of Kalman and particle filters reducing the number
of particles required. Stratified and systematic resampling
were chosen for this research because of their underlying for-
while loop structure. The only difference between the two
being random number generation. To demonstrate the per-
formance of this novel parallel approach, timing results are
compared to those of Metropolis and Rejection, which were
chosen because they are a natural fit for graphics processing
unit (GPU).

GPUs were not always the parallel processing power-
houses they are today. At their conception, GPUs were to
provide the current hardware with a more efficient work
flow for graphics processing. The original GPUs were mod-
eled after the concept of a graphics pipeline and used fixed
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purpose hardware. The graphics pipeline refers to the process
and steps of rendering images to a computer display. Even
though transferring more of the graphics pipeline to the GPU
progressed significantly through the 1980’s and 1990’s, they
still required much help from the central processing unit
(CPU). It was not until 1999, when NVIDIA implemented
the last step of the pipeline in hardware, that reliance on the
CPU was eliminated and thus the first consumer GPU was
created. NVIDIA was the first to coin the term GPU.

One pitfall of the graphics pipeline was that it only allowed
one pixel output per clock cycle, meaning CPUs could still
send more triangles, the basic texture facet used in graphics
processing, to the GPU than it could handle. This leads the
way to introducing multiple pipelines in parallel on a GPU.
Another downside to early GPUs is that the pipeline was a
fixed-function pipeline meaning once graphics data entered
the pipeline it could not be modified. This was fixed with the
introduction of a programmable pipeline. A programmable
pipeline allows a programmer access to manipulate and oper-
ate on data while it is in the pipeline. application program-
ming interfaces (APIs) such as Brook and Sh removed the
need for programmers to reformulate computational prob-
lems into terms of graphics primitives. Newer languages
such as NVIDIAâĂŹs Compute Unified Device Architecture
(CUDA) allows the user to focus on high-performance com-
puting concepts and less on earlier basic graphical concepts.

This paper is organized as follows: Sections II provides
a background of particle filters along with information on
systematic and stratified resampling algorithms. Section III
introduces GPGPUs, the programming model of CUDA and
discusses some recently developed resampling algorithms
designed for GPU processing. Section IV dives into the
novel parallel implementation of the systematic and stratified
algorithms and covers some inherent limitations. Section V
discusses coding experiments, including a performance com-
parison, and ends with the conclusion in Section VI.

II. PARTICLE FILTERS
A particle filter is a recursive Bayesian technique for esti-
mating the state of a dynamic system. The Bayesian method
constructs a probability density function (PDF) of the state
based on all available information, including received mea-
surements and contains available statistical information. This
is useful because for most nonlinear/non-Gaussian problems
there is not a general analytic expression for the desired PDF.

A. BACKGROUND
The particle filter offers an alternative way of representing
and recursively generating an approximation to the state PDF.
The idea is that any PDF can be represented as a set of
samples, or particles. Particle filters are considered optimal
as N →∞, where N is the number of particles. The general
dynamic system consists of a system model with process
noise and a measurement model with measurement noise

expressed as

xt+1 = ft (xt ,wt ) (1)

zt = ht (xt , et ) (2)

Here xt+1 is the propagated state variable at time t, zt is the
update measurement, wt is the process noise, et is the mea-
surement noise, and f,h are two arbitrary nonlinear functions,
representing the dynamic system and incoming measurement
data, respectively. The noise densities are independent and are
assumed to be known. In a Bayesian setting there is a two-step
framework, prediction and update.

The prediction step, or a priori, p(xt |z1:t−1) is computed
from the filtering distribution p(xt−1|z1:t−1) at time t − 1.

p(xt |z1:t−1) =
∫ system

model︷ ︸︸ ︷
p(xt |xt−1)

previous
posterior︷ ︸︸ ︷

p(xt−1|z1:t−1) dxt−1 (3)

where p(xt−1|zt−1) is assumed known due to recursion and
p(x|xt−1) is given by Equation 1. During the update step,
or a posteriori, the a priori is updated with newmeasurement
data zt .

p(xt |z1:t ) =

measurement
model︷ ︸︸ ︷
p(zt |xt )

current
prior︷ ︸︸ ︷

p(xt |z1:t−1)
p(zt |z1:t−1)︸ ︷︷ ︸

normalization constant

(4)

A mathematical tutorial of a particle filter is presented by
Arulampalam [10].

Initially, particle filters consisted of only two steps, pre-
diction and update. During the prediction step, particles are
propagated through the system model to obtain a priori dis-
tribution at a given time step. The update step takes new mea-
surement information and evaluates the likelihood of the prior
samples and then obtains the normalized weight of each sam-
ple. The recursive execution of the two step method makes
up what is commonly called sequential importance sampling
(SIS). SIS is a modification of importance sampling [11]
without changing the past simulated trajectories [12]. Unfor-
tunately, it suffers from a phenomenon known as weight
degeneracy where the variance between particle weights
increases with every time step, typically exponentially with
N [13]. Over time, almost all of the particles have weights
equal to zero while one or a few particles contain most of the
weight causing poor approximation of the filtering estimates.

