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ABSTRACT Ultra-dense multi-tier cellular networks have recently drawn the attention of researchers due
to their potential efficiency in dealing with high-data rate demands in upcoming 5G cellular networks. These
networks consist of multi-tier base stations including micro base stations with very high-system capacity and
short inter-site distances, overlooked by central macro base stations. In this way, network densification is
achieved in the same area as that of traditional mobile networks, which offers much higher system capacity
and bandwidth reuse. This paper utilizes a well-known analytical tool, stochastic geometry for modeling and
analyzing interference in ultra-dense multi-tier cellular networks. Primarily, we have studied different factors
affecting the system capacity including the network densification, cell load, and multi-tier interference. The
role of the ergodic channel capacity is also discussed. Moreover, the effects of channel interference, system
bandwidth, and the network densification on the spectral and energy efficiencies of the network are observed.
Finally, the results show that the network densification and the cell load have a profound impact on system
performance as well as spectral and energy efficiencies of the networks.

INDEX TERMS System capacity, ultra-dense multi-tier networks (UDMN), spectral efficiency, energy
efficiency, stochastic geometry, 5G.

I. INTRODUCTION
The trend towards a digitizing world is gaining popularity
in recent times as billions of new devices and users are
being connected to the global Internet. In order to provide
seamless connectivity to this massive number of new users
and devices, cellular networks can be an appropriate solu-
tion. Advantages of cellular networks like mobility, roam-
ing support, ubiquitous coverage, and reliable data delivery
distinguish them from other wireless networks [1]. In the
last decade, the cellular industry has emerged as one of
the leading industries in providing seamless connectivity to
various sectors of the society. The telecommunication sector
has a mature ecosystem and it is governed by the 3rd Gen-
eration Partnership Project (3GPP), which ensures industry-
academia partnership for future developments. The 3GPP has
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issued various releases based upon exponentially increasing
demands of high data rate, low latency, and better quality-of-
service (QoS). In its recent Release 14 and beyond for long
term evolution (LTE) and LTE advanced (LTE-A), the 3GPP
has also ensured low power communication for machine-
type devices which enables it as ‘‘one solution fits all’’ [2].
Furthermore, to provide high data rate connectivity to the
massive number of cellular users, 3GPP has announced fifth
generation (5G) cellular network which will be commer-
cially deployed as early as by 2020 [3]. One of the key
enabling technologies for 5G is ultra-dense multi-tier net-
works (UDMN). In UDMN, multiple micro-cells (mCs) are
deployed within a coverage area of a macro-cell (MC) to
provide high data rate connectivity. This multi-tier network
approach can provide access to a massive number of users
as well as deliver significant capacity gains [4]. Generally,
an MC operates in low-frequency bands (legacy LTE fre-
quency bands of 1800 MHZ & 2100 MHz) and mCs are
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assigned high-frequency bands (above 6GHz). A cellular user
always keeps track of both the mC and MC for high data rate
connectivity and to ensure high-speed mobility, respectively.
UDMN is one of the most efficient ways of providing high
data rate connectivity to the exponentially increasing number
of devices which are expected to reach 50 billion by 2020 [5].

The channel capacity, being one of the key performance
indicators (KPIs) of a wireless communication system, has
been analyzed previously in many different scenarios [6]–[9].
Sharif and Hassibi [6] presented the transmission capacity
for multiple-antenna broadcast channels in which the authors
proposed a novel scheme that constructs multiple random
beams and those beams transmit information to the users with
the highest signal-to-interference-plus-noise-ratio (SINR).
The authors assumed that channel state information (CSI) is
available at the transmitter with very little feedback. With the
emergence of relay-assisted networks, the traditional concept
of transmission capacity has been changed. In a relay net-
work, the overall end-to-end transmission capacity is equal to
the transmission capacity of the link which has the minimum
link capacity among all the links. The authors in [7] derived
analytical expressions of the ergodic capacity and maximum
achievable throughput of a decode-and-forward (DF) relay-
ing network. Moreover, the authors have used the energy
harvesting technique for powering up the relay node which
can significantly increase the energy efficiency of the net-
work. The upcoming 5G cellular networks should support
ultra-reliability, massive connectivity, and very high system
capacity in order to provide connectivity to the diverse nature
of future applications. The authors in [9] presented a joint
scheduling scheme for ultra-reliable and low-latency com-
munication (URLLC) to achieve high data rate connectivity.
Theoretical QoS guarantees and upper bound on delay prob-
ability for URLLC traffic is also presented.

