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ABSTRACT In this paper, the existence and stability of mild periodic solutions to the stochastic
reaction–diffusion neural networks (SRDNNs) with S-type distributed delays are studied. First, the key
issues of the Markov property of mild solutions to the SRDNNs with S-type distributed delays in Cb-space
are investigated. Next, the existence of mild periodic solutions is discussed by the dissipative theory and the
operator semigroup theory. Then, some sufficient conditions ensuring the stability of mild periodic solutions
are derived by the Lyapunov method. To overcome the difficulties created by the special features possessed
by S-type distributed delays, the truncation method is applied. Finally, a numerical example is given to
illustrate the feasibility of our results.

INDEX TERMS Existence and stability, mild periodic solutions, reaction-diffusion, stochastic neural
networks, S-type distributed delays.

I. INTRODUCTION
Stochastic neural networks (SNNs) with delays have been
extensively studied in the past few years because of their wide
applications in many fields and a great many works about
the dynamical behaviors have recently been reported [1]–[6].
As we know, the reaction-diffusion phenomena are inevitable
once electrons are moving in asymmetric electromagnetic
fields, so they usually exist in neural networks [7]–[9]. On the
other hand, the networks with S-type distributed delays typ-
ically contain the ones with discrete time delays and dis-
tributed delays [10], [11]. Hence, the SRDNNs with S-type
distributed delays are now being recognized to represent
more natural frameworks for mathematical modeling of many
real-world phenomena and it is of great theoretical and
practical importance to study the dynamical behaviors of
them [12]–[14].

It is noted that the periodicity of neural networks is sig-
nificant in the learning theory due to the fact that learning
generally requires repetitions [15], [16]. As a result, many
researchers focus on the topic of the periodic solutions to neu-
ral networks and some interesting results have been reported
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in the literature [11], [17]–[21]. In particular, Xu et al. [17]
presented some conditions ensuring the existence of periodic
solutions to the SNNs with finite delays and discussed the
global attractiveness of periodic solutions, which extended J.
K. Hale’s work in [22]. Then, based on this work, in [19],
Li and Xu generalized the existence theorem of periodic
solutions for the SNNs with finite delays to the SNNs with
infinite delays. However, to the best of our knowledge, few
have considered periodic solutions to the SRDNNs with
S-type distributed delays.

Inspired by the aforementioned discussions, this paper
addresses the existence and exponential stability of mild peri-
odic solutions to the SRDNNs with S-type distributed delays.
Highlights: (i) The key issues of the Markov property of mild
solutions ut to the SRDNNs with S-type distributed delays
in Cb-space are discussed (in general, ut is not a Markov
process in Rn). (ii) The existence of mild periodic solutions
to the networks is investigated, which extended some of the
results in [17] and [19]. (iii) The issues caused by infinite
time delays are handled by the truncation method and the
approximationmethod. (iv) Some easy-to-test algebraic crite-
ria of the existence and exponential stability of mild periodic
solutions to the SRDNNs with S-type distributed delays are
presented by virtue of the dissipative theory and the operator
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semigroup techniques. (v) The effectiveness of the proposed
results is evidenced by illustrative simulations.
Notations: L2(O)n is a Hilbert space with the norm
‖u‖ = (

∫
O|u(t, x)|

2dx)1/2, and (·, ·) denotes the inner
product. H1

0 (O) is a Hilbert space with the norm |||u||| ,
||u||H1

0 (O) = ||∇u||. C
b , Cb((−∞, 0] × O,L2(O)n) is

the Banach space of all bounded and continuous functions
from (−∞, 0] × O to L2(O)n, with the norm ‖ϕ‖C =
supθ∈(−∞,0] ‖ϕ(θ )‖. (�,F ,P) is a complete probability
space with filtration {Ft }t≥0. Cb

F0
denotes the family of

F0-measurable bounded Cb((−∞, 0] × O,Rn)-valued
stochastic variables φ with E||φ||C < ∞. ||B||F =

[tr(BBT )]1/2 is the Frobenius norm of B ∈ Rn×m, where tr is
the trace operator. L0

2(<,L
2(O)n) is the space of all Hilbert-

Schmidt operators from < , Q
1
2 (L2(O)m) into L2(O)n,

where Q is a positive definite, self-adjoint, Hilbert-Schmidt
operator with a finite trace. It is a Hilbert space with the norm
||8||F∗ ,

√
tr(8Q8∗), where 8∗ is the adjoint of 8.

