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ABSTRACT In this paper, a new wideband DOA estimation method for arbitrary array application is pro-
posed. The arbitrary array manifold is approximately decomposed under the concept of manifold separation
technique (MST) and a linear combination of the equal interval sampling complex exponentials (EISCE)
can be synthesized. Since the EISCEs at all frequencies contain the same DOA information, they can be
annihilated by the same spatial annihilating filter. So, the coherent annihilating scheme is proposed, and all
narrowband components are coherently combined to construct an optimization problem under the structural
total least squares framework. During the optimization problem construction, the general solution method
is proposed to enable the model approximation error in MST to be reduced to a negligible level. Finally,
the optimization problem is solved through the multiple measurement vectors structural total least norm
(MMV-STLN) approach and the DOAs are estimated from the reconstructed spatial annihilating filter. The
new method is free of frequency focusing and is capable of handling both incoherent and coherent signals.
The simulation results verify that the proposed method surpasses the existing methods largely in resolution
and estimation performance under the low SNR, snapshot deficient, and closely spaced sources scenarios.

INDEX TERMS Coherent annihilating, general solution method, low SNR and snapshot deficient scenarios,
multiple measurement vectors structural total least norm (MMV-STLN), wideband direction-of-arrival
(DOA) estimation.

I. INTRODUCTION
The direction-of-arrival estimation which is one of the key
research topics of the array signal processing finds its wide
applications in the military and civilian fields, such as radar,
wireless communication, radio surveillance, and microphone
array [1]–[3].

Due to the wide frequency bandwidth of the communica-
tion signals, speech signals, most radar signals, etc., the con-
ventional narrowandDOA estimationmethod can not work or
can not take full advantage of the signal information. So the
wideband DOA estimation technique aimed at the wideband
signal arouses great interest. For the array geometry, the reg-
ular array (e.g., uniform linear array (ULA) or uniform cir-
cular array (UCA)) is preferred since it has more applicable
algorithms. However, the regular array may degrade into an
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irregular array owing to the array imperfections [4]. Besides,
for certain applications, the irregular arraywill be an unavoid-
able choice [5], [6] or a better choice [7], [8] in contrast to the
regular array. Therefore, it is believed that the wideband DOA
estimation with the arbitrary array has its practical value and
deserves our attention.

The classical MUSIC-based wideband DOA estimation
methods can be directly applied to the arbitrary array. They
consist of the incoherent subspace method (ISM) [9] and the
coherent subspace method (CSM) [10]–[13]. The ISM first
divides the wideband array output into several narrowband
ones and then apply the narrowband MUSIC to each nar-
rowband component independently. Finally, the results from
all the narrowband components are averaged to output the
final DOA estimation. The ISM generally does not perform
well due to the incoherent processing. Unlike ISM, the CSM
adopts the coherent processing. It uses the frequency focusing
technique to map the sample covariance matrices at different
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frequency bins to the same reference frequency bin and then
the mapped covariance matrices are averaged to generate a
new covariance matrix on which narrowband MUSIC can
be run. The CSM can get better performance than the ISM.
According to the construction method of the focusing matrix,
different CSMs are proposed, such as CSSM [10], RSS [11],
TCT [12],WAVES [13]. However, all these methods need the
pre-estimation of the DOAs to construct the focusing matrix
and the final DOA estimation performance is sensitive to
the DOA pre-estimation error. The TOPS is a new wideband
algorithm which is free of pre-estimation of the DOAs [14].
It is based on rank deficiency of a matrix formed with the
noise subspaces and the frequency-aligned signal subspaces
at the true DOAs. Nevertheless, the spurious peaks in the
TOPS pseudospectrum are difficult to remove. In addition,
all the above methods need to perform spatial scanning for
the arbitrary array application (TOPS needs to do singular
value decomposition (SVD) at each spatial grid), which will
increase the computational burden.

