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ABSTRACT This paper proposes an efficient and noise-insensitive end-to-end lightweight deep learning
method. The method synthesizes the characteristics of a frequency domain transform and a deep convo-
lutional neural network. The former can extract multiscale information in vibration signal processing and
the latter has a good classification performance, data-driven, and high transfer-learning ability. A vibration
signal is decomposed into a pyramidal wavelet packet, and each sub-band coefficient is used as an input of
a channel in the deep network. A deep residual convolutional network based on a separable convolution and
concatenated rectified linear unit (CReLU) lightweight convolution technology is used for fault diagnosis.
The proposed algorithm is compared with related deep learning algorithms using two bearing datasets
produced by Case Western Reserve University (CWRU) and the Center for Intelligent Maintenance Systems
(IMS), University of Cincinnati. Compared with the existing algorithms, the experimental results show that
the comprehensive performance of the algorithm proposed in this paper is ‘‘small, light, and fast,’’ and
satisfactory diagnostic results are obtained in the fault diagnosis of rotating machinery.

INDEX TERMS Residual convolutional neural networks, depthwise separable convolutions, deep learning,
fault diagnosis, wavelet packet transform.

I. INTRODUCTION
Rotatingmachinery systems have beenwidely used in various
kinds mechanical equipment and play an increasingly impor-
tant role. Since the 1970s, fault diagnosis, fault prediction,
condition-based maintenance and health management have
been gradually applied in engineering. These methods reduce
the effect of damage or failure of rotating machinery on the
reliability and safety of the entire mechanical system, thereby
reducing economic losses. At present, health management,
fault diagnosis and prediction of largemechanical systems are
well-studied and challenging problems in theoretical research
and engineering practice. Only through fault detection, iso-
lation and repair can the normal operation of a mechanical
system be ensured. Therefore, fault prediction technology is
key for mechanical systems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yan-Jun Liu.

Relying on fault data, research on data-driven artificial
intelligence methods is key to realizing fault diagnosis.
Traditional methods mainly include artificial neural net-
works (ANNs), support vector machines (SVMs), logical
regression, hidden Markov models (HMMs) and fuzzy deci-
sions [1]–[3]. Traditional artificial intelligence methods are
based on feature data, but the feature extraction of fault data
must be artificially designed based on the characteristics of
different faults rather than automatic extraction. At the same
time, the performance of a model or algorithm is directly
determined by the quality of the feature. Therefore, the accu-
racy of fault diagnosis depends on the professional ability of
the user. In addition, traditional artificial intelligence meth-
ods are shallow leaning models, with which it is difficult
to effectively learn the nonlinear relationships of complex
systems [4]–[6].

To improve the prediction performance, in recent years,
deep learning has been gradually applied to fault diagnosis of
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mechanical signals. Jia et al. [7] pretrained a three-layer deep
neural network by stacking a self-encoder and then fine-tuned
the network to obtain the final prediction results for bearing
and planetary gearbox fault diagnosis. Li et al. [8] proposed
a deep random forest fusion (DRFF) structure. A wavelet
transform and a deepBoltzmannmachinewere used to extract
signal features, and deep random forest fusion was used for
gearbox fault diagnosis. Gan et al. [9] employed a character-
ization based on wavelet packet energy of a raw signal, and
a hierarchical diagnosis network based on a deep confidence
network was used for bearing fault diagnosis. The first layer
was used to diagnose the fault type, and the second layer
was developed to further recognize the fault severity ranking
from the result of the first layer. Sun et al. [10] proposed a
sparse deep stacking network and used sparse regularization
to optimize the network. The above methods mainly use a
self-encoder, deep Boltzmann machine and deep confidence
network. These methods are relatively easy to implement and
can learn feature representation but exhibit slow convergence
and a weak migration learning ability.