B. RESAMPLING
While early forms of particle filters offered an alternative
for nonlinear/non-Gaussian state estimation, it was the intro-
duction of the resampling step [1] that made them a viable
option in real-world applications. Before resampling, weights
of the particles would be updated iteratively in time as the
next observation became available. With no method to dis-
card weights with low or no discernible effect, the vari-
ance between particle weights will increase with time [13].

47594 VOLUME 7, 2019



M. A Nicely, B. E. Wells: Improved Parallel Resampling Methods for Particle Filtering

After a series of iterations, most particles retain a negligible
weight and resources will be wasted propagating useless
particles. A simple approach is to add an exorbitant number of
particles, but the computational workload makes this imprac-
tical for most applications.

Since its conception, resampling has proven to be ben-
eficial both practically and theoretically [5]. Resampling is
performed by removing particles with small weights and
replacing them with neighboring particles with high weights.
Once the remaining particles have been redistributed, all
weights are set to a constant value of 1/N . A visual aid is
provided in Figure 1.

FIGURE 1. Traditional resampling.

A common measure of the degeneracy of the algorithm is
the effective sample size (ESS), where Neff is given by:

Neff =
1∑N

i=1(w
i
t )2

(5)

and wt is the particle weight [5]. Traditionally, resampling is
executed when the ESS drops below a given threshold, NT .
The threshold is expressed as a proportion of the number
of particles and is sometimes defaulted to 50% [14]. This is
because most resampling algorithms are serial by nature and
create a bottleneck. Historically, this has caused programmers
to balance performance and accuracy.

It is important to note that the act of resampling can
have the adverse effect of introducing sample impoverishment
when the system process noise is small. This is especially
true for the total sampling technique, where the resulting
particle set after resampling only contains the set of new-born
particles. One approach to solve this problem is the resample-
move algorithm described by Gilks and Berzuini [15]. The
resample-move algorithm has a move step after the resam-
pling step based on Markov chain Monte Carlo (MCMC)
sampling. The move step is performed on each particle to
rejuvenate the diversity. Other approaches to alleviate sample
impoverishment can be found in [16]–[18].

Besides effects on accuracy, resampling also reduces the
parallelism of a particle filter. Popular unbiased resam-
pling algorithms include multinomial [1], residual [19],

stratified [20], and systematic [21]. For these, the compu-
tational workload increases with the number of particles.
A popular parallel resampling algorithm is Metropolis [8].
While the algorithm is more computationally intensive,
it can benefit significantly from a GPGPU implementation.
Metropolis works well under certain assumptions but can be
biased if the search depth is chosen poorly. A recent survey by
Li et al. [22] provides greater details on various resampling
algorithms which are not in the scope of this paper. The
primary focus of this paper is to introduce a novel parallel
approach for implementing the stratified and systematic algo-
rithms on a GPU.

1) STRATIFIED
Stratified resampling was first proposed by Kitagawa [20].
In the algorithm, it is assumed that division into strata, or lay-
ers, is performed. In each stratum, random numbers are drawn
independently. The stratified method has a complexity of
O(N ) due to the prefix-sum at line 2, random number gener-
ation at line 3, and for loop iteration at line 5 in Algorithm 1.

Algorithm 1 Stratified Resampling
Input: w← Particle Weights
Output: idx ← Resample Index
1: N ← count (w)
2: c← Inclusive-Prefix-Sum (w)
3: u← ((n− 1)+ un)/N F un ∼ U [0, 1); n = 1, . . . ,N
4: k ← 1
5: for i← 1,N do
6: while c(k) < u(i) do
7: k ← k + 1
8: end while
9: idx(i)← k
10: end for

2) SYSTEMATIC
Systematic resampling is very similar to stratified except that
it tries to reduce the discrepancy of particles by choosing the
strata and their number of samples more effectively. This is
achieved by choosing only one uniform random number and
adding it to the entire ordered set. The samples are no longer
independent and at the same position in the stratum as shown
at line 3 of Algorithm 2. Systematic also has a complexity
of O(N ). It is more efficient and often the preferred algo-
rithm due to its simplistic implementation and its ability to
minimize Monte Carlo variations.

III. PARALLEL PROCESSING
With the introduction of programmable pipelines and stream-
ing multiprocessors (SMs), GPUs began to be utilized as
GPGPUs, performing calculations in applications conven-
tionally performed by the CPU. An SM has multiple cores
that can access and execute multiple threads or operations
simultaneously. Although GPUs can only process indepen-
dent fragments, it can do them in parallel.Where a CPUmight
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Algorithm 2 Systematic Resampling
Input: w← Particle Weights
Output: idx ← Resample Index
1: N ← count (w)
2: c← Inclusive-Prefix-Sum (w)
3: u← ((n− 1)+ u0)/N F u0 ∼ U [0, 1); n = 1, . . . ,N
4: k ← 1
5: for i← 1,N do
6: while c(k) < u(i) do
7: k ← k + 1
8: end while
9: idx(i)← k
10: end for

have 4, 8, 16, or 32 cores, a GPU can have up to a couple of
thousand. These cores are accessed through kernels, which
are functions that work on each element. GPUs are extremely
efficient at single instruction, multiple data (SIMD) or data
parallelism. GPU processing can perform mathematically
intensive computations on very large data sets, while a CPU
can run the operating system and perform traditional serial
tasks. This is an example of heterogeneous processing, which
refers to systems that use more than one kind of processor.