It is known that some fast DOA estimation algorithms
(e.g., Root-MUSIC [15] which belongs to the subspace based
method and IQML [16] which belongs to the maximum like-
lihood (ML) basedmethod) which are free of spatial scanning
are only applicable to the ULA. A logical idea is to trans-
form the arbitrary array into the ULA. In [17], for wideband
application the arbitrary array steering vectors at different
frequency bins are interpolated into the ULA steering vectors
with the same mathematical expressions by the least squares
method. So the interpolated covariancematrices can be coher-
ently combined and Root-MUSIC can be adopted owing to
the ULA. However, this interpolation is not accurate enough
and is only valid in a small spatial sector [18]. Another more
promising array transformation method is commonly called
the manifold separation technique (MST) [19] which origi-
nates from the wavefield modeling formalism developed for
array processing [20]–[23]. The MST approximately decom-
poses the arbitrary array steering vector into the product of the
array sampling matrix and the coefficient vector composed of
the Fourier bases which has the same Vandermonde structure
as the ULA steering vector. The approximation error can
be reduced to a negligible level by increasing the order of
Fourier basis. In [20] and [22], the MST is adopted. The
array sampling matrices at difference frequencies are mapped
to the reference frequency by the least squares to enable
the coherent processing and the Root-MUSIC is utilized to
output the DOA estimates. Unfortunately, flat array sam-
pling matrix (more columns than rows) which is usually
necessary for smaller approximation error will bringmapping
error and lead to a biased DOA estimation. Furthermore,
as we know, the performance of the subspace based methods
(e.g., MUSIC and Root-MUSIC) is rather poor under the
low SNR and snapshot deficient scenarios [24]. In [25],
a IQML-like wideband DOA estimation method for arbitrary
array called FRIDA is proposed. In this method, the MST
is also used and multi-band information is coherently com-
bined to form an optimization problem via the finite rate of

innovation (FRI) principle [26]. The optimization prob-
lem is solved by the IQML algorithm. However, the tall
array sampling matrix constraint and the covariance
domain processing in this method result in performance
degradation [27]. Besides, the IQML can only provide a
suboptimal solution [28], [29].

In this paper, we propose a new wideband DOA estimation
method for arbitrary array application based on coherent
annihilating. In Section II, the wideband signal formula-
tion and the MST for the arbitrary array is introduced.
With MST, the EISCE can be synthesized by approximately
decomposing the arbitrary array steering vector into the
product of the array sampling matrix and the coefficient
vector. In Section III, first, the annihilating concept is intro-
duced. Since the EISCEs at all frequencies contain the same
DOA information, they can be annihilated by the same spa-
tial annihilating filter. So, then the coherent annihilating
scheme is proposed, and all narrowband components are
coherently combined to construct an optimization problem
in the STLS sense. During the optimization problem con-
struction, the general solution method is proposed to enable
the model approximation error in MST to be reduced to
a negligible level. Finally, the spatial annihilating filter is
reconstructed by solving the optimization problem through
MMV-STLN approach. After the annihilating filter is recon-
structed, the DOAs can be obtained by finding the roots of
the polynomial formed from the annihilating filter coeffi-
cients. The new method is free of frequency focusing, and
is capable of handling both incoherent and coherent signals.
In Section IV, the performance of the new method is verified
by comprehensive numerical simulations and is compared
with the existing counterparts. Section V concludes the whole
paper.

Notations used in the paper are introduced as follows.
[·]T , [·]H and [·]+ are denoted as the transpose, conjugate
transpose and pseudo-inverse operator, respectively. ‖ · ‖2
and ‖ · ‖F denote the `2 norm and the Frobenius norm,
respectively. ∗ and ⊗ are the convolution, and Kronecker
product operator respectively. vec[·] is the operator that builds
a column vector by stacking the column vectors of a matrix
below one another, and IN is the N × N identity matrix. 0N
represents a zero vector with N elements. aj denotes the jth
element of a, Ai· denotes the ith row of A, A·j denotes the
jth column of A and Ai,j denotes the element at ith row and
jth column of A.

II. WIDEBAND SIGNAL FORMULATION AND ARBITRARY
ARRAY MANIFOLD SEPARATION
Assume an M -element arbitrary array is located in the x-y
plane of the Cartesian coordinate system and the Cartesian
coordinates of the mth sensor are [ρm cos(φm), ρm sin(φm)]
where [ρm, φm] are its corresponding polar coordinates.
K far-field wideband signals in the x-y plane from directions
θ = [θ1, θ2, . . . , θK ] are received by the array. Setting the
origin as the reference point, we can write the output of
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the mth sensor at time t as

ym(t) =
K∑
k=1

sk [t − τm(θk )]+ εm(t) (1)

where sk (t) is the kth signal at reference point, τm(θk ) is the
propagation delay of the kth signal from DOA θk between the
mth sensor and the reference point, and εm(t) is the additive
Gaussian noise of the mth sensor which is temporally and
spatially white. Since the signals are wideband, the delay
τm(θk ) can not be directly converted into phase. The general
method is to transform the digital wideband array outputs into
several narrowband components through the discrete Fourier
transformation (DFT). The time domain array outputs are
divided into N segments, and for each segment the DFT is
performed to obtain J narrowband components. After fre-
quency decomposition, the array output can be written in a
vector form as

yj[n] = Aj(θ )sj[n]+ εj[n] (2)

where j = 1, 2, . . . , J is the frequency index, n = 1, 2, . . . ,N
is the snapshot index, yj[n] is the array output at frequency
fj and snapshpt n, Aj(θ ) = [aj(θ1), aj(θ2), . . . , aj(θK )] is the
array manifold at frequency fj, aj(θk ) is the array steering
vector, sj[n] is the signal vector, and εj[n] is the noise vector.
Now the problem is to estimate the DOAs accurately with the
data set yj[n], j = 1, 2, . . . , J , n = 1, 2, . . . ,N .
Since the array geometry is known, the array steering

vector has its analytical expression.
[
aj(θk )