Yuan et al. [11] investigated three recurrent neural network
(RNN)models, including simple RNN, long short-termmem-
ory (LSTM) and gated recurrent units (GRU) LSTM, for fault
diagnosis and prognostics of an aeroengine. Zhang et al. [12]
also used similar structures to predict the residual life
of lithium-ion batteries. Zhao et al. [13] proposed an
LSTM-based method for a machine health monitoring sys-
tem. Park et al. [14] developed a fault detection model for an
industrial robot manipulator based on LSTM recurrent neural
networks. Lu et al. [15] proposed a novel deep neural network
model with domain adaptation for the fault diagnosis of a
bearing. Zhao et al. [16] presented a deep network based
on convolutional neural network (CNN) and bi-directional
LSTM (BiLSTM) to predict the wear of a milling machine
cutter. The above research shows that cyclic neural networks
and hybrid structures have good performance in terms of
time series data detection and can find problems caused over
time, but there are difficulties in the training process and
implementation, the network structure is relatively complex,
and the transfer-learning ability is weak.

At present, the focus of fault diagnosis research is
deep CNNs. According to the dimension of the processing
object, a CNN can be divided into one-dimensional and
two-dimensional signal modes. According to the process-
ing object, the CNN can also be divided into time domain
and frequency domain modes. In a one-dimensional time
domain, Abdeljaber et al. [17] constructed a 1D-LeNet5 net-
work based on LeNet5 for damage detection of mechanical
structures. Although local features were extracted effectively,
the network structure was complex and required a great
deal of time and computational resources in the training
and prediction process. Based on the 1D-CNN method, deep
convolutional network models with different structures were
proposed in references [18]–[21] for fault prediction of differ-
ent rotating machinery. Among these models, reference [21]
adopted a CNN to process a raw signal directly, and with

the help of the smoothing effect of convolution, the length
of the first-layer convolution filter was set to 64 to improve
the noise resistance performance. In a two-dimensional time
domain,Wen et al. [22] transformed a raw signal into a square
matrix through nonoverlapping cutting and normalized the
value to 0-255, which was regarded as an image directly using
2D-Lenet-5 for fault prediction of gears and bearings. Refer-
ence [23] cut the raw signal into a square matrix by changing
the interval K, which was directly used for fault detection
in the 2D-CNN structure training. However, the raw time
domain signal was used as input, which ignored the frequency
domain characteristics of the signal, and the full-connection
technology led to a large memory occupation.

To better reveal the characteristics of fault information,
many time-frequency analysis methods [24], such as the
short-time Fourier transform (STFT), empirical mode decom-
position (EMD), continuous wavelet transform (CWT),
wavelet packet transform (WPT) and dual tree complex
wavelet transform (DTCWT) have been combined with deep
learning to detect and diagnose the faults [25]–[29]. These
methods transformed 1D vibration signals to 2D represen-
tations by time-frequency analysis and utilized deep learn-
ing methods to extract discriminative features from the
time-frequency representations instead of from the time or
frequency domain. Compared with the STFT and EMD,
DTCWT, CWT and WPT have the characteristics of mul-
tiresolution analysis and a solid theoretical basis. Therefore,
to obtain more high-frequency information and facilitate sub-
sequent signal processing, a wavelet packet was selected as
the input of the deep learning model for fault diagnosis. For
instance, in reference [27], a novel diagnosis method was
proposed involving the use of a CNN to directly classify
a continuous wavelet transform scalogram (CWTS), which
is a time-frequency domain transform of the raw signal
and can contain most of the information of vibration sig-
nals. Sun et al. [28] used multiscale information extracted by
DTCWT to form a matrix and combined a CNN for gear
fault diagnosis. Zhao et al. [29] constituted each subband
obtained by a wavelet packet transform into a square matrix
and combined it with a residual network for fault prediction
of planetary gearboxes.

The above methods perform well for multidimensional
fault data and can effectively extract local features, but the
network structures are relatively complex, and the compu-
tational complexity is high, which requires many compu-
tational resources in the training and prediction processes.
Compared with a one-dimensional processing method,
the two-dimensional structure is relatively complex, which
requires more time and computational resources in the train-
ing and testing processes. For example, the amount of com-
putation and memory space occupied by 3 × 1 convolution
is only one third of that of a 3 × 3 convolution. However,
the research and practice of deep convolutional networks in
fault diagnosis have mostly focused on improving perfor-
mance. Although the algorithms work well, with the rapid
development and maturity of industrial Internet of Things
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technology, they cannot meet the requirements of being
‘‘small, light and fast’’ for deep learning algorithms in fault
diagnosis [2], [3]. The main reasons are as follows:

(1) The existing fault prediction algorithms based on deep
learning require more computational complexity and model
space, which cannot meet the needs of low cost and high
real-time performance and directly restrict the application of
related algorithms.