On the other hand, realistic network modeling is very
essential to calculate the effective network capacity. For
network modeling, researchers are more inclined towards
stochastic geometry approach as compared to other network
models such as grid-based models. In stochastic geometry,
cell deployment is modeled using poison point process (PPP).
Cell deployment modeling in any network is of utmost
importance as it defines various network properties including
user association, mobility, traffic patterns, and most impor-
tantly the network capacity. Stochastic geometry provides
more realistic network models and their properties such as
coverage/outage probability, SINR etc [10]. The authors in
[8] presented transmission capacity analysis for device-to-
device (D2D) communication. Various D2D communication
modes (underlay/overlay) has been studied with and without
relay assistance. The authors have used stochastic geometry
tool to identify the success and outage probability as well.
They have proved that D2D transmission capacity can be
enhanced using relay transmission. There are various other
studies as well [11], [12] which explain this KPI for vari-
ous wireless networks such as Ad-hoc networks and cloud-
empowered heterogeneous networks, respectively. However,

TABLE 1. Mathematical notations.

to the best of authors’ knowledge, there does not exist any
work related to the capacity and outage probability analysis
for UDMN in 5G cellular networks.

In this work, we utilize a well known analytical tool,
stochastic geometry for modeling and analyzing interference
in UDMN. Primarily, we have studied different factors affect-
ing the system capacity including network densification, cell
load, and multi-tier interference. The role of the ergodic
channel capacity is also discussed. Furthermore, the effects of
channel interference, system bandwidth, and network densi-
fication on the spectral and energy efficiencies are observed.
Finally, the results show that the network densification and
the cell load have a profound impact on system performance
as well as spectral and energy efficiencies.

The rest of the paper is organized as follows. Section II
introduces the system model and highlights various features
which we have considered in this paper. Section III provides
the channel capacity and its underlying factors with inter-
ference modeling. More specifically the stochastic geome-
try has been used in this section for interference modeling.
Section IV provides the ergodic channel capacity as well
as the spectral and energy efficiencies. Section V provides
the numerical results followed by some discussions. Finally,
Section VI concludes the paper. For the readers’ facilitation,
TABLE 1 shows all the mathematical notations used in this
paper for convenient referencing.

II. SYSTEM MODEL
In this work, we consider a UDMN consisting a MC of
radius D with multiple mCs each with a radius R as shown
in FIGURE 1. MC is operating on lower frequency channels
with higher bandwidth to provide low rate connectivity to
a large number of cellular users within a large coverage
area, whereas mCs are operating on higher frequency bands
with smaller bandwidth as compared to MC in the small
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FIGURE 1. The system model: a possible architecture for ultra-dense
multi-tier cellular network. The dotted red arrow represent the
interference caused by MC, while the solid red arrows represent the
interference caused by mCs. The black arrow represent the desired signal.
The MC has a large coverage area of radius D, while the mCs have a
radius R.

coverage area. Cellular users connected to mCs can achieve
higher data rate. We assume that no mCs have overlap-
ping regions, which means that in order to perform han-
dovers (HO), a mobile user needs to connect to the MC.
The users are spread across the coverage area in a random
fashion and they can experience interference from both the
MC and mCs. The transmission channel is considered to be
a Rayleigh fading channel. Moreover, we assume that CSI at
the transmitter (CSIT) is not available, thus; the transmitter
schedules the source data at a constant rate.

III. CHANNEL CAPACITY AND UNDERLYING FACTORS
According to Shannon channel capacity, maximum achiev-
able capacity of a channel in traditional cellular networkwhen
connected to a cell i is,

C i
channel = d(

B
ζi
) log2(1+

Pt
No + Iu

) (1)

where Pt is the transmission power of the transmitter, Iu is the
average power of the interfering base stations (BS), No is the
thermal noise power, B is the available channel bandwidth, ζi
is the cell load of a cell i, and d is the network densification
factor. In order to achieve higher channel capacity and accom-
modate exponentially increasing number of users, there is a
need to either look for alternate frequency spectrums or to
employ the network densification by deploying the mas-
sive numbers of smaller BS. Although, the network densi-
fication can bring in many benefits including the massive
number of users accommodation with the higher achievable
data rate, with the massive deployment of smaller BS in a
network, interference among users as well as between BS

would increase drastically and would deteriorate the channel
capacity. Hence, the SINR associated with each user must be
calculated beforehand, which can be written as Pt

No+Iu
.