]
m which is the

mth element of aj(θk ) can be written as
[
aj(θk )

]
m =

exp(jκjρm cos(θk − φm)) where κj = 2π fj/c and c is the
signal propagation velocity. According to the Jacobi-Anger
expansion, we have[

aj(θk )
]
m = exp[jκjρm cos(θk − φm)]

=

+∞∑
q=−∞

jqJq(κjρm) exp[jq(θk − φm)]

≈

+Q∑
q=−Q

jqJq(κjρm) exp(−jqφm)︸ ︷︷ ︸
Gm,q+Q+1(fj)

exp(jqθk )︸ ︷︷ ︸
dq+Q+1(θk )

≈
[
Gj
]
m· d(θk ) (3)

where Gj ∈ CM×(2Q+1) is called the array sampling matrix,
d(θk ) which is a vector composed of the Fourier bases is
called the coefficient vector [21], Q is called the order of the
Fourier basis, and Jq(·) is the qth order Bessel function of
the first kind. Equation (3) is based on the concept of MST.
The original array response is approximately decomposed
under the finite Fourier bases. The decomposed coefficient
vector d(θk ) now is similar to the steering vector of the
ULA and is unrelated to the frequency, which will enable
the coherent processing of the multi-band components. Since
the Bessel function Jq(κjρm) decays super-exponentially as
q → ∞ beyond |q| = κjρm [21], the model approximation
error in (3) can be reduced to a negligible level by increasing
Q to a large enough value.

Substituting (3) into (2), we have

yj[n] = GjD(θ )sj[n]+ εj[n]

= Gjxj[n]+ εj[n] (4)

where D(θ ) = [d(θ1), d(θ2), . . . , d(θK )] and xj[n] is similar
to the noiseless ULA output. Here we replace the approxi-
mately equal sign with the equal sign in (4) since we will
assign a large enough value to Q.

III. COHERENT ANNIHILATING FOR
WIDEBAND DOA ESTIMATION
A. COHERENT ANNIHILATING
As xj[n] = D(θ )sj[n] in (4), we say xj[n] is a linear
combination of the equal interval sampling complex expo-
nentials (EISCE) and the combination coefficients are the
elements in sn(fj). So xj[n] can be annihilated by a filter
h = [h1, h2, . . . , hK+1]T [27], [30], [31]. The annihilating
relation can be written as

xj[n] ∗ h = 0, n = 1, . . . ,N , j = 1, . . . , J (5)

and the one side Z-transform of h is
K+1∑
k=1

hkz−(k−1) =
K∏
k=1

[
1−

exp(jθk )
z

]
. (6)

Since elements of xj[n] are sampled in the spatial domain,
we call h the spatial annihilating filter. If we find the filter h
which satisfies (5), the DOAs are able to be obtained by
finding the roots of (6). In (5), the annihilating relation is
valid at any frequencies and any snapshots with the same
filter h, which will be the theory foundation of the coherent
annihilating.

Since each frequency components hasN snapshots, (4) can
be written in the multiple measurement vectors (MMV)
model which is

Y j = GjX j + Ej (7)

where Y j, X j and Ej are the MMV representations
of yj[n], xj[n] and εj[n], respectively (e.g., Y j =[
yj[1], yj[2], . . . , yj[N ]

]
). Since X j = D(θ )Sj where Sj ∈

CK×N is the MMV representation of sn(fj), we have
rank[X j] 6 K (If there are coherent sources or N < K ,
rank[X j] < K ). So, even though each column of X j satisfies
the annihilating relation in (5), at least N − K columns
do not provide new information because there are at most
K independent columns in X j (i.e., there exist redundant
snapshots.). Thus, we can compress the data size by perform-
ing the principal component analysis (PCA) on Y j without
information loss. The PCA is peformed via the singular
value decomposition (SVD). Assume the SVD of Y j is
Y j = U0VH , and then the compressed Y j is [32]

Y ′j = Y jVF (8)

where F = [IK ,0]T ∈ RN×K if N > K , otherwise F = IN .
Substituting (7) into (8), we have

Y ′j = GjX ′j + E
′
j (9)
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where X ′j = X jVF = D(θ )SjVF = D(θ )S′j and E
′
j = EjVF.