II. PRELIMINARY
Consider the following SRDNNs with S-type distributed
delays:

du = [∇ · (D(x) ◦ ∇u)− A(t)u+ B(t)f (u)
+C(t)h(S(u))+ I(t)]dt + K(t)G(S(u))dW (t),

u(t, x) |x∈∂O= 0, t ≥ 0,
u(θ, x) = φ(θ, x) ∈ Cb

F0
, −∞ < θ ≤ 0, x ∈ O,

(1)

where x∈Rl , u = (u1(t, x, ω), u2(t, x, ω), · · · , un(t, x, ω))T .
ut = u(t + θ, x, ω), θ ∈ (−∞, 0], t ≥ 0, x ∈ O,
ω ∈ �. S(u) =

∫ 0
−∞

dη(θ )u(t + θ, x) is Lebesgue-Stieltjes
integrable, and ηi(θ ) (i = 1, 2, · · · , n) are non-decreasing
bounded variation functions satisfying

∫ 0
−∞

dηi(θ ) =

Ni > 0. D(x) = (Dik (x))n×l , ∇ · (D(x) ◦ ∇u) =

(
∑l

j=1

∂(D1j(x)
∂u1
∂xj

)

∂xj
,
∑l

j=1

∂(D2j(x)
∂u2
∂xj

)

∂xj
, · · · ,

∑l
j=1

∂(Dnj(x)
∂un
∂xj

)

∂xj
)T .

f (u) = (f1(u1(t, x)), f2(u2(t, x)), · · · , fn(un(t, x)))T ,
h(S(u)) = (h1(

∫ 0
−∞

dη1(θ )u1(t+θ, x)), h2(
∫ 0
−∞

dη2(θ )u2(t+
θ, x)), · · · , hn(

∫ 0
−∞

dηn(θ )un(t + θ, x)))T , G = (Gij)n×m ∈
Mn,m

2 [23], and W (t) is a Q-Wiener process [24].
A(t) = diag(a1(t), a2(t), · · · , an(t)), B(t) = (bij(t))n×n,
C(t) = (cij(t))n×n, I(t) = (I1(t), I2(t), · · · , In(t))T , and
K(t) = (kij(t))n×n are all periodic continuous functions with
period T for t ∈ R. Besides, O is an open bounded and
connected subset of Rl with a sufficiently regular boundary
∂O and φ(θ, x) = (φ1(θ, x), φ2(θ, x), · · · , φn(θ, x))T is the
initial data. The parameters of (1) have the similar physical
meanings with those in [7].

Throughout this paper, wemake the following assumptions:
Assumption 1: There exists a constant α > 0, such that

Dij(x) ≥ α/l, i = 1, 2, · · · , n, j = 1, 2, · · · , l.
Assumption 2: ci ≤ |ci(t)| ≤ ci, aij ≤ |aij(t)| ≤ aij, bij ≤
|bij(t)| ≤ bij, kij ≤ |kij(t)| ≤ kij, Ii ≤ |Ii(t)| ≤ Ii.
Assumption 3: f , h, G satisfy global Lipschitz conditions,

which means there exist positive constants ρ1 and ρ2 such

that ||f (u) − f (v)|| ∨ ||h(u) − h(v)|| ≤ ρ1||u − v|| and
||G(u)− G(v)||F∗ ≤ ρ2||u− v||, where u, v ∈ L2(O)n.
Remark 1: Assumption 2 holds directly because of the

periodicity of (1), which is different from the similar assump-
tions in [25].