(2) With the diversification and complexity of the working
environment, the probability of an algorithm being suscepti-
ble to various disturbances is increasing, which puts forward
new requirements for the robustness of the algorithm.

(3) Complex and changing working conditions (variable
speed and load) make the acquisition data unstable. With the
change of working conditions and operating time, the sample
distribution no longer meets the same distribution require-
ments, so a demand for strong migration learning ability
emerges. Although existing methods have performed some
research on portability, robustness and transfer learning abil-
ity, it is difficult for the existing methods to meet the actual
application demands. For example, the number of parame-
ters and floating-point computations of reference [22] were
50 MegaByte (MB) and 1.45 × 108, respectively. Similarly,
the size of the parameter data and number of floating-point
computations of reference [23] were 565.16 KiloByte (KB)
and 8.08× 107, respectively.
According to the advantages of signal analysis and

lightweight deep learning, a lightweight deep residual CNN
method based on depthwise separable convolutions is pro-
posed. The contributions of this work are the following.

(1) A lightweight one-dimensional deep residual convolu-
tional network structure is proposed, which can effectively
improve the recognition accuracy and ensure a fast calcula-
tion speed and a small parameter space. (2) The proposed
network structure has a strong migration learning ability and
noise resistance performance.

The remainder of this paper is organized as follows:
Section 2 provides a brief review on a theoretical basis. Then,
we propose the lightweight deep CNN network structure
based on a wavelet packet in Section 3, and a case study on
fault diagnosis of a bearing, an algorithm comparison and a
discussion are given in Section 4. Finally, the conclusion is
summarized in Section 5.

II. THEORETICAL BASIS
A. WAVELET PACKET TRANSFORM (WPT)
A wavelet packet function is a time-frequency function,
which can be described as follows [27]:

wni,j =
√
2wn(2jt − k) (1)

where j and k are integers and indices of scale and translation
operations. The index n is an operation modulation parameter
or oscillation parameter. The first two wavelet packet func-
tions are the scaling and mother wavelet functions:

w0
i,j(t) = ϕ(t) (2)

w1
i,j(t) = ψ(t) (3)

When n = 2, 3, . . ., the function can be defined by the
following recursive relationships.

w2n
0,1(t) =

√
2

∑
k

h(k)wn1,k (2t − k) (4)

w2n+1
0,1 (t) =

√
2

∑
k

g(k)wn1,k (2t − k) (5)

where h(k) and g(k) are quadrature mirror filters (QMFs)
associated with the predefined scaling function and mother
wavelet function, respectively. The h(k) and g(k) filtered sig-
nals are referred to the approximation and the detail, respec-
tively.

The WPT can further obtain the detailed wavelet coeffi-
cients of a signal at high frequencies and provide a more
detailed and comprehensive time-frequency plane tiling than
a discrete wavelet transform (DWT). The advantages of the
WPT are used in discrete signal processing, such as fault
diagnosis of rotating machinery [31], image processing [32]
and video processing [33].

B. DEEP CONVOLUTIONAL NETWORKS (DCNs)
1) LIGHTWEIGHT DEEP CNN NETWORK
Because of the large amount of computation involved in a
deep CNN, it is difficult to meet the application require-
ments of embedded systems. In recent years, research on
lightweight deep CNNs has made some achievements [34].
At present, the compression methods of deep learning mod-
els are mainly divided into four types: parameter pruning
and sharing, low rank decomposition, migration/compression
convolution filtering and knowledge refinement. In the above
methods, parameter pruning and sharing, low rank decompo-
sition, and knowledge refinement are mainly used to lighten
the existing network structure, whichwill affect the anti-noise
performance and migration ability of the algorithm. There-
fore, this paper chooses the migration/compression convolu-
tion filtering method to compress the deep learning model to
meet the requirements of embedded systems.

2) STANDARD CONVOLUTION
The convolutional neural network was first proposed by Le
Cun in 1989 [35] and has been well applied in the field of
computer vision [36], [37]. After a convolution operation,
each channel is summed to realize a joint mapping of channel
and spatial correlations. The standard convolution operation
is shown in Fig. 1.