Now the number of columns of X ′j becomes K (Assume
N ≥ K ) and each column of X ′j still satisfies the anni-
hilating relation in (5) since it is still a linear combination
of the EISCE.

The annihilating relation in (5) can be expressed in amatrix
form which is

L
[
xj[n]

]
h = 0 (10)

where L[·] is a matrix operator and L[β] where β = xj[n] is
a Toeplitz matrix written as

L[β] =


βK+1 βK . . . β1
βK+2 βK+1 . . . β2
...

...
. . .

...

β2Q+1 β2Q . . . β2Q−K+1

 . (11)

Since xj[n] is a single measurement vector (SMV), we
call (10) the SMV annihilating. For the X ′j whose columns
all satisfy (10), the annihilating relation can be written as

L̄[X ′j]h = 0 (12)

where L̄[·] is a column-wise operator of L[·] and L̄[B] =[
LT [B·1],LT [B·2], . . . ,LT [B·K ]

]T where B = X ′j. Since X
′
j

is MMV, we call (10) the MMV annihilating.
For the wideband DOA estimation, the frequency com-

ponents X ′j, j = 1, 2, . . . , J all satisfy (12). Define X ′ =
[X ′1,X

′

2, . . . ,X
′
J ], and then the wideband version of (12) can

be written as

L̄[X ′]h =


L̄[X ′1]
L̄[X ′2]
...

L̄[X ′J ]

h = 0. (13)

Here we call (13) the wideband annihilating since it con-
tains all the frequency components, or the coherent annihilat-
ing since all signal information which contains information
among snapshots and among frequencies is coherently com-
bined with a single annihilating filter.

B. OPTIMIZATION PROBLEM CONSTRUCTION
UNDER STLS FRAMEWORK
Now the problem is we do not have access to X ′j, so the next
step is to extract it from (9). If M ≥ 2Q+ 1 (i.e., Gj is a tall
matrix), then G+G = I2Q+1 and we have X ′j = G+j (Y

′
j−E

′
j).

However, small Q will make the model approximation error
in (3) non-negligible. Thus in general, for high performance
MST based DOA estimationM < 2Q+ 1 is required. Under
this underdetermined condition, we can express X ′j by its
general solution which is

X ′j = G+j (Y
′
j − E

′
j)+ (I2Q+1 − G+j Gj)W j (14)

whereW j is a certain unknown matrix.
By defining

6j = G+j E
′
j − (I2Q+1 − G+j Gj)W j (15)

and substituting (14) into (12), we have{
L̄[G+j Y

′
j]− L̄[6j]

}
h = 0 (16)

Combine the J frequency components and define

Z =
[
G+1 Y

′

1 G
+

2 Y
′

2 · · · G
+

J Y
′
J

]
, (17)

6 = [61,62, . . . ,6J ] and then (16) turns into a wideband
version which is {

L̄[Z]− L̄[6]
}
h = 0 (18)

In the least squares (LS) sense, to reconstruct h, we need
to minimize ‖L̄[6]‖2F under the constraint of (18). However,
L̄[6] is the mapped noise instead of the original noise. Mul-
tiplying both sides of (15) by Gj we have Gj6j = E′j. This is
because GjG+j = IM due to the assumedM < 2Q+ 1. Then,
define a new matrix variable 6′ as

6′ =
[
G161 G262 · · · GJ6J

]
=
[
E′1 E′2 · · · E′J

]
. (19)

So 6′ is the original noise. Now, in the structural total least
squares (STLS) sense, we can minimize ‖6′‖2F . For ‖6

′
‖
2
F ,

we have

‖6′‖2F = ‖vec[6
′]‖22

= ‖Gν‖22 (20)

where G is

G =

IK ⊗ G1
. . .

IK ⊗ GJ

 (21)

and ν is

ν = vec [6] = vec
{[
61 62 · · · 6J

]}
(22)

As we see, in (18), L̄[6] is a vertical stack of Toeplitz
matrices, then we have

L̄[6]h = vec
{
[IK ⊗ R(h)]

[
vec[61] · · · vec[6J ]

]}
= [IKJ ⊗ R(h)] ν (23)

where R(h) ∈ C(2Q+1−K )×(2Q+1) is

R(h) =


hK+1 · · · h1 0 · · · 0

0 hK+1 · · · h1 · · ·
...

...
. . .