A. NETWORK DENSIFICATION
System capacity must be enhanced for efficient management
of exponentially growing data traffic in 5G cellular networks.
The term network densification covers all the aspects which
are aimed at enhancing the system capacity for 5G [13].
Multi-dimensional solutions can be incorporated in the 5G
cellular networks to commensurate the system capacity with
the demand. These solutions include techniques related to
physical layer enhancement, which can increase the network
capacity by 3 to 5 times, such as coordinated multipoint
transmission (CoMP) [14], Massive MIMO [14], etc. Incor-
porating new spectrum to enhance the bandwidth such as
mm-Wave transmission [15], can lead to 10× better net-
work capacity. But most importantly, spatial densification
i.e. increasing the number of small cells in the same area
alone can account for a minimum of 40× increase in the
capacity gain of the system [16], especially in the traffic
congested areas. It also poses several challenges including,
increase in system energy consumption and a higher num-
ber of HO events. Therefore, densification must be accom-
panied by an efficient network management strategy such
as self-organizing networks (SON), which can dynamically
increase or decrease the number of active cells according to
the traffic congestion [17]. As evident from (1), densification
serves the purpose of enhancing system capacity well by
lowering the cell load (ζ ), while enhancing the transmission
power (Pt ).

1) CELL LOAD
As alreadymentioned, network densification leads to a reduc-
tion in the cell load factor i.e. the number of active users
associated with the BS, which in turn increases the overall
network capacity. Therefore, an efficient network manage-
ment scheme must take into account the reduction of the cell
load, while also meeting the challenges associated with the
densification such as HO and blocking probabilities. One of
the efficient network management strategies is to introduce
smart mCs (cloud-cells), which may turn on or off according
to the user traffic. The MC decides the activation of these
cloud-cells depending upon certain predefined parameters
such as number of active users, user throughput and delay
demands, user priority, and system performance level. The
MC can also offload existing active cloud-cells with newly
activated mCs in the given coverage area [18]. A possible
mCs deployment in a cellular network using PPP is shown in
FIGURE 2(a). The service area or the footprint of each mC is
geometrically represented by using Voronoi-tessellation [19].
Generally, in order to reduce the cell load, the multi-tier
deployment of cells is more efficient. FIGURE 2(b) shows
a multi-tier cell deployment in a cellular network where both
the tiers are mutually independent and the BS location also
follows the independent PPP model. In this way, not only the
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FIGURE 2. (a) The blue diamond represents the desired mC and the red
diamonds represents interfering mCs. Blue dotted lines represents the
mCs’ footprints. Green dotted line shows the area where no horizontal
handoff occurs and red dotted circles shows the area of maximum
interference. (b) The mCs and MCs are deployed on the same location
using independent PPP. Red diamonds and blue circles represents the BS
of the mCs and MCs, respectively. (a) The mCs deployment in a cellular
network using PPP. (b) The ultra-dense multi-tier cellular network
deployment using PPP.

network load is balanced which ultimately leads to higher
system capacity, but also lesser power is consumed alongwith
lowerHOprobability due to dynamic (rather than static) oper-
ation of cloud-cells. This is specifically true for places where
the probability of user traffic is diverse and time-dependent,

such as shopping malls and offices. Moreover, an interesting
factor regarding the effect of network densification on the
transmission capacity is that it is not always a monotonic
function. It is due to the fact that with an increase in the
number of mCs in a coverage area of an MC (increase in
mCs’ density), the transmission capacity does not always
increase as shown in the FIGURE 3. The transmission capac-
ity increases in the beginning as mCs density increases
because more mCs can bring capacity enhancement to the
entire system. Whereas, if the mCs density increases contin-
uously, the interference caused by the neighboring mCs will
becomemore critical. This interference will ultimately lead to
a reduction in the users’ transmission capacity on the whole.

FIGURE 3. User transmission capacity versus the micro cells (mCs)
density.