A. GPU PROGRAMMING MODEL
With the increasing popularity of GPUs outside of the graph-
ics domain, the CUDA API was introduced by NVIDIA
in 2006. CUDA offers a mature development environment via
an extension to the C/C++ programming language. An alter-
native to CUDA is OpenCL, provided by the Khronos Group,
in 2008. It is an open and royalty-free standard that can be
utilized on a wide selection of hardware including multi-core
CPUs, GPUs (AMD and NVIDIA), field-programmable gate
arrays (FPGAs), and digital signal processors (DSPs). While
the programming scheme is similar, it does not provide the
same performance as CUDAonNVIDIAGPUs, since CUDA
is tied closer to the hardware. This can become important
when trying to achieve optimal performance.

CUDA provides a heterogeneous environment where pro-
grams are divided between the host and the device. CUDA
allows programmers to define special functions, called ker-
nels, that are called by the host code to be executed in
parallel on the GPU by a collection of threads. Kernels are
launched in a grid made up of a group of blocks that contain
numerous threads. Once blocks are distributed to SMs they
are divided into warps. All warps contain 32 threads and are
executed concurrently through a series of warp schedulers.
Warps within a block can be launched randomly, and threads
with a warp can execute random. Execution context (program
counters, registers, etc.) for each warp processed by a multi-
processor is maintained on-chip during the entire lifetime of
the warp.

While the number of threads per warp has stayed constant
through the evolution of GPGPU development, the number

of warp schedulers vary between architecture. Also, entire
blocks are required to reside on a SM; therefore, the number
of threads in a block are limited by resources. Threads are
organized in a block, and blocks are organized in a grid in
a one-, two-, or three-dimensional fashion. Each thread and
block are designated with a unique ID that can be accessed in
the kernel by a built-in variable threadIdx.x (,y,z)
and blockIdx.x (,y,z), respectively. With the release
of CUDA 9.X, threads within a block are synchronized with
Cooperative Groups. The compute capability of a device is
represented by a version number, which identifies the features
supported by the GPU hardware and is used by applications at
runtime to determine which hardware features and/or instruc-
tions are available on the present GPU.

B. ALTERNATIVE GPU RESAMPLING ALGORITHMS
To understand the full capability of the novel parallel imple-
mentation, it will be compared to the serial implementa-
tion along with multiple alternative resampling algorithms,
which are designed embarrassingly parallel and specifically
for GPUs.

1) METROPOLIS
Metropolis resampling was designed specifically for GPUs
as a way to accelerate resampling through parallelization [8].
Like multinomial and stratified, it requires the creation of
a relatively large set of uniformly distributed random num-
bers. With Metropolis, weights are not summed cumulatively
or normalized; therefore, removing dependency between
weights and improving parallelization. The concept is to
executeN threads in parallel over B iterations comparing ran-
domly selected particles. If the weight of a randomly selected
particle is greater, then it shall be selected for further com-
parisons, see line 8 in Algorithm 3. However, if the weight of
the randomly selected particle is smaller, it shall be selected
with probability equal to the ratio of the weights. After B
comparisons, the current particle is passed for replication.
Careful consideration must be taken when choosing B. If B
is too small, the sample size will be more biased and possibly
not converge. The selection of B is a trade-off of performance
and accuracy.

2) REJECTION
In the same paper, Murray et al. [8], states that if an upper
bound of the particle weights is known, rejection sampling
is possible. Similar to Metropolis, rejection sampling does
not require collective operation, such as prefix-sum, and is
not affected by particle sets larger than 220. It also offers the
following advantages.

1) it is unbiased
2) it permits a first deterministic proposal that ai = i
A major difference between Metropolis and rejection

resampling methods is thread execution. Thread execution in
Metropolis is deterministic because the number of iterations
of the inner for-loop is set to B. On the other hand, the inner
loop of rejection is a while-loop, at line 6 of Algorithm 4.
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Algorithm 3 Metropolis Resampling
Input: w← Particle Weights
Output: idx ← Resample Index
1: N ← count (w)
2: B← Number of iterations
3: for i← 1,N do
4: p← i
5: for j← 1,B do
6: u ∼ U [0, 1]
7: q ∼ U{1, . . . ,N }
8: if u ≤ w(q)/w(p) then
9: p← q
10: end if
11: end for
12: idx(i)← p
13: end for