Similar to the proof of Theorem 1 in [12], we can prove the
following result:
Lemma 1: If (1) satisfies Assumption 1– Assumption 3,

then there is a unique globally mild solution u(t) to (1).
Definition 1 ( [17]): A stochastic process ut with values

in Banach space Cb, defined on (�,F ,P) is called a Markov
process if, for all A ∈ B, 0 ≤ v ≤ t , P{ut ∈ A|Fv} = P{ut ∈
A|uv}, where Fv is the σ -algebra of events generated by all
events of the form {us ∈ A, s ≤ v} and B denotes the σ -
algebra of Borel sets in Cb.
Definition 2 ( [26]): A stochastic process ut is said to be

periodic with period T if, its finite dimensional distributions
are periodic with period T , i.e., for any positive integer m
and anymoments of time t1, t2, · · · , tm, the joint distributions
of the random variables ut1+kT ,ut2+kT , · · · ,utm+kT are inde-
pendent of k (k = ±1,±2, · · · ).
Definition 3 ( [17]): The mild solution ut is said to be

(i) p-uniformly bounded if, for each α ≥ 0, there exists a
constant M = M (α) > 0 such that E||φ||pC ≤ α implies

E||ut ||
p
C ≤ M , t ≥ t0; (2)

(ii) p-point dissipative if, there exists a bounded set
S ⊂ Cb

F0
such that, for any initial data φ ∈ Cb

F0
, ut with

φ satisfies that

ρ(E||ut ||p, S)→ 0, as t →∞, (3)

where ρ(ψ, S) = infϕ∈S sups∈(−∞,0] ||ψ(s) − Eϕ(s)||,
ψ ∈ Cb.
Lemma 2 (Poincaré Inequality [27]): Let O be an open

bounded domain in Rl with a smooth boundary, then

||u|| ≤ β−1|||u|||, ∀u ∈ H1
0 (O), (4)

where the constant β depends on the domain O.
Lemma 3 ( [17]): If Markov families ut with T -periodic

transition functions are uniformly bounded, point dissipa-
tive and uniformly stochastically continuous, then there is a
T -periodic Markov process.
From [28], we can easily deduce the following lemma.
Lemma 4 (GeneralizedHalanay Inequality [28]):Assume

that 9(t) ≥ 0, and

d9(t)
dt
≤ −a9(t)+ b9(t)+ c, t ≥ 0, (5)

where 9(t) = sups∈[−τ,0]9(t + s), a > b > 0 and c ≥ 0.
Then for any t ≥ 0, there exists a constant γ > 0 such that

9(t) ≤ 9(0)e−γ t +
c

a− b
. (6)
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III. THE MARKOV PROPERTY OF THE MILD SOLUTIONS
IN Cb-SPACE
Theorem 1: If, in addition to Assumption 1– Assump-

tion 3, φ is independent of W (t), t ≥ 0 and E||φ||C < ∞,
then the mild solution ut to (1) is a Markov process in
Cb-space.

Proof: The mild solutions to (1) can also be written as

ut = S(t + θ )φ(0)+
∫ t+θ

0
S(t + θ − s)[−A(s)u

+B(s)f (u)+ C(s)h(S(u))+ I (s)]ds

+

∫ t+θ

0
S(t + θ − s)K (s)G(S(u))dW (s)

= S(t)
[
S(θ )φ(0)+

∫ θ

0
S(θ − s)[−A(s)u

+B(s)f (u)+ C(s)h(S(u))+ I (s)]ds

+

∫ θ

0
S(θ − s)K (s)G(S(u))dW (s)+

∫ t+θ

θ

S(θ − s)[−A(s)u+ B(s)f (u)+ C(s)h(S(u))

+ I (s)]ds+
∫ t+θ

θ

S(θ − s)K (s)G(S(u))dW (s)]

, S(t)
[
8(θ )+

∫ l

l0
F (s,us) ds+

∫ l

l0
σ (s,us) dW (s)

]
(7)

where l0 = θ , and l = t + θ . Then, proceeding as the proof
of Lemma 3.2 in [17], we obtain that8(θ )+

∫ l
l0
F(s,us)ds+∫ l

l0
σ (s,us)dW (s) is a Markov process in Cb-space. Because

of the determinacy of S(t), we can derive that S(t)[8(θ ) +∫ l
l0
F(s,us)ds+

∫ l
l0
σ (s,us)dW (s)] is a Markov process in Cb-

space. That is, ut is a Markov process in Cb-space. �
Remark 2: The mild solution ut is usually not a Markov

process in Rn-space because of the delays. But Theorem 1
indicates that ut is a Markov process in Cb-space, and the
Markov property can be used in Cb-space.