The cell load can also be reduced using adaptive user
association, in which the mCs with higher load factor can be
offloaded by shifting some of their active users (or incoming
users) to adjacent mCs, which although provide compara-
tively lower SINR than the serving mC, but are comparatively
lightly loaded and can, therefore, boost up the users and net-
work capacities as unused resources are put to use [20].Maxi-
mum capacity a user can actually achieve is the instantaneous
rate multiplied by the allowed fraction of resources (PRB).
We as cellular users must have experienced in our daily life
a considerable drop in rate (throughput) at peak hours or in
crowded public places regardless of the signal quality (SINR).
This is because of the high number of users associated with
that cell (generally known as the cell load). A saturated cell
(fully or 80-90% loaded) can provide less throughput to a
user as compared to a less or partially loaded cell. In order to
define the cell load, first, we need to calculate the minimum
amount of resources assigned to a user,

ζ iu =
1
Br

R̂u
f (γ iu)

(2)

where Br represents the bandwidth associated to one phys-
ical resource block (PRB), R̂u is the desired rate of a user
u and γ iu is the SINR of user u when connected to the
cell i. f (γ iu) defines the spectral efficiency for a given SINR,
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thus f (γ iu) = log2(1+γ
i
u)

1. Now taking into account resource
allocated to a user to find the total cell load [21].

ζi =
1
Bi
(
1
Br

∑
Ui

R̂u
log2(1+ γ iu)

) (3)

where Bi is total bandwidth allocated to cell i and Ui rep-
resents a set of all users (active) connected with the cell i.
Previously, achievable capacity in a cell is considered to be
only as a function of distance or location. As the effect of the
cell load on the throughout is clear now, ζi will define actual
achievable capacity by a cell i on a specific location z as a
function of location as well as the cell load [22].

Ci(z, ζ ) = min{Bi. log2(1+ γi(z, ζ )), cmax} (4)

where cmax is the maximum channel capacity achievable
when CSI is available at the transmitting end. The SINR
experienced at location z by a user u connected to the cell i is,

γi(z, ζ ) =
Pi(z)∑

j 6=i(ζj.Pj(z)+ No)
(5)

where ζj defines the neighboring cell load. It is worth noting
that SINR in one cell also depends on the resources consumed
in neighboring cells.

B. INTERFERENCE MODELLING
The cumulated interference experienced by a user at any point
zεRd in the network is

I (z) =
∑
yετ

Pyhyl(‖ z− y ‖) (6)

where Iy = Ty.f (d).h, d is pathloss, and τεRd represents set
of all transmitting nodes. hy and l(‖ z − y ‖) are random
processes representing fast fading coefficients and pathloss
function, respectively. It is assumed that the pathloss function
l depends on difference of distances only. Generally, l is
modeled as exponential (l ‖ z − y ‖= coe−γ ‖z−y‖) or power
law distributed (l ‖ z − y ‖= co ‖ z − y ‖−a) [23].
Fast fading in this case is the consequence of shadowing.
We can write transmission success probability, also known
as coverage probability, as,

Pc(γreq) = P(γu > γreq) = P(γu > γreq(No + Iu))

Pc(γreq) = P(γreqNo).P(γreqIu) (7)

where γreq is any desired threshold and is a function of noise
and interference powers. It is shown from (7) that coverage
probability is the product of two independent factors, noise
and interference. This allows us to find the probability dis-
tributions of noise and interference independently in order
to find the coverage probability. Considering the fact that
the spectrum sharing systems are not noise-limited but only
interference-limited, one could ignore the effect of thermal
noise. Therefore, coverage probability is only a factor of

1Only possible when various gains such as channel coding, pre-coding,
scheduling and MIMO scheme gains are considered. Moreover, f (γ iu) =
X log2(1+ Yγ

i
u), owing to simplicity we consider X = Y = 1

interference. Now in order to find the probability distribution
of interference, first we need to find the user distribution in
the cell. The spread of users in a cell can be modeled using
PPP as it ensures independence among users’ existence. Now
we present Lemma 1 which gives us the probability of k th

user present outside the coverage area of a cell.
Lemma 1: Probability that k th user is outside the coverage

region of a cell (circular) having area A = πR2 where R
is radius of the circle can be calculated using PPP with the
following simplified result,

PRk (R) = R2k−1(λπ )k
2
0(k)

e(λπR
2)