Algorithm 4 Rejection Resampling
Input: w← Particle Weights
Output: idx ← Resample Index
1: N ← count (w)
2: B← Number of iterations
3: for i← 1,N do
4: p← i
5: u ∼ U [0, 1]
6: while u ≤ w(p)/wmax do
7: p ∼ U{1, . . . ,N }
8: u ∼ U [0, 1)
9: end while
10: idx(i)← p
11: end for

This causes the run-time of independent threads to vary,
which is an example of a variable task-length problem [23].
Thread execution efficiency will be covered in greater detail
in Section IV-A.2. It is important to ensure that the upper
bound, wmax , is tight. Otherwise the method may perform
poorly. While empirical calculations of wmax can be per-
formed, wmax = max{w1, . . . ,wN }, it would defeat the
purpose of the approach by introducing a collective opera-
tion. Due to the variable task-length, Metropolis may be the
preferred choice if its bias is acceptable and an appropriate B
is selected.

3) COALESCED METROPOLIS
Dülger et al. [24] recently improved performance of
Metropolis by implementing it on a GPU with coalesced
memory accesses to global memory. While Metropolis
resampling is well suited to utilize the multi-core architecture
of a GPU, it does not perform efficient global memory
accesses. This is because of the way it randomly generates
an index in line 7, of Algorithm 3, and reads that element
from the particle weight array. This has a negative impact
on performance because the device tries to coalesce global

memory loads and stores issued by threads of a warp into as
few transactions as possible to minimize DRAM bandwidth.
A warp is a maximal subset of threads from a single coop-
erative thread array (CTA), such that the threads execute the
same instructions at the same time. This will be explained
in detail in Section IV-A. When concurrent threads simul-
taneously access memory addresses that are very far apart
in physical memory, there is no chance for the hardware to
combine the accesses. Uncoalesced accesses can cause up to
a 57.0% performance loss [25].

Dülger provides two methods, both of which are faster
than Metropolis, but at the expense of quality. The two tech-
niques are designated as Metropolis-C1 (abbreviated C1) and
Metropolis-C2 (abbreviated C2). From this point forward,
the original, or uncoalesced, Metropolis will be referred to
simply asMetropolis. Because read/write operations to global
memory are performed in segments, these modifications con-
strain threads within a warp to only read and write within
these segments. A segment is defined as a fixed number
of contiguous elements. All the threads in the warp select
random weights within a segment.

Algorithm 5 Metropolis-C1 Resampling
Input: w← Particle Weights
Output: idx ← Resample Index
1: N ← count (w)
2: B← Number of iterations
3: for i← 1,N do
4: p← i
5: s ∼ U{1, . . . , SC}
6: for j← 1,B do
7: u ∼ U [0, 1]
8: q ∼ U{(s− 1) ∗ DC + 1, . . . , s ∗ DC}
9: if u ≤ w(q)/w(p) then
10: p← q
11: end if
12: end for
13: idx(i)← p
14: end for

C1 is presented in Algorithm 5, SC is the number of s-
segments, and DC is the number of elements in each seg-
ment. All threads in a warp will select the same s, where
s is the index of the select segment drawn from a uniform
distribution. This can be ensured by using the warp index
in the random number generator. Next, q is a random index
between the first and last elements of the segment. Although
not explicitly stated in the paper, ifDC is greater than the size
of a warp, currently 32, then it is possible that global memory
accesses for that warp will not be coalesced. By definition,
a coalesced read occurs when a warp can access all required
memory locations in a single access. This is explained in
detail in the CUDA Programming Guide [26] under the Best
Practices section.

C2 in Algorithm 6 has the same parameters as Algorithm 5.
The only difference is when the selection of s is performed.
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Algorithm 6 Metropolis-C2 Resampling
Input: w← Particle Weights
Output: idx ← Resample Index
1: N ← count (w)
2: B← Number of iterations
3: for i← 1,N do
4: p← i
5: for j← 1,B do
6: u ∼ U [0, 1]
7: s ∼ U{1, . . . , SC}
8: q ∼ U{(s− 1) ∗ DC + 1, . . . , s ∗ DC}
9: if u ≤ w(q)/w(p) then
10: p← q
11: end if
12: end for
13: idx(i)← p
14: end for

For C2, it is performed in the inner-loop during each iteration
of B. C2 is slower than C1 because of the additional random
numbers generated in the inner loop, but provides higher
quality results because it encounters more variety selection
of weights. To reiterate, while C1 and C2 are faster than
Metropolis, they produce worse quality because they select
weights from a limited portion of the particle weight array.
Therefore, C1 and C2 variations of Metropolis provide a
spectrum of speed versus quality trade-off for users.