. . . · · ·
. . . 0

0 · · · 0 hK+1 · · · h1

 . (24)

So, substituting (23) into (18) and considering (20), we are
able to construct an optimization problem under the STLS
framework. It is given by

min
h,ν

‖Gν‖22

s. t. L̄[Z]h− [IKJ ⊗ R(h)] ν = 0

ωHh = 1 (25)
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whereωHh = 1 is used to ensure the uniqueness of h andω is
a constant vector which later will be assigned ω = h(0). h(0)

is the initialization of h in the following iterative calculation.
Since the constructions of the cost function and the con-

straint in (25) are mainly based on using the general solution
of an underdetermined system, we call this construction pro-
cedure the general solution method.

C. FILTER RECONSTRUCTION FOR WIDEBAND
DOA ESTIMATION
Now we need to reconstruct the filter h by solving the opti-
mization problem in (25). Although the first constraint in (25)
is nonlinear with h and there is another unknown vector
variable ν in the optimization problem, (25) is able to be
perfectly solved by the MMV-STLN approach [30] which is
a variation of the classical STLN approach [33]–[35].

In the MMV-SLTN approach, the iterative calculation is
required and in the (i + 1)th iteration the first constraint
in (25) is linearized around the last iteration solution. Define
1h as a small change in h(i), 1ν as a small change in ν(i)

and let r(h(i), ν(i)) = L̄[Z]h(i) − [IKJ ⊗ R(h(i))]ν(i). Here,
the superscript (i) indicates the iteration index. Then given
the last iteration solution h(i) and ν(i), we have

r(h(i+1), ν(i+1)) = r(h(i) +1h, ν(i) +1ν)

= r(h(i), ν(i))+ J (i)
[
1hT ,1νT

]T (26)

where J (i) =
[
L̄[Z]− L̄[6(i)],−IKJ⊗R(h(i))

]
is the Jacobian

of r(h, ν) with respect to [h, ν] and 6(i) can be constructed
from ν(i) according to (22). So, in the (i + 1)th iteration,
the unknowns become the 1h and 1ν and the optimization
problem in (25) can be transformed into a standard linear
equality constrained LS problem which is

min
1h,1ν

∥∥∥∥3 [1h1ν
]
− µ(i)

∥∥∥∥2
2

s. t.
[
J (i)

ω′

] [
1h
1ν

]
=

[
−r(h(i), ν(i))
1− ωHh

]
(27)

where 3 ∈ C(MKJ+K+1)×((2Q+1)KJ+K+1) is a block diagonal
matrix with the first block being a (K + 1)-by-(K + 1) zero
matrix and the rest block being G, µ(i)

= [0TK+1, (Gν
(i))T ]T ,

and ω′ = [ωH ,0T(2Q+1)KJ ]. The standard method for
solving (27) is the Lagrangian multipliers and there are
also the off-the-shelf robust and efficient constrained linear
least-squares solvers, such as cgglse function in the LAPACK
library and lsqlin function in theMatlab optimization toolbox.

After (27) is solved, we obtain the estimated 1̂h and 1̂ν.
Then update rule for h(i+1) and ν(i+1) is given by{

h(i+1) ← h(i) + 1̂h
ν(i+1) ← ν(i) + 1̂ν

(28)

The iterative calculation is terminated when the maximum
number of iterations I is reached or the iteration arrives the

convergence point which is assumed as

‖h(i+1) − h(i)‖2
‖h(i)‖2

≤ ζ (29)

where ζ is the iteration termination threshold which is a small
number.

After the iteration converges, we obtain the reconstructed
annihilating filter ĥ = [ĥ1, ĥ2, . . . , ĥK+1]T , and according
to (6) the final estimated DOAs θ̂ = [θ̂1, θ̂2, . . . , θ̂K ]T can be
derived as

θ̂ = angle

[
root

(
K+1∑
k=1

ĥkz−(k−1) = 0

)]
(30)

For the iterative calculation in (28), we need the initial-
izations which are h(0) and ν(0). Since multiple local minima
exist in the cost function of (25) because of the non-convexity,
we need to choose initializations close to the optimal solution.
From (6), we find that h can be estimated by performing
the inverse one-sided Z-transform on a polynomial consti-
tuted from the pre-estimated DOAs, and the pre-estimated
DOAs can be coarsely achieved via the simple conventional
beamforming (CBF) (or the Capon Beamformer). Assuming
θ̃k , k = 1, 2, . . . , K̂ is the pre-estimated DOAs and K̂ is
the number of peaks of the pre-estimated spatial spectrum,
we derive h(0) as

h(0) = Z−1


K̂∏
k=1

[
1−

exp(jθ̃k )
z

] . (31)