Proof: Proof is shown in Appendix A.
Lemma 1 also provides the total number of users present

in a coverage area of a cell. Now in order to find the intensity
measure, intensity of users present in a specific region A can
be calculated using Lemma 2.
Lemma 2: (Intensity Measure). Intensity measure of users

present in a coverage region having area A can be represented
as the expectation of the countingmeasure of the users present
in that area,

3(A) = E[φ(A)]

Proof: Proof is shown in Appendix B.
As calculations in two or higher dimensions grow

complex, the solution is to map the model (circle) into
one dimension (real line with varying density). More
specifically, let f be a function for mapping R2 →

R and φ = {X1,X2,X3, . . . ,Xk−1} then φ∗ =

{f (x1), f (x2), f (x3), . . . , f (xk−1)}, where φ∗ is a poison pro-
cess with 3∗(A) = 3(f −1(A)). In our case of distances,
φ is a stationary PPP with intensity λ and f (x) = ||x||. For
A = [0, r], f −1(A) = (0,R), the cell of radius R at origin
has a mean measure given as 3∗(A) = 3(a(0,R)) = λπR2.
Since the dimensions are reduced, the intensitywould change,
which is measured by taking derivative of3∗(A) w.r.tRwhich
gives us λ∗(R) = 2λπR. Where R ≥ 0. It is evident that
the distance of the points of a PPP, that is homogeneous on
the plane form a non-homogeneous PPP on R∗ with linearly
increasing density. However, when the squared distances are
taken as φ∗ = {||x1||2, ||x2||2, ||x3||2 . . . , ||xk−1||2}, they
again form homogeneous PPP with intensity λ∗ = λπ .

Furthermore, the interference experienced by a user at the
center of the cell, provided that all nodes transmit at unit
power and pathloss (l = R−a) can be written as Iou =∑

xεφ 1hx ||x||
−a. The transmitting nodes form a stationary

PPP φ of intensity λ in R2. Due to this stationarity, inter-
ference is considered same everywhere (across the cell) and
therefore, can be written as Iu =

∑
Rεφ∗ hRR

−a. Where
φ∗ in this case is {||x1||, ||x2||, ||x3|| . . . , ||xk−1||}εR+ the
PPP of the distances. Therefore, mean of interference Iu
is given as E[Iu] = E[

∑
Rεφ∗ hRR

−a]. Moreover, since
the pathloss and shadowing are considered two indepen-
dent random variables so, they can be dealt separately
E[Iu] = E[

∑
Rεφ∗ hR].E[

∑
Rεφ∗ R

−a]. Since E[h] = 1,
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then E[Iu] = E[
∑

Rεφ∗ R
−a]. Now assuming f to be a non-

negative function, the Campbell’s theorem for general PPP
states that,

E[Iu] =
∫
R+
R−aλ2πR.dR =

λ2π
2− a

.R2−a|α0 (8)

However, (8) does not provide convergence for all values
of α!, therefore E[Iu] = α for all stationary PPP. In terms
of α, the following two cases arise:
α ≤ 2: In this case, the upper bound of the integration causes
a problem, because there will be too much interference from
all the far nodes.
α ≥ 2: In this case, the lower bound causes a problem, since
the nodes near the origin make E[Iu] diverge because R−a

grows very fast as R is reduced if α > 2. This problem can
be solved by introducing bounded pathloss model for α > 2,
then E[Iu] remains finite, provided that no node moves to the
origin, which implies that lower bound be change to ρ > 0
and therefore, E[Iu] = λ2π

α−2ρ
2−α
|
α
ρ>0.

Since, averages alone can be misleading we also find the
probability distribution of the interference is required. Fur-
thermore, the ultimate goal in network provider perspective
is to achieve more capacity and less interference. In order
to achieve higher capacity, network densification is required
whereas, sparse networks should be used for less interference.
This leads to a tradeoff in which such a network should be
designed which can effectively serve both the requirements.
To address this issue, we need to take our analysis beyond
the mean and to find the distribution of the interference.
To make our analysis simpler, we take leverage from Laplace
transform; thus, it turns out to be

LIu (s) = exp(−λπ E(hδ)0(1− δ)sδ) (9)

Here, the interference is mapped using a stable exponential
distribution where λπ E(hδ)0(1 − δ) is the dispersion factor
and δ is defined as characteristic exponent with 0 < δ <

1 bounds. If upper-bound of δ increases from 1 or in other
words, value of α is taken less than 2, then we have LIu (s) < 0
for all s > 0 and Iu approaches to infinity (Iu → ∞). So,
in order to have finite interference we must set lower limit of
α > 2. Closed-form expression for probability distribution of
the interference can be written as follows,

LIu (s) = exp(−λ
√
s
π2

2
)

fIu (x) =
π

2
λe
−π3λ2

4x x
−3
2 (10)

Iu is the product of two random variables having different
probability distributions, shadowing (poison distribution) and
fast fading (Rayleigh distribution), so the corresponding dis-
tribution is Lèvy distribution 2.