IV. PARALLEL SYSTEMATIC/STRATIFIED RESAMPLING
While systematic resampling is the algorithm most preferred
due to its easy implementation and ability to minimize Monte
Carlo variation [5], [10], [27] because of its similarities with
stratified the implementation presented below can easily be
applied to both. They can be divided into three sections:
1) a prefix-sum, 2) random number generation, 3) comparing
prefix-sum and random numbers. Unfortunately, systematic
and stratified, as well as some other traditional resampling
algorithms, requires collective operations across particles and
weights due to data dependencies. This collective operation
is the cumulative summation of particle weights, also called
a prefix-sum. Major contributions have been made to paral-
lelize prefix-sum algorithms on GPUs [28]–[31]. The parallel
inclusive-prefix-sum goes to O(logN ); therefore, it effec-
tively disappears as N continues to grow. Next, generating
random numbers for these resampling algorithm can have a
complexity of O(N ) on a CPU. On GPUs, random number
generation can be distributed among threads bringing its com-
plexity to O(1). This provides a more pronounced improve-
ment to stratified resampling. The third portion of systematic
and stratified resampling, which requires marching through
particle weights and comparing the prefix-sum to the uniform
ordered random numbers, still remains a serial process.

To efficiently utilize the GPU, work must be distributed
to many threads. Taking a closer look at systematic resam-
pling, it is a while-loop wrapped in a for-loop iterated over

Algorithm 7 Parallel Stratified (Systematic)
Input: w← Particle Weights
Output: idx ← Resample Index
1: c← Inclusive-Prefix-Sum (w)
2: for all t ← thread do
3: N ← count (w)
4: ut ← (t + un(u0))/N F un(u0) ∼ U [0, 1);
n = 1, . . . ,N

5: mt ← true F Bit mask for thread t
6: `t ← 0
7: while mt 6= false do
8: if t > (N − `t ) then
9: mt ← false
10: else
11: mt ← c(t + `t ) < ut
12: end if
13: if mt = true then
14: idxt ← idxt + 1
15: end if
16: `t ← `t + 1
17: end whileF All mask threads must be FALSE to exit
18: `t ← 1
19: while mt 6= true do
20: if t < `t then
21: mt ← true
22: else
23: mt ← c(t − `t ) < ut
24: end if
25: if mt = false then
26: idxt ← idxt − 1
27: end if
28: `t ← `t + 1
29: end while F All mask threads must be TRUE to exit
30: end for

a zero-based consecutive strictly monotonic index of the
prefix-sum set comparing elements to a random number.
This process can be split into two subprocesses; a middle-
out approach where each process executes a while-loop on
each element in the set simultaneously. One process incre-
ments through the prefix-sum until each and all threads have
satisfied the comparator. The second process then decre-
ments through the prefix-sum. Comparator results are stored
in a bit mask. This implementation produces a variable
task-length problem similar to that of rejection resampling,
in Section III-B.2; therefore, it has a maximum complexity
of O(`), where ` is the number of strides from c[thread].
Algorithm 7 provides pseudocode of the parallel implemen-
tation; for brevity, stratified and systematic implementation
have been combined. Notice that line 8 during the increment-
ing process and line 20 in the decrementing process ensures
that the while-loops do not access memory out of bounds.

The parallelized systematic and stratified are identical
except for creation of uniform random numbers. Both parallel
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methods should have similar timing since random number
generation is performed by each thread.

FIGURE 2. A simplified example of the parallel systematic resampling
approach. The index for each particle (column) can be computed by
individual threads in parallel.

A simplified output of Algorithm 7 is provided in Figure 2.
In the first while-loop, 4 out of 16 elements satisfy the
comparator at line 11; therefore, only those elements are
incremented. When all threads fail the while condition,
the elements proceed to the next while-loop. In the second
loop, only 3 elements fail the comparator at line 23 and must
be decremented. Once all threads satisfy the second while-
loop, all that remains is the resampled index. Summing the
total operations, what would have taken 23 operations using
serial methods now can be completed in 4. Another advantage
of this new method is that it allows the data to remain on the
GPU without expensive copies to and from the CPU.

A. LIMITATIONS OF PARALLEL IMPLEMENTATION
While the parallel implementation provides a speedup over
the serial versions, both kernels suffer from the following
three issues that impede optimal performance:

1) Memory dependency stalls
2) Thread execution efficiency
3) Sub-optimal occupancy
In the following subsections, the issues will be described

and the approach used to alleviate them.

1) MEMORY DEPENDENCY STALLS
When programming onGPUs, different implementation tech-
niques can indirectly affect performance. There are two popu-
lar techniques to implement kernels using CUDA,monolithic
kernels and grid-stride loops. A monolithic kernel utilizes a
single large grid containing one thread per element and pro-
cesses the entire array in one pass. Grid-stride loops deploy a
small grid of threads and loops over the data one grid at a time.
They also provides additional tuning capability by allowing
configurable block grid sizes per kernel per device. It is often
the preferred technique because it reduces the overhead of
launching, maintaining and destroying additional blocks. It is
also regarded as being more flexible, scalable, and portable.

For simplicity, examples, using SAXPY, of both are shown in
Technique 1 and Technique 2.