After a one-dimensional signal is decomposed into a
wavelet packet, multiple subbands of different frequency
bands are obtained. Each subband is input into the convo-
lutional neural network as a channel. The standard convo-
lutional layer takes as input a Lin × Cin feature map F and
produces a Lout × Cout feature map G, where Lin and Lout
are the lengths of the input and output features, and Cin
and Cout are the number of input and output channels. It is
parameterized by convolution kernelK of size Lk×Cin×Cout ,
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FIGURE 1. The standard convolution operation (a) The operational
processes of a standard convolutional layer (b) Spatial and channel
correlations of a standard convolutional layer.

where Lk is the length of the kernel. The output feature map
for standard convolution assuming stride one and padding is
computed as:

Gh,n =
∑
i,m

K i,m,n · Fh+i−1,m (6)

The nth filter in K is applied to the all channel in F to
produce the nth channel of the filtered output feature map G.
Output and input are Lk -neighborhood correlations spatially
and full correlations in channel, as shown in Fig. 1(b). The
parametric and computational cost of standard convolutions
can be approximately expressed as:

Parametersconv = Lk · Cin · Cout (7)

FLOPsconv = 2Lk · Cin · Cout · Lout (8)

where Parametersconv denotes the number of parameters of
the convolutional layer and FLOPsconv denotes the amount
of calculation of the first convolutional layer.

The standard convolutional layer has two main functions:
extracting local features of the input data and combining these
features linearly to generate new features in one step. The
depthwise separable convolution, which factorize a standard
convolution into a depthwise convolution and a pointwise
convolution [38], splits this into two layers, a separate layer
for filtering and a separate layer for combining. This factor-
ization has the effect of drastically reducing computation and
model size.

3) DEPTHWISE SEPARABLE CONVOLUTION
The depthwise convolution was first proposed by refer-
ence [39], with each convolution filter corresponding to only
one input channel, as show in Fig. 2(a). Depthwise convolu-
tion with one filter per input channel can be written as:

Ĝh,n =
∑
i

K̂ i,n · Fh+i−1,m (9)

where K̂ is the depthwise convolutional kernel of size
Lk × Cin. Similarly, the nth filter in K̂ is applied to the

FIGURE 2. Depthwise convolution operation (a) the process of a
depthwise convolution (b)spatial and channel correlations of a depthwise
convolution.

nth channel in F to produce the nth channel of the filtered
output feature map Ĝ. Output and input are Lk -neighborhood
correlations spatially and one-to-one correlations in channel,
as shown in Fig. 2(b). Ignoring the effects of bias, the para-
metric and computational cost of depthwise convolutions can
be approximately expressed as:

Parametersdw = Lk · Cin (10)

FLOPsdw = 2Lk · Cin · Lout (11)

where Parametersdw and FLOPsdw denote the number of
parameters and amount of computation of the depthwise
convolution, respectively. Compared with a standard convo-
lution, the number of parameters and amount of computation
of the depthwise convolution are 1/Cout of those of a standard
convolution.

Although a depthwise convolution achieves the feature
extraction function of the standard convolutional layer, it only
extracts the features of each input channel and does not
combine to create new features, resulting in information iso-
lation between the channels. To generate new features and
increase channel correlation, it is necessary to add a pointwise
convolutional layer [38].

A pointwise convolution uses a convolution filter of
length 1 to linearly combine the output features of a deep
convolution to form new features. As shown in Fig. 3(a),
the essence of the pointwise convolution is a special form
of the standard convolution filter length of 1. The points in
each channel space are weighted and summed to increase the
correlation between channels, as shown in Fig. 3(b). Ignoring
the effects of bias, the number of parameters and amount of
computation can be written as:

Parameterspw = 1 · Cin · Cout (12)

FLOPspw = 2 · Cin · Cout · Lout (13)
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FIGURE 3. Pointwise convolution operation (a) the process of a pointwise
convolution (b) spatial and channel correlations of a pointwise
convolution.

where Parameterspw and FLOPspw denote the number of
parameters and amount of computation of the pointwise con-
volution, respectively.

A depthwise separable convolution achieves the effect of a
standard convolution of extracting and combining features.
It reduces the complexity of the model and almost does
not lose accuracy. Compared with a standard convolution,
the number of parameters and amount of computation of
a deep separable convolution are significantly reduced, and
the computation time and storage space can be reduced by
half.