The true number of sources K is assumed to be known
or estimated by classical source number estimator such
as the Akaike information criterion (AIC) method [36] or
the minimum description length (MDL) method [37]. The
closely-spaced sources may make K̂ < K , resulting in K− K̂
zeros in h(0) according to (31). In the simulation part, we will
see this has no influence on the resolution of the method.
For ν, its initialization can be written as

ν(0) = vec
[
Z− D(θ̃ ′)Z′

]
(32)

and

Z′ =
[
A(θ̃ ′)+1 Y

′

1 A(θ̃ ′)+2 Y
′

2 · · · A(θ̃ ′)+J Y
′
J

]
, (33)

where θ̃ ′ consisting of {θ̃k − θbeam/4, θ̃k , θ̃k + θbeam/4}K̂k=1
is the extended coarse DOA estimation obtained by CBF or
Capon Beamformer and θbeam is the array beamwidth [11].
The detail derivation steps of (32) are shown in Appendix V.

Now the steps of the proposed wideband DOA estimation
method can be summarized as follows:

1) Perform DFT on each of the N segments of the array
output to form the MMV data Y j, j = 1, 2, . . . , J , and
then perform PCA on Y j to produce the compressed
Y ′j, j = 1, 2, . . . , J .

2) Obtain the initializations h(0) and ν(0) via (31) and (32).
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3) Start the iteration calculation, and in each iteration solve
the stand linear equality constrained LS problem in (27)
and update h and ν through (28).

4) Estimate the DOAs using (30) after the convergence of
the iteration.

D. SOME DISCUSSIONS
In the proposed method, the arbitrary array steering vector
aj(θ ) is approximated by the product of the array sampling
matrix Gj and the coefficient vector d(θ ). The model approx-
imation error is controlled by the Fourier basis order Q.
Larger Q brings smaller approximation error, but will lead to
higher computational complexity. As the analytical formula
for determining the suitable Q is hard to derive [21], here
we give a empirical criterion. First, find the smallest circle
enclosing all of the array elements, which can be done by the
efficient Welzl’s algorithm [38]. The radius of the circle is
denoted by ρmax and the origin of the circle is set as the array
reference point. Then, according to the Bessel function in (3),
the empirical criterion for determining the suitable Q is

Q =
4πρmax

λh
(34)

where λh is the wavelength of the highest frequency fJ within
the wide bandwidth. This criterion will ensure the model
approximation error can be safely neglected and the DOA
estimation performance will not deteriorate in general signal
condition. We will show this in the simulation part.

The convergence of the iteration calculation in the pro-
posed method is the same as convergence of the STLN
approach. As it is shown in [33], the STLN is essentially
a Gauss-Newton method. In general, the Gauss-Newton
method will converge to a local minimum when the residual
is small. This condition is satisfied in many applications
and in our simulations the proposed method converges in
all situations. Since the optimization problem in (25) is not
convex, convergence to a global minimum is not guaranteed.
However, in the numerical simulation we will find only when
the error in the DOA pre-estimation is very large may the
iteration occasionally converge to a wrong solution.

As for the computational complexity of the proposed
method, the most time-consuming part is the iterative calcu-
lation. In each iteration, we need to solve a standard linear
equality constrained LS problem in (27). According to [39],
the complexity of solving (27) using the Lagrangian multi-
pliers with the QR factorization for solving the corresponding
KKT equations isO([(L+M−K )KJ+K+2][LKJ+K+1]2)
where L = 2Q + 1. Furthermore, as we can find 3 and J (i)

in (27) are both sparse matrices, the sparsity can be exploited
to largely reduce the computational complexity [39]. In the
simulation part, we use the more efficient Matlab’s slover
lsqlin with its sparse operation enabled to solve (27).

In addition, during the derivation of the proposed method,
we have no assumptions about the correlativity between sig-
nals. So this method is supposed be able to work normally

with the coherent signals, which is similar to the CSM
method.

IV. SIMULATION SIMULATIONS
In this part, we carry out several simulations to demonstrate
the performance of the proposed method, and compare it
with the existing wideband DOA estimation methods that
are workable with the arbitrary array, including the TCT [12]
and WAVES [13] which both belong to the CSM method,
TOPS [14], AI (array interpolation) [17], MSTI (MST based
interpolation) [20], [22], and FRIDA [25]. The Cramer-Rao
Lower Bound (CRLB) for wideband DOA estimation [17] is
also employed as the performance reference.