Technique 1 Monolithic Kernel
Input: n← size of array
1: tid = blockIdx.x ∗ blockDim.x + threadIdx.x
2: if tid < n then
3: y[i] = a ∗ x[i] + y[i]
4: end if

Technique 2 Grid-Stride Loop
ht!]
Input: n← size of array
1: tid = blockIdx.x ∗ blockDim.x + threadIdx.x
2: gridSize = blockDim.x ∗ gridDim.x
3: for i = tid; i<n; i + = gridSize do
4: y[i] = a ∗ x[i] + y[i]
5: end for

Unfortunately, the performance of grid-stride loops can
break down if kernels are too heavily memory bound. Mem-
ory loads have a much higher latency than computations.
Through the hardware warp scheduler, when a warp executes
a memory load, it can be removed from the scheduler and
another warp can be executed while data is retrieved from
memory. This approach helps hide latency, or stalls, if there
are enough blocks and/or arithmetic operations. If there are
not enough blocks to occupy the warp scheduler, all warps
can stall due to memory dependencies. This is the case for the
naive implementation of Algorithm 7. There is one memory
load, one comparator operation, and one arithmetic operation
per thread. As `, Algorithm 7, increases, the kernel must
switch from grid-stride loops to a monolithic kernel avoid
negative performance impact. Determining when to choose
grid-stride loops or monolithic kernels are kernel specific, but
starting with grid-stride loop is the preferred method.

Another solution to minimize memory stalls, in conjunc-
tion to adjusting kernel technique, is to reduce memory
loads from global memory while maximizing compute oper-
ations per thread. This can be achieve by performing mul-
tiple warp-length loads, of consecutive elements, from the
prefix-sum into shared memory. Now threads can perform
comparator and arithmetic operations with less global mem-
ory loads. This shifts the cause of warp stalls from memory
dependencies to pipe utilization. The optimal number loads
is hardware dependent but should be a multiple of 32 so
global memory accesses remain coalesced. For the improved
implementation, a block size of 32 and 2 coalesced loads of
into shared memory, 64 consecutive elements in total, was
combined with a grid-stride loop with grid size equal to the
number of maximum active blocks per SM multiplied by the
number of SMs to achievemaximum performance. Assigning
the number of blocks proportional to the number of SMs
provides scalability to multiple GPU architectures [26], and
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is different per kernel and application. Further rationale for
setting block size to 32 will be given in the Section IV-A.3.

It is important to note that care should be taken when
utilizing shared memory on the CUDA. Because it is on-
chip, shared memory has a much higher bandwidth and lower
latency than local or global memory. To achieve this band-
width, memory is divided into equally sized memory banks
that can be accessed simultaneously. However, if multiple
memory requests access the same bank, the request will be
serialized. The one exception is when multiple threads within
a warp access the same shared memory location, the result
is broadcast to those threads. Devices with compute capabil-
ity 3.x and higher have two banking mode options, succes-
sive 32-bit or 64-bit words. Because the calculations in this
paper deal with single precision, 32-bit mode is chosen. The
implementation presented in the previous paragraph does not
introduce any bank conflicts. This is because the block size
is equal to that of a warp, 32, and each thread is accesses
independent consecutive elements.

2) THREAD EXECUTION EFFICIENCY
As mention previously, threads from a block are bundled into
fixed-size warps. Threads within a warpmust follow the same
execution trajectory. Maximum thread execution efficiency
is achieved when 100% of a warp’s threads are active. Less
than 100% means threads are inactive due to sub-optimal
launch, early return, or predicated off due to control flow
divergence. Due to the stochastic nature of the parallel imple-
mentation, it’s efficiency is lessened through early return of
thread through control flow divergence. As threads satisfy the
comparator in a given while-loop, they enter an inactive state.
This is critical to GPU performance because a warp cannot
exit until all threads have finished the last instruction, and a
block can not exit a SM until all warps have finished.

In the worst case, where there are 1024 threads, 32 warps
with 32 threads, in a block, if only one thread is active
that means 31 warps are active and consuming resources.
This decreases the number of eligible warps per scheduler.
Eligible warps are are the subset of active warps that are ready
to issue their next instruction. Every cycle with no eligible
warp results in no instruction being issued and the issue slot
remains unused. To increase the number of eligible warps
either increase the number of active warps or reduce the time
the active warps are stalled. The stochastic nature allows for
the possibility of one thread executing while the rest of the
block remains idle, limiting available resources. Due to each
thread having a variable-task length caused by thewhile-loop,
control flow divergence and early return are simply inherent
to the implementation. For the naive parallel implementation,
optimal performance is seen at 64 threads per block.

3) SUB-OPTIMAL OCCUPANCY
Another important consideration when programming on a
GPU is occupancy. Occupancy is the ratio of the number of
active warps per multiprocessor to the maximum number of
possible active warps and helps measure a kernel’s ability to

TABLE 1. NVIDIA GTX 1080 hardware specifications.

utilize resources of a SM. The number of blocks that can
execute concurrently on an SM is limited by the multiple
factors such as the number of blocks, warps, registers, and the
amount of shared memory. A subset of resources available on
a GTX 1080 is given in Table 1.