2It is from the family of stable distribution and also considered as a special
case of the inverse gamma distribution.

IV. ERGODIC CHANNEL CAPACITY
According to the channel capacity given in (1), the cell load
given in (3), and the distribution of interference given in (10),
we can have

C i
channel = d(

B
ζi
) log2(1+

Pt
π
2 λe

−π3λ2
4x x

−3
2

) (11)

Since, CSIT is not available, the transmitted data will be
deteriorated because of the channel fading and the effective
channel capacity will be significantly reduced. In this case,
ergodic capacity will be a good measure as it is the expected
value of the instantaneous channel capacity. The ergodic
capacity of a fading channel associated with a cell i (C i

ecc)
for an average transmit power P̄t with no CSIT is given by,

C i
ecc = E[d(

Bi
ζi
) log2(1+ γu)]

=

∫
∞

0
d(
Bi
ζi
) log2(1+ γu)p(γu)dγ (12)

According to Jensons’ inequality [24] 3, the condition on the
ergodic channel capacity (C i

ecc) is,

C i
ecc ≤ d(

Bi
ζi
) log2(1+

P̄t
N + λ2π

α−2ρ
2−α

) (13)

We can conclude from here that the ergodic channel capacity
will increase linearly by densification of the network (increas-
ing d) or by allocating more bandwidth to the cell. Whereas,
increase in the cell load (more number of active users) can
reduce the ergodic channel capacity associated to a user. One
could further compute the spectral efficiency and the energy
efficiency according to the following subsections.

A. SPECTRAL EFFICIENCY
The link spectral efficiency is a measure of how well the
bandwidth resources are exploited in a communication sys-
tem. As mentioned previously, the spectral efficiency is mea-
sured in bits/s/Hz, which distributes the total achievable
throughput over the available bandwidth and breaks down
these parameters to lowest resolution i.e. what maximum
throughput (bits/s) is supported by each hertz of the available
bandwidth. The spectral efficiency has a direct relationship
with the SINR as shown below,

ηs = (
d
ζi
) log2(1+

γu

B
)

= (
d
ζi
) log2(1+

Pt
π
2 λe

−π3λ2
4x x

−3
2 B

) (14)

In fact, delving further into the case reveals that increas-
ing SINR also allows the system to use higher modulation
schemes (such as 16-QAM, 64-QAM), which reciprocates to
increase in the spectral efficiency by allowing to send more
number of bits per time using the same bandwidth resource.

3In general, convex transformation of a mean is always less than or equal
to themean of a convex transformationE[B log2(1+γu)] ≤ B log2(1+E[γu])
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On the other hand, when the bandwidth is increased, that
efficiency tends to decrease naturally, which is why it has an
inverse relation with the spectral efficiency. Another way to
increase the spectral efficiency would be to increase the net-
work densification, resulting in the reuse of same bandwidth
manyfold.

B. ENERGY EFFICIENCY
The energy efficiency measures the cost of each transmission
bit sent over the link, in terms of consumed energy in joules
usually defined as bits/joule. On the network level, it can be
measured as the total amount of throughput divided by the
network power consumption. In wireless communication and
especially in upcoming 5G networks, the energy efficiency
is an important metric due to energy-constraint nature of
the devices, such as wireless sensor nodes and machine-type
communication devices. Apart from this, the researchers are
also working on reducing power consumption and provid-
ing greener 5G solutions at network level due to a global
increase in CO2 footprint by employing smarter networks
such as SON, as discussed previously. 80% of the total energy
consumption in cellular communication networks is hogged
by BS operations [25]. This can also be concluded by looking
at the energy efficiency relation as shown below,

ηE =
area spectral efficiency

average network power consumption

where area spectral efficiency is ηsB and the average network
power consumption includes the BS transmit power (PT ) and
the power consumed in other functions of the BS (PBS ).

