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ABSTRACT In this paper, we investigate the problem of joint direction of departure (DOD) and the direction
of arrival (DOA) estimation in bistatic MIMO radar. A new bistatic MIMO radar with the distributed nested
array is proposed. Based on the new array, the DOD and DOA estimation algorithm called automatically
paired DR-ESPRIT based on the angle disambiguation algorithm by using the range information of targets is
proposed. By designing distributed nested array and using Khatri-Rao product processing, the long baseline
and short baseline in the transceiver arrays are virtually extended simultaneously. The non-ambiguous and
high-accuracy sine estimations of the DOD and DOA can be accomplished using DR-ESPRIT algorithm
and the range information of targets and the geometry of bistatic MIMO radar. The virtual extension of
array aperture and high angle estimation accuracy can be achieved for the MIMO radar with automatic
pairing and without increasing the number of antennas compared with traditional uniform linear MIMO
array. And, the proposed corresponding algorithm gives significant improvement in the DOD and DOA
estimation performance. The simulation results validate the theoretical algorithm.

INDEX TERMS Bistatic MIMO radar, distributed nested array, DOD and DOA estimation, disambiguation,
DR-ESPRIT.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) radar which refers
to radar systems with multiple antennas to transmit diverse
waveforms and multiple antennas to receive targets echoes,
has shown enhanced capability compared with its phased
array counterpart [1]–[2]. Compared with the traditional
radar, it has advantages in anti-stealth, anti-jamming, free-
dom of freedom, angle resolution and angle measurement
precision [3]–[4]. It has attracted more and more attention
owing to its significant performance improvement in target
detection, parameter estimation, clutter suppression com-
pared with the conventional phased-array radar. Specifically,
the problem of joint estimation of the direction-of-departure
(DOD) and direction-of-arrival (DOA) is widely investi-
gated. Some methods have been proposed [5]–[9]. The
reduced-dimensional Capon (RD-Capon) [5] and reduced-
dimensional multiple signal classification (RD-MUSIC)
algorithms [6] are presented to jointly estimate the DOD

The associate editor coordinating the review of this manuscript and
approving it for publication was Salman Ahmed.

and DOA. But the high computational cost is employed due
to the two-dimensional angle searching. And the ESPRIT
methods [7]–[8] are developed. But an additional pair match-
ing between DOD and DOA estimation is required. Another
automatic pairing procedure, called combined ESPRIT-Root-
MUSIC algorithm, which uses the ESPRIT method to esti-
mate the DOD and the Root-MUSIC for the DOA estimation
is proposed in [9]. But the constraint conditions lead to some
loss of angle estimation performance owing to the inadequate
utilization of received data. Therefore, the non-uniform array
is introduced into the MIMO radar signal processing in order
to get the larger array aperture without increasing the number
of sensors. The idea of minimal redundancy is applied to
array optimization design of MIMO radar in [10]. The DOA
estimation configuring minimum redundant array in both the
transmit array and receive array has been addressed in [11].
But the computational complexity is higher because the min-
imum redundant array element position requires exhaustive
searching. The joint estimation of DOD and DOA based
on the coprime arrays and the nested arrays is presented
in [12] and [13] by utilizing theMUSIC algorithm and spatial
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smoothing technique. However, the angle estimation accu-
racy of [12] and [13] has not been improved at all.

It is well known that the angle estimation accuracy is
critically dependent on the array aperture. The distributed
array can provide very accurate estimation without extra
antennas [14]–[15]. Thus, link bistatic MIMO radar to sepa-
rated subarray, the bistatic MIMO radar system which both
transmit array and receive array consist of sparse linear
subarrays is proposed in [16]. Then the new joint DOD
and DOA estimation algorithm, called ESPRIT-MUSIC algo-
rithm and Reduced-Dimension ESPRIT-MUSIC algorithm
are proposed. However, the computational complexity is
higher due to using 2D-MUSIC algorithm. The DR-ESPRIT
method is applied to distributed array radar is extended to
the bistatic MIMO radar with distributed array in [17]. The
high accuracy and non-ambiguous DOD and DOA estimation
can be obtained by using unitary dual-resolution ESPRIT
method. However, the DOD and DOA estimations are needed
to pair, and the position information in the subarray is not
fully utilized.