Lk · Cin + 1 · CinCout
Lk · Cin · Cout

=
1

Cout
+

1
Lk

(14)

4) RESIDUAL NETWORK
Convolutional networks can extract and combine data fea-
tures hierarchically. The extracted data features are more
advanced and richer with increasing network layers. The
features of deeper network layers are more abstract and
represent semantic information. However, the training of
deep neural networks does not involve simple stacking.
The deeper the network, the easier the problem of gradient
explosion and gradient disappearance occurs [40]. More-
over, as the network depth increases, the accuracy of the
model decreases [41]. He et al. [42] proposed the con-
cept of a residual network that solved the problem of gra-
dient disappearance and successfully applied it to image
classification.

As shown in Fig. 4, residual blocks can be implemented
by using a shortcut, that is, adding the raw low-level fea-
tures directly across the multilayer network to the high-
level features, which will neither increase the number of
parameters nor increase the amount of calculation of the
model. Therefore, using a residual structure combined with
batch normalization can train a very deep network structure
without the problem of gradient disappearance and gradient
explosion.

FIGURE 4. The structural diagram of a residual network.

5) BATCH NORMALIZATION
Batch normalization (BN) [43] is a technology widely used
in neural networks, which is mainly added after the convo-
lutional layer and the full-connection layer. Before the acti-
vation function, the distribution of eigenvalues is normalized
(mean value of 0, variance of 1). This not only accelerates the
convergence speed of themodel but also alleviates the ‘‘gradi-
ent dispersion’’ problem of the deep network and makes the
training of the deep network model easier and more stable.
The detailed calculation process is as follows.

ŷi(j) =
yi(j)− µ

σ
(15)

ẑi(j) = γ · ŷi(j)+ β (16)

where ẑi(j) represents an output element after BN, and
µ = E[yi(j)] and σ 2

= D[yi(j)] represent the mean
and variance of the eigenvalues of a layer, respectively.
γ and β are the parameters that need to be trained in the
networks.

6) CReLU FUNCTION
CReLU is an improved activation function of ReLU. By ana-
lyzing the internal structure of a CNN, Shang et al. [44]
found the following phenomena from a statistical point of
view: 1) the parameters of a shallow convolution filter in
a convolutional network have a strong negative correlation,
and the negative correlation gradually weakens with a deep-
ening of the network layer; 2) a shallow network tends to
extract positive and negative phase information; however,
the activation function ReLU will erase a negative response
resulting in the redundancy of the convolution filter. There-
fore, the CReLU function is developed and can be expressed
as:

ReLU(x) = x if x > 0; 0 if x ≤ 0 (17)

CReLU(x) = concat[ReLU(x),ReLU(−x)] (18)

where concat operation denotes the connection of two matri-
ces on the channel axis.

CReLU retains the positive and negative outputs of the
convolutional layer to form new features and realizes delin-
earization and increases the number of channels of the fea-
ture graph. Compared with the ReLU, the activative channel
quantity of CReLU is twice that of the ReLU.

VOLUME 7, 2019 57027



S. Ma et al.: Lightweight Deep Residual CNN for Fault Diagnosis of Rotating Machinery

FIGURE 5. Network structure presented in this paper.

7) CROSS-ENTROPY LOSS
Cross-entropy loss is usually used as a loss function in clas-
sification tasks. The equation is as follows:

Loss(p, q) = −
∑

x
p(x) · log q(x) (19)

where p(x) is a label for the training set and q(x) is the label
value predicted by the network.

In classification problems, the cross-entropy function is
often used as a loss function, because the gradient of the
cross-entropy loss is only related to correct classification
prediction results in the model optimization process. In this
paper, the cross-entropy function is chosen as the loss func-
tion of the training model.

III. LIGHTWEIGHT CNN STRUCTURE BASED ON A
WAVELET PACKET
A. NETWORK STRUCTURE
In this paper, an end-to-end network structure is proposed,
which is mainly for one-dimensional fault signal classifica-
tion. The flow chart is shown in Fig. 5. This network can be
divided into two steps according to its function. The first step
performs the wavelet packet transform (WPT), with the aim
of extracting finer information from a frequency-domain per-
spective, and the second step is a one-dimensional lightweight
CNN. The network has the following characteristics:

(1) The activation function of the first standard convolu-
tional layer uses the CReLU function, which can reduce the
number of parameters and the amount of calculation by half
compared to the ReLU function, as shown in Fig. 6.