ηE =
ηsB

PT
ρ
+ PBS

(15)

by putting the value of spectral efficiency (ηs) from (14),
the energy efficiency at the network level would be,

ηE =

( d
ζi
)B log2(1+

Pt
π
2 λe

−π3λ2
4x x

−3
2 B

)

PT
ρ
+ PBS

(16)

The energy efficiency has an outright inverse relation with
the BS transmit power and power consumed in other BS
functions.While the discussion is focused onUDMN, the role
of the network densification on the energy efficiency should
also be questioned. It has been established that the network
densification leads to better spectral efficiency, which implies
higher achievable bit rate for the given bandwidth and energy
and therefore the causality between the energy efficiency and
the spectral efficiency. In fact, this can also be corroborated
by the fact that increased SINR in a link indicates better
channel conditions and lower interference, leading to better
achievable bit rate (bits/s) at lower consumed energy.

V. NUMERICAL ANALYSIS
In this section, we first describe our simulation setup, and
then present the simulation results related to ergodic channel
capacity, spectral efficiency, and energy efficiency. These

FIGURE 4. Ergodic channel capacity vs SINR for different cell loads.

simulation results will highlight the effect of network densi-
fication, cell load, and SINR on the ergodic channel capacity
as well as the spectral and energy efficiencies of the network.

A. SIMULATION SETUP
The simulations was done in MATLAB. We consider an
MC of radius 1000 m with multiple number of mCs in
its coverage area (placed randomly using PPP model) each
with a radius of 100 m. We randomly place cellular users
inside the coverage region of the MC. Reason for choosing
PPP model is because of its advantages such as analytical
tractability and ensuring maximum entropy. It is also more
realistic tool for user and cell deployment as compared to
traditional grid-based network models. Channel bandwidths
of 100 kHz and 60 kHz are associated with MC and each
mC, respectively. We used the following pathloss models for
transmission: PL(distance) = 128.1 + 37.6 log10(distance)
and PL(distance) = 140.7 + 36.7 log10(distance) for MC
and mCs, respectively [26]. Average transmit power for MC
is set to be 47 dBm and for mCs is 30 dBm. Range of γu is
set between 0-40 dB.

B. SIMULATION RESULTS
In FIGURE 4, we plot the ergodic channel capacity as a
function of SINR. It is evident from the figure that as SINR
of the channel increases, the ergodic channel capacity will
also increase. One could also see the effect of the cell load
on service capacity as well; the ergodic channel capacity for
the high cell load (large number of active users associated
with BS) is lower when compared to the low cell load.
Additionally, when BS is operating at 100% cell load, then
the ergodic channel capacity will not change with increase
in SINR. Moreover, change in the ergodic channel capacity
in partially loaded region is very high when compared to the
change in ergodic channel capacity in heavily loaded region.

FIGURE 5 also plots the ergodic channel capacity as a
function of SINR but with the additional effect of the network
densification. One could see that the ergodic channel capacity
for a denser network is larger than a sparser network. Densifi-
cation allows more number of mCs deployed in the coverage
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FIGURE 5. Ergodic channel capacity vs SINR and the effect of
densification.

FIGURE 6. Spectral efficiency vs network bandwidth: for low (sparse) and
high denser networks.

region of one MC which leads to more frequency reuse; thus,
allows users to achieve higher transmission capacity.

In FIGURE 6, we plot the spectral efficiency as a function
of network bandwidth. It is evident that as the bandwidth
of the network increases, spectral efficiency of the system
reduces. The rationale for this inverse relationship lies in the
fact that more bandwidth accommodates the same number of
bits transmitted per second. It is also evident from the curves
that with an increase in the channel SINR, better spectral
efficiency can be achieved for a given bandwidth. The curves
have been drawn for three different cases of channel SINR.
Finally, higher network densification also yields more effi-
cient use of the given spectrum, since it can accommodate
higher number of mCs within the same coverage region.

We can further extend the discussion to the effect of chan-
nel SINR on the energy efficiency of the network. As shown
in FIGURE 7, the energy efficiency (bits/joule) of the net-
work increases with channel SINR. This is because the
increase in SINR is linked to a decrease in the interference
experienced by the user, which therefore allows the net-
work to transmit the same number of bits with lower energy
expended per bit. The effect of densification is also closely
linked to the energy efficiency: a higher density of mCs

FIGURE 7. Energy efficiency vs SINR: for low (sparse) and high denser
networks.

increases the system capacity and enables a higher number
of transmitted bits at a given transmission power.