Therefore, in this paper, we link nested array to distributed
subarray and propose the bistatic MIMO radar with dis-
tributed nested array to obtain a large virtual array aperture
and high accuracy estimation. And a new corresponding
joint DOD and DOA estimation algorithm, called automat-
ically paired DR-ESPRIT based on the angle disambiguation
algorithm by using the range information of targets is pro-
posed. Furthermore, the performance of the algorithm is ana-
lyzed. The virtual extension of array aperture and high angle
estimation accuracy can be achieved for the MIMO radar
with automatic pairing and without increasing the number
of antennas compared with traditional uniform linear MIMO
array. Moreover, the proposed algorithm gives significant
improvement in DOD and DOA estimation performance with
Low computational complexity. The simulation results vali-
date the theoretical algorithm and computational complexity.

The paper is organized as follows: section 1 is the intro-
duction part; section 2 introduces proposed system model;
section 3 introduces the automatically paired DR-ESPRIT
based on the angle disambiguation algorithm by using the
range information of targets; section 4 analyse the perfor-
mance of the algorithm; section 5 verifies the superiority of
our proposed strategy by simulation experiment; section 6 is
the conclusion part.

II. PROPOSED SYSTEM MODEL
As shown in Figure 1, a bistatic MIMO radar with distributed
nested arrays system consists of N−element transmit array
and M−element receive array. The transmit array is com-
posed of two identical nested subarrays with M ′ = M/2
sensors per subarray, d = λ/2dt1 = (M ′/2 + 1)ddt2 =
(M ′/2)d . And the receive array is composed of two identical
nested subarrays with N ′ = Nl2 sensors per subarray,
dr1 = (N ′/2 + 1)d dr2 = (N ′/2)d . λ is wavelength.
In transmit array the inter-subarray spacing BT and in
receive array the inter-subarray spacing BR are much larger

FIGURE 1. Array configuration of the bistatic MIMO radar with distributed
nested arrays.

than half-wavelength. The transmitting antennas transmit M
orthogonal waveforms with identical bandwidth and center
frequency. In each receiver, the echoes are processed for
scattering waveforms through V non-related far-field targets.
RL is baseline range between the bistatic arrays. RTv is
range between the target v(v=1,2,...,V) and the transmit array
and RRv is range between the target v and the receive array.
RB = RTv + RRv is baseline range between target v
and the bistatic array. The transmit and receive angles
corresponding to the target v are ϕv) . Thus, in the qth
(q = 1, 2, . . . ,Q) pulse, the output of the entire matched
filters at the receive array can be written as

yq(t) = AT diag(βq)AHR s(t)+ nq(t) (1)

where AT = [aT (θ1), . . . , aT (θV )] ∈ CM×V and AR =
[aR(ϕ1), . . . , aR(ϕV )] ∈ CN×V are the transmit steer-
ing matrix and the receive steering matrix, respectively.
The aT (θv) = [1, e−j2πBT sin θv/λ]T ⊗ [1, e−j2xd sin θv/λ,
e−j2π (M

′
−1)d sin θv/λ]T is the transmit steering vector of

the vth target, and aR(ϕv) = [1, e−j2πBR sinϕv/λ]T ⊗
[1, e−j2xd sinϕv/λ, e−j2π (M

′
−1)d sinϕv/λ]T is the receive steer-

ing vector of the vth target. ‘‘⊗’’ denotes the Kronecker
product. s(t) = [s1(t), s1(t), . . . , sV (t)]T denotes the signal
vector. βq = [βq1 , . . . , β

q
V ]

T denotes the dissipation coeffi-
cient vector of targets. nq(t) denotes the white Gaussian noise
vector. So the output of the receive array Y can be written as

Y = [y1(t), . . . , yq(t), . . . , yQ(t)] (2)

Thus, the covariance matrix of the received signal can be
written as

R = E
[
YYH

]
(3)

The property of the Khatri-Rao (KR) product is used for
vectorizing the covariance matrix R

z = vec(R) =
{
(AR � AT )∗ � (AR � AT )

}
h+ σ 2

n
_

I (4)

where vec(•) is vectorization function. h = [σ 2
1 , . . . , σ

2
V ]

T is
column vector of signal power, σ 2

v , (v = 1, 2, . . . ,V ) is
signal power of the vth target. σ 2

n is noise power.
_

I = [eT1 , . . . , e
T
MN ]

T , ei is a vector of all zeros except a
one at the center position.
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FIGURE 2. The bistatic MIMO radar with virtual arrays system.

z is left-multiplied by the transformation matrix6, the new
column vector _z can be obtained.