IV. THE EXISTENCE OF THE MILD PERIODIC SOLUTIONS
Theorem 2: Let Assumption 1– Assumption 3 hold. If the

following assumption holds,
Assumption 4: αβ2+amin−

3
2−ρ

2
1 ||B||

2
F−2ρ

2
1 ||C||

2
F ||N ||

2
F

− 2ρ22 ||K ||
2
F ||N ||

2
F > 0, where amin = min{a1, a2, · · · , an},

B = (bij)n×n, C = (cij)n×n, K = (kij)n×n, and N =

diag(N1,N2, · · · ,Nn), then there is a mild periodic solution
to (1).

Proof: Let u(t) be a mild solution to (1), and define a
function V (t) = ||u(t)||2. Then,

dV (t) = 2(u,A u)dt − 2(u,A(t)u)dt + 2(u,B(t)f (u))dt

+ 2(u,C(t)h(S(u)))dt + 2(u, I(t))dt

+ tr((K(t)G(S(u)))Q(K(t)G(S(u)))∗)dt
+ 2(u,K(t)G(S(u)))dW (t). (8)

Integrating both sides of (8) from 0 to t , taking the expectation
and taking the derivative yield

dEV (t)
dt

= 2E(u,A u)− 2E(u,A(t)u)+ 2E(u,B(t)f (u))

+ 2E(u,C(t)h(S(u)))+ 2E(u, I(t))

+E
∥∥K(t)G(S(u))∥∥2F∗

, L1 + L2 + L3 + L4 + L5 + L6. (9)

By Assumption 1 and Lemma 2, we get

L1 ≤ −2αE|||u|||2 ≤ −2αβ2EV (t). (10)

In terms of Assumption 2, one can observe that

L2 ≤ −2aminE||u||2 = −2aminEV (t). (11)

Applying the Young inequality, Assumption 2 and
Assumption 3 leads to

L3 ≤ EV (t)+ 2ρ21 ||B||
2
FEV (t)+ 2||B||2F ||f (0)||

2, (12)

L5 ≤ EV (t)+ ||I||2, (13)

where I = (I1, I2, · · · , In)T . Similarly, in view of
Assumption 3, it follows that

L4 ≤ EV (t)+ 2ρ21 ||C||
2
FE||S(u)||

2
+ 2||C||2F ||h(0)||

2,

L6 ≤ 2ρ22 ||K ||
2
FE||S(u)||

2
+ 2||K ||2F ||G(0)||

2
F∗ .

Noting that ηi(θ ) (i = 1, 2, · · · , n) are non-decreasing
bounded variation functions satisfying

∫ 0
−∞

dηi(θ ) = Ni > 0,
we obtain that for any ε > 0, there exists τ ≥ t such that∫

−τ

−∞

dηi(θ ) < ε,∫ 0

−τ

dηi(θ ) ≤
∫ 0

−∞

dηi(θ ) = Ni.

Then,

E||S(u)||2 ≤ 2E||
∫ 0

−τ

dη(θ )u(t + θ )||2

+ 2E||
∫
−τ

−∞

dη(θ )u(t + θ )||2

≤ 2||N ||2FE( sup
s∈[t−τ,t]

V (s))+ 2nε2E||φ||2C .

It follows immediately that

L4 ≤ EV (t)+ 4ρ21 ||C||
2
F ||N ||

2
FE( sup

s∈[t−τ,t]
V (s))

+ 4ρ21 ||C||
2
Fnε

2E||φ||2C + 2||C||2F ||h(0)||
2, (14)

L6 ≤ 4ρ22 ||K ||
2
F ||N ||

2
FE( sup

s∈[t−τ,t]
V (s))

+ 4ρ22 ||K ||
2
Fnε

2E||φ||2C + 2||K ||2F ||G(0)||
2
F∗ . (15)

Thus, according to (9)–(15), we deduce that

dEV (t)
dt

≤ −(2αβ2 + 2amin − 3− 2ρ21 ||B||
2
F )EV (t)