In each simulation, the results are given based on the aver-
age of 500 Monte Carlo experiments. For the array geometry,
an arbitrarily placed array display in Fig. 1 will be used
in the each simulation. It has 8 elements and the element
locations are normalized by the wavelength of the highest
frequency within the wide bandwidth. The wideband signals
has a relative bandwidth of 20% and are assumed to be
composed of J = 9 narrowand components. For the methods
needing spatial scanning, the spatial grid interval is set to
(10−SNR/20−1)◦ which is about 1/10 of the CRLB [24]. For
AI, the interpolation sector is chosen to cover all DOAs
with a margin of 10◦, and the number of the corresponding
virtual ULA elements is set as 8. For the proposed method,
the iteration termination threshold and the maximum number
of iteration are set as ζ = 10−8, I = 100, respectively.

FIGURE 1. The arbitrary array geometry.

In the first simulation, we show the impact of the Fourier
basis order Q on the performance of the proposed wide-
band DOA estimation and test the empirical criterion (34)
for determining the suitable Q. To test the effect of the
empirical criterion under general signal condition, we choose
lenient simulation parameters, i.e. high SNR, large number
of snapshots, and wide angle separation of sources. So we set
SNR = 30 dB, N = 100 and two uncorrelated sources with
the DOA being [83.2◦, 110.7◦]. Q is varied from 5 to 20, and
the results are shown in Fig. 2. We can find small Q will lead
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FIGURE 2. RMSE of wideband DOA estimation versus different Qs.

to inaccurate DOA estimation because of the non-negligible
model approximation error, and too large Q is unnecessary
because noise will bring an error floor for the DOA estimation
exhibited by CRLB. The results in Fig. 2 indicates Q = 11 is
appropriate, and the empirical criterion (34) suggestsQ = 13
(ρmax/λh = 1.009) for the array geometry. They are close,
and empirical criterion (34) promises a more robust result.
So, in the following simulations, Q = 13 will be used.

In the second simulation, we will test the DOA
pre-estimation error on the performance of the proposed
wideband DOA estimation, and compare it with the CSM
methods including TCT and WAVES. To make problem
simple, we only consider a single source whose DOA
is 83.2◦. The DOA pre-estimation error is set as a normal
distributed random variable 1θ̃ ∼ N(0, σ 2) and σ is varied
from 0◦ to 24◦. Other simulation parameters are set as
SNR = 5dB, N = 20. The simulation results are shown
in Fig. 3. It can be seen the proposed method is far less
sensitive to the pre-estimation error than the CSM methods.

FIGURE 3. RMSE of wideband DOA estimation versus standard deviation
of DOA pre-estimation error.

A pre-estimation error of σ = 6◦ will make CSM methods
deviate from the CRLB, while the correspond value for the
proposed method is σ = 22◦. Then, fixing σ = 24◦, we place
the probability distributions of final DOA estimation results
in Fig. 4 where the red dash line indicates the true DOA.
Fig. 4 show the impact of pre-estimation error on the pro-
posed method is different from it on the CSM methods.
The pre-estimation error makes the focusing matrices of the
CSM method inaccurate, and brings model error, which will
reduce the successful estimation probability of the DOA.
However, for the proposed method, the pre-estimation error
is only related to the initialization of the iteration, and only
large enough pre-estimation error can occasionally make the
iteration converges to a wrong point. So we see the DOA
successful estimation probability of the proposed method is
only very slightly affected under large pre-estimation error.
Then, we also plot the convergence curve of the proposed
method in each Monte Carlo experiments in Fig. 5 under the
pre-estimation error of σ = 0◦ and σ = 16◦. The vertical axis
in Fig. 5 is the indication of the convergence calculated from
left side of (29). We can find the proposed method usually
converges quite quickly (For iteration termination threshold
ζ = 10−8, it takes less than 10 iterations to reach the
convergence) and the large pre-estimation error only slightly
increases the number of iterations.

FIGURE 4. Probability distribution of DOA estimation results under
σ = 24◦. (a) TCT, (b) WAVES, (c) The Proposed method.
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FIGURE 5. Convergence pattern of the proposed method, Top: σ = 0◦,
Bottom: σ = 16◦.

In the third simulation, we test the wideband DOA esti-
mation performance under different SNRs. Two uncorrelated
sources from DOA [83.2◦, 93.7◦] are considered and N = 20
snapshots are collected. The SNR is varied from −6 dB to
26 dB, and the simulation results are exhibited in Fig. 6.
The results show that the proposed method owns the lowest
SNR thresholds to achieve super-resolution, and its RMSE
is smaller than all the other methods. TCT and WAVES can
approximately arrive the CRLBwith a higher SNR threshold.
There exists an obvious error floor in MSTI and FRIDA.
For MSTI it comes from the array sampling matrix mapping
error, and for FRIDA it comes from the model residual error
because of the covariance domain processing. The TOPS and
AI have similar performance, and they only have acceptable
performance under moderately high and high SNR.