_z = 6 z =
{
(A∗R � AR)� (A∗T � AT )

}
h+ σ 2

n6
_

I (5)

where 6 = IM ⊗ 5s ⊗ IN is a MN × MN dimensional
matrix and the matrix5s ∈ CMN×MN is given by

5S =


0

0N×1 0
...

...
. . .

0N×1 0N×1 · · · 0

 (6)

where 0 is the M × ((N − 1)M + 1) dimensional matrix in
the following form

0 =


1

01×M 1
...

...
. . .

01×M 01×M · · · 1

 (7)

It is clear that the virtual array shown in figure 2 can be
obtained from the above operation. The new output signal z is
obtained by eliminating the redundancy of the vector _z .

z̄ =
{
ĀR � ĀT

}
h+ σ 2

n ē (8)

where ĀR = [āR(ϕ1), . . . , āR(ϕV )], ĀT = [āT (θ1), . . . ,
āT (θV )],= [0, . . . , 1, . . . , 0]T . Let 4E = (M ′2+ 2)/2+M ′.
āT (θv) and āR(ϕv) can be expressed as:

āT (θv) = [1, e−j2πBT sin θv/λ, e−j2π (2BT ) sin θv/λ]T

⊗[e−j2πd sin θv/λ, . . . , e−j2π4Ed sin θv/λ]T

āR(ϕv) = [1, e−j2πBR sinϕv/λ, e−j2π (2BR) sinϕv/λ]T

⊗[e−j2πd sin θv/λ, . . . , e−j2π4Ed sinϕv/λ]T (9)

The method of obtaining the new output signal z by elim-
inating the redundancy of the vector _z is described below:
We remove repeated rows of (A∗R�AR) from virtual sensor

positions at {xi − xJ , 1 ≤ i, j ≤ M} and reorder them.
A sorting array KR is acquired and can be given by

KR = {k1, k2, . . . , k34E } (10)

Similarly, we remove repeated rows of (A∗T � AT ) from
virtual sensor positions at {yi− yJ , 1 ≤ i, j ≤ N } and reorder
them. A sorting array LT is acquired and can be given by

LT = {l1, l2, . . . , l34E } (11)

Thus, we can construct an array containing G elements
according to KR and LT in the following form

G(m−1)×4E+n = M2
× (km − 1)+ ln (12)

where m = 1, 2, . . . , 34E , n = 1, 2, . . . , 34E . G also can
be expressed as

G = {g1, g2, . . . , g(34E )×(34E )} (13)

By extracting suitable rows using array G from z, the new
output signal Z̃ is obtained

z̄ = _zgi , i = 1, 2, . . . , (34E )× (34E ) (14)

Because the new output signal is obtained by vectorization
of the covariance matrix, the rank of the new output signal Z̃
is one. Thus we need to restore rank of it using 2-D spatial
smoothing algorithm.

Let 4H = (4−E + 1)/2. Firstly, we construct a
(34H )2 × (34E )2 selection matrix which is expressed as

1m,n = 11n ⊗12m (15)

where 11n = I3 ⊗ [04H×(4H−n), I4H ⊗ 4H , 04H×(n−1)],
12m = I3 ⊗ [04H×(4H−m), I4H ⊗ 4H , 04H×(m−1)],
m = 1, 2, . . . , 4H , n = 1, 2, . . . , 4H .
We acquire the data covariance matrix R2 which is given

by

R2 =
1

(4H )2

4H∑
m=1

4H∑
n=1

(1m,nz̄)(1m,nz̄)H (16)