+ (4ρ21 ||C||
2
F ||N ||

2
F + 4ρ22 ||K ||

2
F ||N ||

2
F )EV (t)

+ ||I||2 + 2(||B||2F ||f (0)||
2
+ ||C||2F ||h(0)||

2
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+ ||K ||2F ||G(0)||
2
F∗ )+ 4ε2nE||φ||2C (ρ

2
1 ||C||

2
F

+ ρ22 ||K ||
2
F )

, −k1EV (t)+ k2EV (t)+ k3 + k4ε2, (16)

where EV (t) = E sups∈[−τ,0] V (t + s). From Lemma 4,
we can infer that there exists a constant γ > 0 such that

EV (t) < E||φ||2Ce
−γ t
+
k3 + k4ε2

k1 − k2
, t > 0.

That is, E||ut ||2C ≤ E||φ||
2
C +

k3+k4ε2
k1−k2

. Let ε→ 0, then

E||ut ||2C ≤ E||φ||
2
C +

k3
k1 − k2

. (17)

Therefore, the mild solution ut to (1) is uniformly bounded
in the mean-square sense. Proceeding as the proof of
Theorem 3 in [29], we can derive that ut is uniformly stochas-
tically continuous.

Next, we will prove that the mild solution ut to (1) is point
dissipative.
Since ut is uniformly bounded, there is σ > 0 such that
lim
t→∞

EV (t) = σ . In other words, for each ε > 0, there exists

t∗1 > 0 such that for every t > t∗1 , EV (t) ≤ σ + ε. We assert

(−k1 + k2)σ + k3 ≥ 0. (18)

In fact, if this is not true, that is

(−k1 + k2)σ + k3 < 0, (19)

then there is a sufficiently small constant 0 < ε < σ such
that −k1(σ − ε) + k2(σ + ε) + k3 < 0. Now, we argue that
there exists t2 ≥ t∗1 such that for any t ≥ t2,

dEV (t)
dt

≤ 0. (20)

Suppose (20) is not true, then there exists t∗2 ≥ t
∗

1 satisfying

dEV (t∗2 )

dt
> 0, (21)

EV (t∗2 ) ≥ σ − ε. (22)

Using (16), we obtain

dEV (t∗2 )

dt
≤ −k1EV (t∗2 )+ k2EV (t

∗

2 )+ k3

≤ −k1(σ − ε)+ k2(σ + ε)+ k3 < 0, (23)

which is in contradiction with (21). Hence (20) follows. With
the monotone convergence theorem, one can deduce that

lim
t→∞

EV (t) = σ. (24)

Furthermore, for any givenE||φ||2C ≤ (k1−k2)−1k3, we claim
that EV (t) ≤ (k1 − k2)−1k3, where t ≥ 0. Otherwise, there
exists t1 > 0 for which

dEV (t1)
dt

> 0, (25)

EV (t1) = (k1 − k2)−1k3, (26)

EV (t) ≤ (k1 − k2)−1k3, t ∈ [0, t1). (27)

Together with (16), we have

dEV (t1)
dt

≤ −k1EV (t1)+ k2EV (t1)+ k3 ≤ 0, (28)

which contradicts (25). Therefore, for all t ≥ 0,

EV (t) ≤ (k1 − k2)−1k3. (29)

Noting that k1 − k2 > 0, (19) together with (29) leads to

EV (t) ≤ (k1 − k2)−1k3 < σ, (30)

which is a contradiction. Hence, (18) holds, i.e., the mild
solutions to (1) is point dissipative.

Since the coefficients of (1) are T -periodic in t , the transi-
tion functions of (1) are T -periodic. It follows from Lemma 3
and Theorem 1 that (1) has a mild periodic solution. �
If