(2) A lightweight basic unit module is designed based on
the CReLU function, as shown in Fig. 7.

(3) The complexity of the network structure can be adjusted
according to the data characteristics by using super parame-
ters m and i, as shown in Table 2.

B. DEEP CONVOLUTIONAL NEURAL NETWORK AND ITS
IMPROVEMENT
1) IMPROVEMENT OF A STANDARD CONVOLUTIONAL
LAYER
To extract the feature information of raw data effectively,
a standard convolution is still used in the first layer of
the lightweight network based on a separable convolutional
design [45], [46]. Fig. 6 (a) shows the general first layer of
the convolution, and Fig. 6 (b) is an improved structure using
the CReLU function in this paper. As shown in Fig. 6, The

FIGURE 6. The first convolutional layer structure proposed in this paper
(a) the general first layer convolution (b) the improved first layer.

FIGURE 7. Structural design of the basic unit in this paper (a) with
shortcut structure and stride = 1 (b) without shortcut structure and
stride = 2.

TABLE 1. The specific parameters of the basic unit.

activation feature maps of m channels can be obtained by
ReLU activation function. But for CRelu activation function,
a total of 2m feature maps can be obtained, which include
the positive feature maps of m channels and the negative
feature maps of m channels. In other words, in order to
obtain the activation feature map of m channels, only input
feature maps of m/2 channels into the CReLu layer. Then,
the upper convolution layer only needs to extract the feature
map of m/2 channels. Compared with extracting the feature
maps of m channels, the number of convolution cores can be
reduced by half, so CReLU function can reduce the number
of parameters and the amount of calculation by half.

2) BASIC UNIT
The network structure presented in this paper is formed by
stacking several basic units. The basic unit is a residual mod-
ule, which includes a pointwise convolutional layer, a depth-
wise convolutional layer, a CReLU activation layer, a BN
layer and an identity shortcut. The specific parameters and
structural design of the basic unit are shown in Table 1 and
Fig. 7.
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FIGURE 8. LDR-CNN network structure design.

In Table 1, h is the length of the input signal, k is the
number of channels of the input, k ′ is the number of channels
of the output, conv denotes a standard convolution opera-
tion, dw denotes a depthwise convolution operation, ksize
denotes the length of the convolution kernel, stride denotes
the sliding step, and s is a parameter of the sliding step which
represents the separation distance between two convolution
fields and and the size of the output feature map is 1/s of the
original.

To reduce the loss of information in the process of delin-
earization, reference [46] first used a 1×1 convolution kernel
to enhance the dimension and then ReLU activation in the
basic unit. As shown in Eq. (18), CReLU keeps the negative
response information of the convolutional layer in the nega-
tive part without losing information. Even in low dimensions,
CReLU can achieve a good delinearization effect. Therefore,
only a 1× 1 convolution kernel is needed to reconstruct new
features.

3) CNN STRUCTURE
Zeriler and Fergus [47] used deconvolution techniques to
visualize the characteristics of convolutional neural networks
and gained insight into the many characteristics of convolu-
tional networks. It was found that the output from channels
of each convolutional layer represent multiple features of the
input. Theory and experiments have shown that the width and
depth of neural networks are two core factors that characterize
the network complexity, and neural networks are often over-
parameterized and overcomplicated [48].

The numbers of channels and network layers determine the
width and depth of a network, respectively. The width deter-
mines the number of features extracted from the input data.
The depth determines the abstraction degree of the extracted
features. Compared to the image, the one-dimensional signal
does not have direction information, so the number of features
is relatively small and does not require too many channels.

To make the complexity of the network conform to the
complexity of the data and reduce the network redundancy,
two hyperparameters i andm are set to represent the depth and
width of the network, respectively, to control the complexity
of the network. The impact of these two parameters on net-
work performance was verified in subsequent experiments.

Based on the above theory, a lightweight deep residual
CNN (LDR-CNN) is proposed in this section. The network
structure is shown in Fig. 8, and the design parameters of the
network structure are shown in Table 2.

In Fig. 8, conv denotes the structure of Fig. 6 (b), and basic
unit denotes the structure of Fig. 7. Only the sliding step of the

TABLE 2. The design parameters of the network structure.