The steering vector matrix
_

A = [c(θ1, ϕ1), . . . , c(θ∇ , ϕ∇ )]
is obtained by using 2D spatial smoothing. Where the vth
column of the steering vector c(θv, ϕv) =

_aR(ϕv)⊗
_aT (θv),

_aT (θv) = [1, e−j
2πBT smθv/λ

, e−j
2π (2BT 〉smθv/λ ]T

⊗[e−j
2πdsmθv/λ

, . . . , e−j
2−H dsmθv/λ ]T

_aR(ϕv) = [1, e−j2πBRsmϕv/λ, e−j2π (2BR)smϕv/λ]T

⊗[e−j2πdsmϕv/λ, e−j2π
=H
∪

dsmϕv/λ]T

Perform eigen decomposition for R2, Let the signal sub-
space Us be the matrix composed of the V eigenvectors
corresponding to the largest V eigenvalues. It can be shown
that Us and

_

A span the same subspace. Thus, there is a non-
singular matrix T

US =
_

AT (17)
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III. PROPOSED JOINT DOD AND DOA ESTIMATION
ALGORITHM METHOD
A. DOA COARSE ESTIMATION
Firstly, the first 4H − 1 and last 4H − 1 elements of each
receive subarray in figure 2 are used to form subarray rc1 and
subarray rc2, respectively. There is the half wavelength rota-
tional invariance relation between rc1 and rc2 Thus, the rota-
tion invariant relation equation (18) is given by

W rc2
_

A = W rc1
_

A2rc (18)

where W rc1 = (I3 ⊗ [I (4H−1)0(4H−1)×1]) ⊗ I (34H ) and
W rc2 = (I3 ⊗ [0(4H−1)×1I (4H−1)]) ⊗ I (34H ) are
selection matrix of rc1 and rc2, respectively. 2rc =

diag {υ(1)rc , υ
(2)
rc , . . . , υ

(V )
rc } υ

(v)
rc = e−j2xd sin(ϕv)/λ. Inserting

(17) into (18), we can obtain

W rc2
_

AT = W rc2US=W rc1US�rc (19)

Obviously, where �c = T−12rcT Let F = T−1, then
2rc = F−1�F

rc. Insert the signal subspace Us into (19). The
Equation (19) can be solved by least square method, we can
obtain

�̂rc = [W rc1US ]+[W rc2US ] (20)

where [•]+ denotes the pseudo-inverse of the matrix. Perform
eigen decomposition for�rc. And we can obtain its eigenval-
ues are υ̂(v)rc , (v = 1, 2, . . . ,V )

2̂rc = F̂
−1
�̂rcF̂ (21)

Thus, the low precision but non-ambiguous coarse
direction-sine estimation of DOA β̂(v)rc can be got.

β̂(v)rc =
arg

[
υ̂
(v)
rc

]
2πd/λ

(22)

where 2̂rc = diag {υ̂(v)rc }, (v = 1, 2, . . . , V ) is the V dimen-
sional diagonal matrix. arg[υ̂(v)rc ] is phase of the v element
of 2̂rc .

B. DOA AND DOD ACCURATE ESTIMATION
Firstly, the first two and last two subarrays of receive array
in figure 2 are used to form subarray rf 1 and subarray
rf 2, respectively. There is BR rotational invariance relation
between rf 1 and rf 2. The rotation invariant relation equation
(23) is given by

W rf 2
_

A = W rf 1
_

A2rf (23)

where W rf 1 = [I (24H )0(24H )×4H ] ⊗ I (34H ) and W rf 2 =

[0(24H )×4H I (24H )] ⊗ I (34H ) are selection matrix of rf 1
and rf 2, respectively. 2rf = diag{υ(1)rf , υ

(2)
rf , . . . , υ

v
rf },

υ
(v)
rf = e−j2πBR sin(ϕv)/λ.

Us =
_

AT , T is a non-singular matrix, F = T−1. Thus we
can estimate

_

A by F̂ and Us.