FIGURE 6. RMSE of wideband DOA estimation versus SNR.

In the fourth simulation, we test the wideband DOA esti-
mation performance under different number of snapshots.
The number of snapshots are varied from 1 to 70. The other
simulation parameters are the same with the previous simu-
lation except for fixing SNR = 5 dB. The simulation results

are shown in Fig. 7. The results indicate that the proposed
method requires only 4 snapshots to achieve super-resolution
and has not very bad performance even under single snapshot
scenario. TCT, WAVES, MSTI and FRIDA need 19, 34,
37 and 10 snapshots respectively to separate the two sources.
Obvious biasedness still can be found in the results of MSTI
and FRIDA. TOPS and AI are not able to separate the two
sources in the considered scenarios.

FIGURE 7. RMSE of wideband DOA estimation versus number of
snapshots.

In the fifth simulation, we test the wideband DOA estima-
tion performance under different angle separations between
two sources. The DOA vector of the two sources is set as
[83.2◦, 83.2◦ + 1θ ] and 1θ is varied from 3◦ to 26◦. The
other simulation parameters are the same with the previous
simulation except for fixing SNR = 5 dB and N = 20.
The results are shown in Fig. 8. Fig. 8 shows that the
angle separation threshold of the proposed method to achieve
super-resolution is 5◦, which is much smaller than the 11◦

threshold of TCT, 13◦ threshold of WAVES and MSTI, and
8◦ threshold of FRIDA, respectively. An interesting phe-
nomenon is that when the angle separation is larger than 15◦

the TCT and WAVES start to deviate from the CRLB. This
is because this angle separation interval is nearly equal to
the array beamwidth, which will sometimes bring large error
in the DOA pre-estimation with CBF. As shown in Fig. 3,
the WAVES is more sensitive to the pre-estimation error,
so WAVE deviates more largely from CRLB in Fig. 8. AI are
not able to separate the two sources in the considered scenar-
ios and TOPS can only separate the sources with large angle
separation.

In the last simulation, we test the wideband DOA esti-
mation performance with correlated sources. Two sources
from DOA [83.2◦, 93.7◦] are assumed and SNR = 20 dB,
N = 20. The correlation coefficient between signal is
varied from 0.1 to 1 where correlation coefficient being
1 means two signals are coherent. The results are shown
in Fig. 9. It indicates that TCT, WAVES, MSTI, AI and the
proposed method are all nearly unaffected by the correlation
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FIGURE 8. RMSE of wideband DOA estimation versus angle separation.

FIGURE 9. RMSE of wideband DOA estimation versus signal correlation
coefficient.

between signals. For TCT, WAVES, MSTI and AI, this is
beacuse of the frequency smoothing operation in them. For
the proposed method, that is because the method is not based
on the subspace type method and no assumptions are made
about the correlation between signals. The TOPS and FRIDA
are significantly affected by the correlation between signals.
In addition, the proposed still owns the best estimation per-
formance under the considered scenarios.

V. CONCLUSION
A new wideband DOA estimation method for arbitrary array
application is proposed. Since the EISCEs synthesized from
different frequencies via MST can be annihilated by the same
spatial annihilating filter, the coherent annihilating scheme
is proposed, together with the general solution method to
enable the model approximation error in MST to be reduced
to a negligible level. The MMV-STLN approach is used to
iteratively reconstruct the annihilating filter under the STLS
framework to obtain the DOAs. The new method is free
of frequency focusing, capable of handling both incoherent

and coherent signals, and has robust performance under the
low SNR, snapshot deficient, and closely spaced sources
scenarios.

APPENDIX
INITIALIZATION OF ν
According to (22), ν is related to 6j, j = 1, 2, . . . , J .
Adding (14) and (15) together, we have

6j = G+j Y
′
j − X

′
j. (35)

From (8), we know

X ′j = D(θ̃ ′)S′j (36)

where θ̃ ′ is the extended coarse pre-estimated DOA estima-
tion obtained by CBF or Capon Beamformer and θ̃ ′ consists
of {θ̃k − θbeam/4, θ̃k , θ̃k + θbeam/4}K̂k=1 where θbeam is the
array beamwidth. Here we adopt the extended coarse DOA
estimation to deal with the low resolution of the beamformer
method [11]. According to (1), the least squares solution of S′j
can be written as

S′j = A+(θ̃ ′)Y ′j. (37)

Substituting (36) and (37) into (35), we have

6j = G+j Y
′
j − D(θ̃

′)A+(θ̃ ′)Y ′j. (38)

Then according to (22) and considering (17) and (33), we can
write the initialization of ν in the matrix form as (32).
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