TABLE 3. Comparison of networks in terms of parameters and
computational load.

basic unit in the first layer is equal to s, and the sliding steps
of the remaining n-1 layers are equal to 1. In the network, two
parameters m and i are designed to represent the number of
channels and repetitions of the basic unit at a certain scale.
The effects of these two parameters on the performance will
be verified in subsequent experiments.

C. PERFORMANCE ANALYSIS OF THE NETWORK
PARAMETERS
Various network structures, including LDR-CNN, DNN,
1D-LeNet5, Resnet-18, Resnet-50 and VGG-16, are com-
pared in terms of the number of parameters and the floating-
point computations, as shown in Table 3.

DNN is the deep neural network proposed in reference [7]
for machinery fault diagnosis (contains three hidden layers),
and each hidden layer contains 600, 200, and 100 neurons.
1D LeNet5 is a 1D CNN that is obtained by improving
LeNet-5 and used for motor fault detection. Resnet-18,
Resnet-50 and VGG-16 are commonly used CNN frame-
works. To accommodate 1D input data, 2D convolutions in
these three networks were altered to 1D convolutions for the
calculation.

The LDR-CNN proposed in this paper has no parameters
to be trained in the wavelet packet network layer, and the
floating-point computation can be neglected, so only the data
of the other layer can be calculated. In the calculation process,
the input signals of all networks are unified as mechanical
vibration signals with a length of 1024× 1.
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TABLE 4. Classification of the bearing fault datasets.

FIGURE 9. Fault simulation test rig.

The results show that the LDR-CNN structure is at least
three orders of magnitude less than Resnet-18, Resnet-50 and
VGG-16 in terms of floating-point computations, and the
number of parameters of LDR-CNN is approximately one
thousandth of that of Resnet-18, Resnet-50 and VGG-16.
The computational loads of 1D-LeNet5, DNN, reference [29]
and reference [20] are 10.7, 11.6, 11.8 and 577 times that
of LDR-CNN, respectively. The number of parameters of
LDR-CNN are only 11% of that of 1D-LeNet5, 0.6% of that
of DNN, 23% of that of reference [29] and 8% of that of
reference [20]. Moreover, the proposed hybrid network has
at least 18 convolutional layers, which are much larger than
1D-LeNet5 and DNN in network depth, and has a stronger
ability to extract features, which can be seen in subsequent
experiments.

IV. EXPERIMENT AND ANALYSIS
A. INTRODUCTION OF THE DATASET
To validate the effectiveness of the proposed LDR-CNN
structure, 12-kHz drive-end data collected by Case Western
Reserve University (CWRU)’s Bearing Data Center were
used. Fig. 9 shows the test rig used for data collection [49].
The dataset contains four different categories, namely, normal
bearings, bearings with a faulty ball (ball), bearings with a
faulty inner race (inner_race) and bearings with a faulty outer
race (outer_race). For each type of fault, there are three fault
diameters, namely, 0.007 in, 0.014 in and 0.021 in. Thus, there
are 10 classifications in this dataset.

Due to the limited experimental data, the overlapping
sampling method is used to enhance the data according to
references [7] and [26], as shown in Fig. 10.

FIGURE 10. Schematic diagram of overlapping sampling.

In this study, the overlap length was determined based on
the data length. If a raw signal had a length of 240,000,
then the shift was set to 200, and the signal was segmented
into (240, 000 − 1, 024)/200 = 1, 194 samples, of which
800 were randomly selected as training samples and 100 were
used as test samples. If a raw signal had a length of 120,000,
it was segmented into (120, 000 − 1, 024)/100z = 1, 189
samples. In the experiments, the dataset was divided into
eight training sets, one validation set, and one test set. In addi-
tion, 800 training samples, 100 test samples and 100 valida-
tion samples were randomly selected. Then, in the training
process, the validation set was used to examine the identi-
fication accuracy after every 10 epochs. Finally, the model
with the highest accuracy was preserved. This method is
more accurate than directly fixing the number of iterations.
Thus, all the data required for the experiments were gen-
erated with various datasets. The details are given in the
following.

The dataset is divided into four subdatasets, namely, A,
B, C and D, corresponding to the data collected under 0,
1, 2 and 3 loads, respectively. As shown in Table 4, each
category of datasets A, B, C and D contains 800 training
samples, 100 test samples and 100 validation samples, for
a total of 8,000 training samples, 1,000 test samples and
1,000 validation samples.