Â = US F̂ (24)

Thus the Equation (23) can then be written as

Ârf 2 = Ârf 12rf (25)

where Ârf 1 = W rf 1Â, Ârf 2 = W rf 2Â. Thus the estimation
2̂rf of2rf is given by

2̂rf = Ârf 2Â
−1
rf 1 (26)

It can be proved that 2̂rf and2rf are the diagonal matrix
with the same elements and contain DOA information of
the same target. Thus, The diagonal elements of 2̂rf can be
expressed as

υ̂
(v)
rf =

1
(24H )× (34H )

6(4H )∧2∑
i=1

(Â
′

rf 2)
iv

(Â
′

rf 1)iv
(27)

where Ârf 2 and (Â
′

rf 1)
iv are the elements of the vth column

of the matrix (Â
′

rf 2)
iv and Ârf 1, respectively. Thus, the high

accuracy but ambiguous fine direction-sine estimation of
DOA β̂(v)rf can be expressed as

β̂
(v)
rf =

arg
[
υ̂
(v)
rf

]
2πBR/λ

(28)

We define a new steering vector
_

A′ = [_aT (θ1) ⊗
_aR(ϕ1),

_aT (θ2)⊗
_aR(ϕ2), . . . ,

_aT (θV )⊗
_aR(ϕV )], obviously,

there is a transformation matrix C so that
_

A′ = C
_

A. And
U ′s =

_

A′T = C
_

A′T .
Similar to DOA estimation, the first two and last two sub-

arrays of transmit array in figure 2 are used to form subarray
tf 1 and subarray tf 2, respectively. There is BT rotational
invariance relationship between tf 1 and tf 2. The rotation
invariant relation equation (29) is given by

W tf 2
_

A′
= W tf 1

_

A′8tf (29)

where 8tf = diag{υ(1)f , υ
(2)
f , . . . , υ

(V )
tf }, υ

(v)
tf =

e−j2πBT sin(θv)/λ.
The

_

A
′

can be estimated by F̂ and U ′s. The estimation Â′

of
_

A
′

can be expressed as

Â′ = U′
S F̂ (30)

Thus the Equation (29) can then be written as

Â′tf 2 = Â′tf 18tf (31)

where Â
′

tf 1 = W rf 1Â
′
, Â
′

tf 2 = W rf 2Â
′
. Thus the estimation

8̂tf of 8tf is given by

8̂tf = Â′tf 2Â′
−1
tf 1 (32)

It can be proved that 8̂tf and 2rc, 8̂tf are the diagonal
matrix with the same elements and contain DOD and DOA
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information of the same target. The diagonal elements of 8̂tf
can be expressed as

υ̂
(v)
tf =

1
(24H )× (34H )

6(4H )∧2∑
i=1

(Â
′

tf 2)
iv

(Â
′

tf 1)iv
(33)

where (Â
′

tf 2)
iv and (Â

′

tf 1)
iv are the elements of the vth column

of the matrix Â
′

tf 2 and Â
′

tf 1, respectively. Thus, the high
accuracy but ambiguous fine direction-sine estimation of
DOD β̂(v)tf can be expressed as

β̂
(v)
tf =

arg
[
υ̂
(v)
tf

]
2πBT /λ

(34)

C. DISAMBIGUATION OF THE ACCURATE
ESTIMATION
From the description of the above algorithms, because the
length of the baseline between the subarrays of the trans-
mit array and the baseline between the subarrays of the
receive array are much longer than half wavelength, the fine
direction-sine estimation of DOA β̂

(v)
rf and DOD β̂

(v)
tf exist

periodic ambiguity. The non-ambiguous direction-sine esti-
mations β̂(v)rc , (v = 1, 2, . . . ,V ) can be serving as references
to disambiguate the set of high accuracy but ambiguous
estimations β̂(v)tf , (v = 1, 2, . . . ,V ). The non-ambiguous and
high accuracy sine estimations of DOA can be disambiguated
by (35)

β
(v)
rf =β̂

(v)
rf + l

0(v)
rv

λ

BR
(35)

where l0(v)rv = argmin
l(v)m
|β̂(v)rc − β̂

(v)
rf − l(v)rv λlBR| donate the

periodic fuzzy number of the fine direction-sine estimation of
DOA β̂(v)rf , (v = 1, 2, . . . ,V ). The l0(v)rv is integer, and its range

of values is d(−1 − β̂(v)rf )BR/λe ≤ l(v)rv ≤ b(1 − β̂
(v)
rf )BR/λc.