In fact, the transmission power also plays an important role
in the energy efficiency; this can be observed in the curves
that higher transmission power intuitively reduces the energy
efficiency of the system. The curves have been drawn for
three different levels of BS transmission power for both cases
of densification. It is also visible that lower transmission
power has a significant effect on the energy efficiency when
the system has a higher density of mCs for a given SINR.
This is again linked to higher capacity of the system in denser
networks, which can accommodate more bits and therefore,
reduce energy consumption per bit.

VI. CONCLUSION AND FUTURE RESEARCH
This paper is a discourse on the enhancement of system
capacity in ultra-dense multi-tier cellular networks. These
networks are the future of cellular communication due to their
potential high data rates and higher spectral efficiency when
compared to traditional networks. They allow the network
densification through the use of a higher number of small
cells and therefore, increasing the resource reuse. We have
discussed several factors which define and affect the system
capacity, most importantly the network densification and its
underlying optimization techniques. We have also discussed
the role of interference in restricting the system capacity by
modeling it as both stationary and non-stationary PPP. The
effective channel capacity is being modeled as the ergodic
channel capacity as well as spectral and energy efficiencies
are also computed. The results show the heavy dependence
of the ergodic channel capacity and spectral/energy effi-
ciencies on channel SINR, network densification, and cell
load.

As a future research direction, this work can be extended
to analyze the system capacity for ultra-dense multi-tier
cellular networks using the technique of cooperative relay-
ing. This technique can provide enhanced energy efficiency
and throughput specifically in D2D communication. Another
direction could be the analysis of system capacity for joint
multi-user beamforming (JMB) using MegaMIMO. Such an
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analysis can help gain insights in not only reducing the
neighboring cells’ interference but also provide transmission
capacity enhancement.

APPENDIX A
PROOF OF LEMMA 1
Using poison distribution probability that k number of users
are present in a coverage area A is given by,

P(φ(A) = k) = e(−λ|A|).
(λ|A|)k

k!

where |.| is the coverage area, φ(A) is the counting measure
and λ is the density of PPP. For simplicity, the coverage area
of a cell is considered to be a circle, thus A = πR2

P(φ(π.R2) = k) = e(−λπR
2).

(λπR2)k

k!

as mCs have no overlapping coverage area so, φ(A) for any
AεR2 is an independent random variable. Now in order to find
all users in the coverage area, we need to take sum of k − 1
users,

P(φ(π.R2)) =
k−1∑
m=0

[e(−λπR
2) (λπR

2)m

m!
]

= e(−λπR
2)
k−1∑
m=0

[
(λπR2)m

m!
]

Since this is assumed that there are k − 1 users residing
inside the coverage region of an mC, it means that a k th

user will reside outside the region A and that might be con-
nected to the MC. A complementary cumulative distribution
function (CCDF) is given above, now in order to find the
probability that k th user reside outside the region A or in other
words probability that k−1 users resides inside the region we
need to take derivative with respect to the radius of the circle.

PRk (R) =
−d
dr

(P(φ(π.R2) > R))

=
−d
dr

(e(−λπR
2)
k−1∑
m=0

[
(λπR2)m

m!
])

for k is a positive real number kεR and R ≥ 0, it simplifies to
the following result,

PRk (R) = R2k−1(λπ )k
2e(λπR

2)

(k − 1)!

where (k − 1)! can be written as 0(k). �

APPENDIX B
PROOF OF LEMMA 2
For a PPP φ = {X1,X2 . . .Xk−1} the number of users present
in a specific coverage region which has an area of A and A ⊂
R2 can be written as [27],

φ(A) = |φ ∩ A| =
∑
xεφ

1(xεA)

and the intensity measure 3 is the expected number of users
available in the coverage region A.
Case.1 (Stationary/Homogenous PPP): When user distri-

bution is stationary and or homogenous PPP, intensity is
location independent,

3(A) = λ|A|

Case.2 (Non-stationary/Non-homogenous PPP): When user
distribution is non-stationary and or non-homogenous PPP,
intensity is location dependent thus intensity measure
becomes the integration of intensity function λ(x) over the
coverage area A,

3(A) =
∫
A
λ(x)dx < α

�
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