If a block requires too much of any one resource, it limits
the number of active blocks on that SM. It is evident that
this is the case with the parallel implementation. As previ-
ously stated, in order to minimize the effect of low thread
execution efficiency, one must increase the number of active
warps or reduce the time the active warps are stalled. For
the improved parallel implementation both suggestions can
be implemented by setting the block size to be equal to that
of a warp, or 32 threads. Doing so, eliminates the scenario
of one active thread in a warp in a block of multiple warps.
Now if a block has only one active thread it only affects
an individual warp and not many. The increases the ratio of
eligible warps to active warps; therein boosting performance.
One downside to this approach is that is causes the kernel to
run at sub-optimal occupancy. This block size, in combination
with the maximum number of blocks allowed per SM, limits
the number of possible active threads to 1024. Because there
are 2048 threads available per SM, the occupancy of each
kernel is theoretically 50%. Note that while higher occupancy
does not always mean better performance, lower occupancy
always constrains the ability to hide memory latency [26].
Memory latency issues caused are minimized by utilizing
shared memory as suggested in Section IV-A.1.

The novel parallel implementation presented in this paper
consists of two kernels that are mutually exclusive. Fortu-
nately, CUDA provides an additional level of concurrency
in the form of streams. A stream is a sequence of oper-
ations that executes in issue-order on the GPU. Different
streams may execute their commands, or kernels, concur-
rently or out of order with respect to each other. It is impor-
tant to note that any kernel not explicitly designated to a
specific stream is launched in the default stream, which
is synchronous, or blocking. Running the two kernels in
independent asynchronous, or non-blocking, streams will not
increase the occupancy, but now the GPU has an opportunity
to run blocks from both kernels concurrently as resources
become available. A visual aid is provided in Figure 3.
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FIGURE 3. Algorithm flowchart: Serial vs. parallel.

When splitting the parallel implementation into two
streams, care must be taken to ensure that both kernels use
the same uniform distribution set and the output indexes
are merged correctly before replacing insignificant particle
weights. Once both kernels are complete, the particle filter
can continue to the next step. A comparison of the naive and
improved implementations of Algorithm 7 will be presented
in Section V.

V. RESULTS
To examine the performance of the novel parallel approach
introduced in this paper, the parallel implementation
is compared to other alternatives using a general
nonlinear/non-Gaussian four state-space model from
research provided by Schon et al. [2] and can be found under
software and data sets - Rao-Blackwelled particle filter at
http://user.it.uu.se/~thosc112/research/.
For simplicity, a bootstrap particle filter was used to run
100Monte Carlos of 2500 samples with 216 and 220 particles,
with resampling performed every time step. Particle set
sizes do not exceed 220 to eliminate possible numerical
instabilities produced during the prefix-sum, as pointed out
by Murray et al. [8] while using single-precision on GPUs.
Double-precision on consumer-level cards and embedded
systems is significantly slower.

These tests were performed using a desktop computer
running Kubuntu 18.04 with a NVIDIA GTX 1080 and an
Intel i7-5960X. Specifications are provided in Table 1 and
Table 2, respectively. Serial versions of the systematic and
stratified are run on the CPU with optimization level -O3.
Code was written and tested in C++ GNU 7.3.0 and CUDA
10.0. The –use_fast_math flag was set at compile time to
improve the use of any special functions by forcing the use of
intrinsics. Intrinsic functions are faster as they map to fewer
native instructions. A XORWOW generator was used from
cuRAND [26] to generate all random number on the device.
To ensure both while-loops of the parallelized systematic
and stratified methods had the random numbers, a seed was
generated on the CPU and sent to the GPU as a parameter to
each kernel.

The prefix-sum, at line 1 can implemented in parallel using
the library CUDA UnBound (CUB) [32]. It is an NVIDIA
library containing collective kernel-level primitives designed

TABLE 2. Intel i7-5960X hardware specifications.

around reusable software components such as warps and
blocks for the single instruction, multiple thread (SIMT)
paradigm. This library not only provides the benefit of sim-
plified coding, but is optimized by NVIDIA to use the latest
hardware features and provide sustainability when porting
this method to different architectures.

To access and compare the quality of the serial and par-
allel resampling algorithms, the root mean squared error
(RMSE) [33] is used in the following form

RMSEfo =

√√√√ M∑
i=1

S∑
n=1

(f in − oin)2/(M ∗ S) (6)

whereM is the number of Monte Carlo runs, S is the number
of samples in each run, f is the expected results, or truth data,
and o is the observed filter estimates.

Due to the stochastic nature of the resampling process,
execution time is determined by averaging the execution time
of all the Monte Carlos. Also, the first executed Monte Carlo
was considered a warm-up run and the timing of that run was
discarded.