Thus, the non-ambiguous and high accuracy estimation of
DOA ϕ(v)f , (v = 1, 2, . . . ,V ) can be expressed as

ϕ
(v)
f = − arcsin(β(v)rf ) (36)

From the diagram of array structure shown in figure 1,
it can be seen that according to the geometric characteristics
of the transmit angle θv, the receive angle ϕv, the range sum
between the target and the transceiver array RB, and the
range of the transceiver array RL , the following relational
equation [37] can be obtained.

θv = ϕv + 2 arctan
(

RL cosϕv
RB + RL sinϕv

)
(37)

Inserting ϕ(v)f , (v = 1, 2, . . . ,V ) into (37), we can obtain
the low precision but non-ambiguous estimation of DOD
θ̂
(v)
tc , (v = 1, 2, . . . ,V ) corresponding to the same target.
Thus the sine estimations of DOD are. The β̂(v)tc = sin(θ̂ (v)tc ) =
sin
(
ϕ
(v)
f + 2 arctan

(
RL cosϕ

(v)
f /(RB + RL sinϕ

(v)
f )
))

(v =

1, 2, . . . ,V ) non-ambiguous and high accuracy sine estima-
tions of DOD can be disambiguated by (38)

β
(v)
tf =β̂

(v)
tf + l

0(v)
vt

λ

BT
(38)

where l0(v)tv = argminl(v)N
|β̂

(v)
tc − β̂

(v)
tf − l(v)tv λlBT | donate the

periodic fuzzy number of the fine direction-sine estimation of
DOD β̂(v)tf , (v = 1, 2, . . . ,V ). The l(v)tv is integer, and its range

of values is d(−1 − β̂(v)tf )BT /λe ≤ l(v)tv ≤ b(1 − β̂
(v)
tf )BT /λc.

Thus, The non-ambiguous and high accuracy estimation of
DOD θ (v)f , (v = 1, 2, . . . ,V ) can be expressed as

θ
(v)
f = − arcsin(β(v)tf ) (39)

The major steps of the automatically paired dual-ESPRIT
based on the angle disambiguation method by using the range
information of targets for angle estimation in the bistatic
MIMO radar with distributed nested arrays are summarized
below.

Step1. Vectorize R eliminate the redundancy and reorder
them to obtain the new output signal Z .
Step2. Use 2-D spatial smoothing and perform eigende-

composition to obtain the signal subspace Us.
Step3. Compute �̂rc2̂rf and 8̂tf as the solution to the

rotational invariance equations in (18), (23) and (29), respec-
tively.

Step4. Disambiguate the fine direction-sine estimations of
DOA by (35), compute DOAs by (36).

Step5. Compute the DOD coarse estimations by (37).
Step6. Disambiguate the fine direction-sine estimations of

DOD by (38), compute DODs by (39).

IV. UNITS ERROR THRESHOLD ANALYSIS OF RANGE
SUM BETWEEN TARGET AND TRANSCEIVER ARRAY
The coarse estimations of DOD are solved by using the range
sum between target and the transceiver array RB, and the
range of the transceiver array RL in proposed algorithm. The
RL can be obtained based on GPS or Beidou navigation, rel-
atively accurate. However, RB can only be obtained by using
matched filtering. There are relative large error so that the
ambiguity resolution will be invalid. In this section, the effect
of error of RB on angle estimation is analyzed and discussed.

According to the Equation (37), the error in calculating the
coarse estimations of DOD is as follows

1θ̂
(v)
tc+ = 1ϕ

(v)
rf + 2 arctan

×

(
RL cos(ϕv +1ϕ

(v)
rf )

RB −1R+ RL sin(ϕv +1ϕ
(v)
rf )

)
− 2 arctan

(
RL cosϕv

RB + RL sinϕv

)
1θ̂

(v)
tc− = 1ϕ

(v)
rf + 2 arctan

(
RL cosϕv

RB + RL sinϕv

)
− 2 arctan

(
RL cos(ϕv +1ϕ

(v)
rf )

RB −1R+ RL sin(ϕv +1ϕ
(v)
rf )

)
(40)
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where 1R > 0 is error of RB. 1θ̂
(v)
tc+ = θ̂

(v)
tc − θv > 0

and 1θ̂ (v)tc− = θv − θ̂
(v)
tc > 0 are the coarse estimations

error of DOD θ̂
(v)
tc when the range sum between target and

the transceiver array exist error 1R. 1ϕ(v)f > 0 are the fine
estimations error of DOA.