ηi(θ ) =

{
−1, θ ≤ −r,
0, −r < θ ≤ 0, i = 1, 2, · · · , n,

then (1) becomes the following neural networks with discrete
time delays:

du = [∇ · (D(x) ◦ ∇u)− A(t)u+ B(t)f (u)
+C(t)h(u(t − r, x))+ I(t)]dt
+K(t)G(u(t − r, x))dW (t),

u(t, x) |x∈∂O= 0, t ≥ 0,
u(θ, x) = φ(θ, x) ∈ Cb

F0
, −r ≤ θ ≤ 0, x ∈ O,

(31)

so we have the following result.
Theorem 3: Suppose that Assumption 1– Assumption 3

hold, then there is a mild periodic solution to (31), if αβ2 +
amin −

3
2 − ρ

2
1 ||B||

2
F − 2nρ21 ||C||

2
F − 2nρ22 ||K ||

2
F > 0.

Remark 3: Let D(x) = 0, Theorem 3 becomes the exis-
tence of periodic solutions to the SNNs with delays, which
has been discussed in [17]. Also, [19] is a special case of
Theorem 2 in this paper. Compared with those conditions,
our results are much easier to check since they are algebraic
criteria.

V. THE EXPONENTIAL STABILITY OF THE MILD PERIODIC
SOLUTIONS
Theorem 4: Let Assumption 1– Assumption 3 hold, and

u∗(t, x) be a mild periodic solution to (1) with initial
data φ∗(t, x). Suppose further that
Assumption 5: 2αβ2 + 2amin − 2 − ρ21 ||B||

2
F −

2ρ21 ||C||
2
F ||N ||

2
F − 2ρ22 ||K ||

2
F ||N ||

2
F > 0,

then the mild periodic solution is exponentially stable in the
mean-square sense.

Proof: Denoting z(t, x) = u(t, x) − u∗(t, x) and
Z (t) = ||z(t, x)||2, we obtain

dEZ (t)
dt

= 2E(z,A z)− 2E(z,A(t)z)

+ 2E(z,B(t)(f (u)− f (u∗)))

+ 2E(z,C(t)(h(S(u))− h(S(u∗))))
+E

∥∥K(t)(G(S(u))− G(S(u∗)))∥∥2F∗
, L7 + L8 + L9 + L10 + L11. (32)

110908 VOLUME 7, 2019
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Like the proof in Theorem 2, we deduce that

L7 ≤ −2αβ2EZ (t), (33)

L8 ≤ −2aminEZ (t), (34)

L9 ≤ EZ (t)+ ρ21 ||B||
2
FEZ (t), (35)

L10 ≤ EZ (t)+ 2ρ21 ||N ||
2
F ||C||

2
FEZ (t)

+ 2nρ21 ||C||
2
Fε

2E||φ − φ∗||2C , (36)

L11 ≤ 2ρ22 ||N ||
2
F ||K ||

2
FEZ (t)

+ 2nρ22 ||K ||
2
Fε

2E||φ − φ∗||2C . (37)

Then, combining (32)–(37), it follows that

dEZ (t)
dt

≤ −(2αβ2 + 2amin − 2− ρ21 ||B||
2
F )EZ (t)

+ 2(ρ21 ||C||
2
F + ρ

2
2 ||K ||

2
F )||N ||

2
FEZ (t)

+ 2ε2n(ρ21 ||C||
2
F + ρ

2
2 ||K ||

2
F )E||φ − φ

∗
||
2
C

, −k5EZ (t)+ k6EZ (t)+ k7ε2, (38)

From Assumption 5, k5 > k6 > 0, k7 > 0. In view of
Lemma 4, one can derive that there is a constant γ ∗, such
that

E||u(t)− u∗(t)||2 ≤ E||φ − φ∗||2Ce
−γ ∗t
+

k7ε2

k5 − k6
. (39)

Let ε→ 0,

E||u(t)− u∗(t)||2 ≤ E||φ − φ∗||2Ce
−γ ∗t . (40)

Therefore, u∗(t) is exponentially stable, which completes the
proof. �
Like Theorem 3, we can also obtain the exponential stabil-

ity in the mean-square sense of mild periodic solutions to (31)
as follows:
Theorem 5: Suppose Assumption 1– Assumption 3 hold

and u∗(t, x) is a mild periodic solution to (31) with initial
dataφ∗(t, x), then u∗(t, x) is exponentially stable in themean-
square sense, if 2αβ2+2amin−2−ρ21 ||B||

2
F −2nρ21 ||C||

2
F −

2nρ22 ||K ||
2
F > 0.