TABLE 3. Metric comparison of systematic/stratified: 216 particles.

Table 3 shows timing and RMSE for all systematic and
stratified implementations. The naive GPU (N-GPU) imple-
mentations of Algorithm 7 is 8× and 16.42× faster than the
serial CPU versions of systematic and stratified, respectively.
The improved GPU (I-GPU) implementations are 15.72×
and 32.28× faster. Stratified execution times are similar to the
systematic on the GPU because the random number genera-
tion can be performed on each thread in parallel. All three pro-
duced nearly identical RMSE. This is expected because the
GPU implementations produce the exact resampling index as
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FIGURE 4. Workload percentages: Systematic resampling
implementations.

serial methods. Differences can be contributed to rounding
error produced during the prefix-sum computation. Timing
results include the prefix-sum computation, random number
generation, and resampling index search.

The additional speedup of the improved implementations
over the naive is a direct correlation to the decreased number

of global memory loads. Load quantities for 220 particles for
over 1000 samples are presented in Table 4. The improved
implementation reduces the number of global memory loads
over 10× by utilizing shared memory.

TABLE 4. 32bit global memory loads: naive vs. improved.

As mentioned earlier, the historical bottleneck of parti-
cle filtering lied within the resampling step. This is evident
in Figure 4, which shows that when running the traditional
systematic resampling on the CPU it consumes roughly 93%
of workload performed in a time step.While the naive parallel
implementation is able to shift the 70%, it’s the improved par-
allel implementation, with a workload of 32%, that transfers
the majority of the computation performed from resampling
to the prediction and update steps of particle filtering.

Table 5 shows speed and RMSE comparison between
Metropolis, C1, C2; rejection; and the parallelized systematic
and stratified methods for a particle set of 220. The results
show that the parallelized implementations of the system-
atic and stratified methods provide at least a 11.64× speed

FIGURE 5. Execution times of the resampling algorithms in single-precision floating point arithmetic verses increasing number of
particles (2N ): (a) serial systematic and stratified on CPU with −O3, (b) naive parallel systematic and stratified on GPU, (c) improved
parallel systematic and stratified on GPU, (d) metropolis on GPU, (e) metropolis: C1 and C2 on GPU, (f) rejection resampling on GPU.
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TABLE 5. Metric comparison of resampling techniques: 220 particles.

over Metropolis, and as B increases, that speed up becomes
more pronounced. As expected, systematic and stratified
techniques provide the best quality, with Metropolis in sec-
ond. Although C1 provides the fastest execution time of all
Metropolis implementations, it has the worst quality because
it focuses on local selections, and the expected number of
repetitions of the particles becomes different than that in
Metropolis [24]. C2 provides a balance between speed and
quality; speed because it is coalesced and quality because it is
more similar to Metropolis. The parallelized systematic and
stratified methods are slightly faster than C2 with B ≥ 32,
but nearly double the execution time with B = 16. With
C2 producing quality only slightly worse for this particular
test problem, it seems to be the best trade-off between speed
and quality. It is evident that while rejection resampling is
faster than Metropolis and C2, at B ≥ 64, it has the worst
quality out of all the methods, for this data set.

Variance of the particle weight array will play a signifi-
cant roll in the performance of these resampling methods.
For a given B, as the variance increases the execution time
will remain constant while the quality will worsen. Con-
versely, execution time of the systematic and stratified par-
allel implementations will most certainly increase as threads
are required to traverse further through the particle weight
array to satisfy the while-loop condition.

Figure 5 compares execution times of all methods over a
sweep of particle set sizes from 210 to 220. For small particle
sets, the CPU will perform better than all GPU methods.
Execution times on a GPUwill plateau for small particles sets
because overhead is a larger contributor than computational
workload. It can be seen that C1 and C2 are faster alternatives
to the improved systematic and stratified parallel versions
when B is small and might be an appealing choice if the
impact to quality is not severe.

VI. CONCLUSION
In this article, a novel parallel method of the systematic
and stratified resampling algorithms is presented that is well

suited for GPU architecture. Improvements to thread execu-
tion efficiency, memory dependency stall and sub-optimal
occupancy are then provided to decrease execution times of
the systematic and stratified by 15.72× and 32.28× respec-
tively over the serial method. With this parallel approach, all
steps of the particle filter can be implemented in a parallel
fashion. This shifts the historical workload particle filtering
from resampling to the prediction and update steps. For a
thorough comparison, the performance was compared to a
popular GPUmethod known asMetropolis resampling. Three
versions of the Metropolis are presented; the original version
and two coalesced versions that performed more efficient
memory reads to global memory. The parallelized systematic
and stratifiedmethods are significantly faster thanMetropolis
on large particle sets. But they are slightly slower than the
coalesced versions of Metropolis when B is small. Therefore,
the specific method that is chosen will be a trade-off between
performance and accuracy. For future work, these techniques
can be applied to embedded systems such as the TK1, TX1,
TX2, or Xavier.
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