According to the distributed array pattern, the maximum
error angle of DOD coarse estimations are about the follow-
ing when the DOD fine estimation can be solved correctly.{

1θ̂
(v)
max+ ≈ arcsin(sin θv − λ/(2BT ))− θv

1θ̂
(v)
max− ≈ θv − arcsin(sin θv − λ/(2BT ))

(41)

So, when 1θ̂ (v)tc+ < 1θ̂
(v)
moe+

⋃
1θ̂

(v)
tc− < 1θ̂

(v)
max−, the DOD

fine estimation can be solved correctly. Inserting (40)
into (42), then the maximum error angle of DOD coarse
estimations are obtained by

1θ̂
(v)
max+=1ϕ

(v)
rf − 2 arctan

(
RL cosϕv

RB + RL sinϕv

)
+ 2 arctan

×

(
RL cos(ϕv +1ϕ

(v)
rf )

RB −1R
(v)
max+ + RL sin(ϕv +1ϕ

(v)
rf )

)
1θ̂

(v)
max−=1ϕ

(v)
rf + 2 arctan

(
RL cosϕv

RB + RL sinϕv

)
− 2 arctan

×

(
RL cos(ϕv +1ϕ

(v)
rf )

RB −1R
(v)
max− + RL sin(ϕv +1ϕ

(v)
rf )

)
(42)

where 1R(v)max+ and 1R(v)max− are the maximum error of RB
when θ̂ (v)tc > θv and θ̂

(v)
tc < θv.

Therefore, for all V targets, the approximate threshold for
the error 1Rmax of the range sum between target and the
transceiver array RB can be expressed as

1Rmax = min
v=1,...,V

{
min

{
1R(v)max+,1R

(v)
max−

}}
(43)

If the effect of 1ϕ(v)rf is ignored, The Equation (42) is also
denoted by

1θ̂
(v)
max+=2 arctan

(
RL cosϕv

RB −1R
(v)
max+ + RL sinϕv

)
− 2 arctan

(
RL cosϕv

RB + RL sinϕv

)
1θ̂

(v)
max−=2 arctan

(
RL cosϕv

RB + RL sinϕv

)
− 2 arctan

(
RL cosϕv

RB −1R
(v)
max− + RL sinϕv

)
(44)

Therefore, for all V targets, the approximate threshold
for the error lax of the range sum between target and the
transceiver array RB can be expressed as

1
_

Rmax = min
v=1,...,V

{
min

{
1
_

R
(v)

max+,1
_

R
(v)

max−

}}
(45)

FIGURE 3. The joint DOD and DOA estimation results of nineteen targets.
(a) Estimation results. (b) Drawing of partial enlargement.

V. DISCUSSION
In this section, we use numerical examples to show the supe-
riority of our proposed strategy. We provide several sets of
simulation results to demonstrate the performance. In all the
simulation examples below, SNR is defined as

SNR = 10 log10
E[x(t)2]
E[n(t)2]

The root mean square error (RMSE) is defined as

RMSE =

√√√√√ 1
K

1
V

K∑
j–1

V∑
i–1

|θ̂i − θi|2

where K is the number of Monte Carlo trials. where θi is the
true value of target, and θ̂i is estimated value of θi.
We consider the bistatic MIMO radar with distributed

nested arrays system with M = 8, N = 8 ; M1 = 2, N1 = 2.
Both the long baseline in the transmit array and in the receive
array are BT = BR = 25λ. Assume that SNR = 10dB, the
number of snapshots is L = 100, the range sum between
target and the transceiver array isRB = 20km, the range of the
transceiver array RL = 100km. The signals are far-field nar-
rowband signals. Figure 3 depicts the angle estimation results
of nineteen targets with 300Monte Carlo trials. As we can see
in the figure 3, the DODs and DOAs of all the nineteen targets
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FIGURE 4. The RMSE of angle estimation versus SNR. (a) The RMSE of
DOA estimation versus SNR. (b) The RMSE of DOD estimation versus SNR.