Due to the fact that an equilibrium can be regarded as a
periodic solution with an arbitrary period, we now consider
the following SRDNNs with S-type distributed delays:

du = [∇ · (D(x) ◦ ∇u)− Au+ Bf (u)
+Ch(S(u))+ I]dt + G(S(u))dW (t),

u(t, x) |x∈∂O= 0, t ≥ 0,
u(θ, x) = φ(θ, x) ∈ Cb

F0
, −∞ < θ ≤ 0, x ∈ O,

(41)

where A = diag(a1, a2, · · · , an), B = (bij)n×n, C = (cij)n×n,
and I = (I1, I2, · · · , In)T are constant matrices. The mean-
ings of other symbols are similar with their counterparts
in (1). According to Theorem 4, it is easy to get the following
corollary.
Corollary 1: Suppose that Assumption 1 and

Assumption 3 hold, then the equilibrium of (41) is exponen-
tially stable in the mean-square sense if 2αβ2 + 2Amin −

2 − ρ21 ||B||
2
F − 2ρ21 ||C||

2
F ||N ||

2
F − 2ρ22 ||N ||

2
F > 0, where

Amin = min{a1, a2, · · · , an}.

FIGURE 1. The state trajectory and simulation of (42).

FIGURE 2. The phase graph of 30-periodic solutions to (42) on [0,200].

Remark 4: The stability of equilibrium of (41) has already
been studied in [12], and Corollary 1 contains some of the
results.

VI. A NUMERICAL SIMULATION
Consider the following neural networks:

du1 = [104u1 − (6.5+ sin(π t15 ))u1 + 0.5 sin(π t15 )
tanh u1 + 0.5 sin(π t15 ) tanh u2 + sin(π t15 )

+0.5 sin(π t15 ) tanh(
∫ 0
−∞

dη(θ )u1(t + θ, x))

+0.5 cos(π t15 ) tanh(
∫ 0
−∞

dη(θ )u2(t + θ, x))]dt

+ cos(π t15 ) tanh(
∫ 0
−∞

dη(θ )u1(t + θ, x))dW ,
du2 = [104u2 − (6.5+ sin(π t15 ))u2 + 0.5 sin(π t15 )

tanh u1 + 0.5 sin(π t15 ) tanh u2 + cos(π t15 )

+0.5 sin(π t15 ) tanh(
∫ 0
−∞

dη(θ )u1(t + θ, x))

+0.5 sin(π t15 ) tanh(
∫ 0
−∞

dη(θ )u2(t + θ, x))]dt

+ cos(π t15 ) tanh(
∫ 0
−∞

dη(θ )u2(t + θ, x))dW ,
ui |x∈∂O= 0, t ≥ 0, i = 1, 2,
(u1, u2) = (cos(θπ )sin(0.2πx), sin(0.2πx))T ,
−∞ < θ ≤ 0, x ∈ O,

(42)

where O = (0, 20), η(θ ) = 0.5eθ , and W is a standard
Brownian motion. It is easy to verify that α = 10, β ≥ 0.05,
amin = 5.5, ρ1 = ρ2 = 1, ||B||2F = ||C||

2
F = 1, ||K ||2F = 2,

and ||N ||2F = 0.5. So Assumption 1–Assumption 5 are satis-
fied. From Theorem 2 and Theorem 4, (42) has a 30-periodic
solution which is exponentially stable. In fact, FIGURE 1
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demonstrates the state trajectory and simulation of (42) which
implies the existence and stability of mild periodic solutions.
In order to give a clear description, the phase graph is depicted
in FIGURE 2.

VII. CONCLUSION
In this paper, we discussed the existence and exponential
stability of mild periodic solutions to the SRDNNs with
S-type distributed delays. As a result, some easy-to-test cri-
teria of the existence and stability of mild periodic solutions
are presented, which generalized some of the works in the
literature. However, when the reaction-diffusion terms are
nonautonomous, the semigroup theory used in this paper is
invalid. Note that the recent work by Wei et al. [14] con-
sidered the existence-uniqueness and stability of mild solu-
tions to the nonautonomous SRDNNs with delays, which is
based on the evolution system theory. Hence, a new problem
arises: is it possible to investigate mild periodic solutions to
the nonautonomous SRDNNs with delays by virtue of the
evolution system theory. Further research will be done on this
topic.
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