are correctly paired and well localized, and there is not too
much diffusion, which reflects the robustness of the algorithm
in angle estimation. the long baseline and short baseline in the
transceiver arrays are virtually extended simultaneously so
that the maximum number of the identifiable targets is 30 in
theory.

The angle estimation RMSE of the proposed algorithm and
themethods of [8] and [18] versus SNR are shown in Figure 4.
From Figures 4, we can see that the performances of the
proposed algorithm with distributed nested arrays are much
better than MIMO-ULA of [8] and DR-ESPRIT with sparse
array of [18]. Because the long baseline and short baseline in
the transceiver arrays are virtually extended simultaneously.
The proposed algorithm gives significant improvement in
DOD and DOA estimation performance. Moreover, an upper
limit for the gain of accuracy is existed in the proposed
algorithm and the methods of [18]. As the SNR decrease,
the error of the coarse estimations increase. The probability
of the disambiguation becomes decreasing. The upper limit
of the proposed algorithm is lower than the methods of [18].
Furthermore, as can be seen from figure 4(b), when the RB

FIGURE 5. The RMSE of angle estimation versus the error. (a) SNR = 0dB.
(b) SNR = 50dB.

exists measurement error 1R = 1km, the algorithm can still
effectively disambiguate the fine estimations of DOD, but
the signal-to-noise ratio threshold obviously increases. When
the RB exists measurement error 1R = 2.5km too large,
No matter how high the SNR is, the algorithm can not still
effectively disambiguate the fine estimations of DOD.

Figures 5(a) show the RMSE of angle estimation versus the
error1R of the range sum between target and the transceiver
array when SNR = 0dB (error of DOA estimations are
existent). And Figures 5(b) show the RMSE of angle esti-
mation versus the error 1R of the range sum between target
and the transceiver array when SNR = 50dB (error of
DOA estimations are non-existent). From the two figures,
we can see that the error of the range sum between target
and the transceiver array has obvious threshold effect. When
the error of the range sum between target and the transceiver
array are 1R > 1.13 km (error of DOA estimations are
existent) and 1

_

R > 1.35 km (error of DOA estimations are
non-existent), respectively, the algorithm can not effectively
disambiguate the fine estimations of DOD so that the RMSE
of DOD estimations are deteriorating rapidly. According to
the simulation experiment conditions set above, we can obtain
the approximate threshold for the error1Rmax and1

_

Rmax of
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FIGURE 6. The angle estimation RMSE versus baseline.

the range sum between target and the transceiver array are
1Rmax = 1.1123km and4

_

Rmax = 1.316km by equation (43)
and (45), respectively.

The angle estimation RMSE of the proposed algorithm
versus SNR is shown in Figure 6. From Figures 6, we can see
that the angle estimation accuracy of the proposed algorithm
is proportional to the long baseline. However, the threshold
for the gain of accuracy is existed in the proposed algorithm.
For the RMSE of DOD, as the error of the range sum between
target and the transceiver array increase, the threshold of the
baseline decrease.

VI. CONCLUSION
In this paper, we present a novel array configuration, called
bistatic MIMO radar with distributed nested array, for joint
angle estimation of multiple targets in bistatic MIMO radar.
The DOD and DOA estimation algorithm, called automat-
ically paired DR-ESPRIT based on the angle disambigua-
tion algorithm by using the range information of targets is
proposed. By designing distributed nested array and using
Khatri-Rao product processing, the long baseline and short
baseline in the transceiver arrays are virtually extended simul-
taneously without increasing hardware complexity. Some
examples showing typical results were presented. It is found
that the anglemeasurement performance and target resolution
of the algorithm are further improved. Furthermore, the pro-
posed algorithm doesn’t requires no pair matching.
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