Under normal circumstances, bearing vibration signals
are affected by the surrounding ambient noise. The CWRU
dataset selected in this study was collected in an environment
with a relatively low level of ambient noise and therefore can-
not reflect the performance of the fault diagnosis algorithm
in an actual environment. In addition, there are a number of
noise sources in an actual environment, and it is impossible
to obtain training samples under all the conditions in vari-
ous noise environments. Therefore, noise was added to the
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TABLE 5. Experimental results for the effects of the different number of WPT decompositions on the algorithm performance.

TABLE 6. Experimental results for the effects of the different network depths on the noise resistance performance.

samples in the raw test set to simulate data from actual condi-
tions. Using the resultant data for testing can produce results
closer to those obtained under actual industrial production
conditions.

Accordingly, 10%, 30%, 50%, 70%, 90% and 100% white
Gaussian noise was added to the data to simulate actual con-
ditions. The signal-to-noise ratio (SNR) used when adding
noise is defined as follows.

SNR = 10 log10(
Psignal
Pnoise

) (20)

wherePsignal andPnoise are the intensities of the raw and noise
signals, respectively.

To examine the noise resistance of the proposed algorithm,
the learning model with the highest accuracy for the vali-
dation set in 1,000 iterations was selected. Noise-containing
data were randomly generated 10 times for each sample in the
training set of dataset A and used for testing and statistically
analyzing the experimental results, which were represented
in the form of the mean and standard deviation. Similarly,
dataset D was used as a training set to train the model, and
datasets A, B and C were used to test the accuracy of the
algorithm (denoted by DA, DB and DC, respectively) to
determine the transfer-learning ability for various loads.

B. DISCUSSION
1) THE EFFECT OF THE DIFFERENT NUMBER OF WPT
DECOMPOSITIONS ON THE ALGORITHM PERFORMANCE
The network was trained and tested for a raw time-domain
signal and different numbers of WPT decompositions using
the parametersm = 8 and i = 3. The experimental results are
shown in Table 5.

As shown in Table 5, under different noise conditions,
the mean in the time domain is less than the different number
of WPT decompositions, and the variance values are greater.

Therefore, the proposed first step wavelet packet decompo-
sition network structure in this paper can improve the noise
resistance performance of the model. In the WPT, when the
white Gaussian noise is up to 100%,WPT 4 shows a relatively
high performance. At layer 4, the length of each subband
is 64, and there are 16 subbands. The experimental results
show that for a 1D input, a subband length of 64 results in
a satisfactory division of the frequency domain, a moderate
length and a large amount of information.

2) THE EFFECT OF THE MODEL PARAMETERS ON THE
NETWORK PERFORMANCE
Table 5 shows that the number of decompositions of theWPT
layer is 4, which has the highest noise resistance. Therefore,
to verify the effect of network depth and channel number on
the noise resistance performance, WPT 4 and the network
structure parameter m = 8 are selected in this section.
Table 6 and Table 7 summarize the experimental results.

The effects of different network depths on the noise resis-
tance performance are shown in Table 6. As shown in Table 6,
the noise resistance performance of the model first increases
slightly with increasing depth and then decreases. At the same
time, as shown in Fig. 11, the number of parameters and the
amount of calculation of the model increase linearly. In this
paper, the contribution of the model parameters to the model
performance is evaluated by the performance parameter earn-
ings ratio to select the super parameters i and m, which are
defined as follows.

Ratio =
1acc
1param

(21)

where Ratio denotes the performance parameter earnings
ratio, 1 acc denotes the improvement in test accuracy in a
noisy environment with 0db SNR, and 1 param denotes the
increase in the parameters of the model.
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TABLE 7. Experimental results for the effects of different channel numbers on the noise resistance performance.

FIGURE 11. The experimental results of different network depths (a) the
number of parameters for different network depths (b) the variation
trend of the earnings ratio with network depth.

When the parameter i is increased from 1 to 2, the test
accuracy can be increased by 0.34% for every 1 KB increase
in the number of parameters. When parameter i is greater
than 3, the earnings ratio does not exceed 0.06, and when
the network depth continues to increase, the earnings ratio
growth is very small. Therefore, to balance performance and
resource consumption, i = 2 is chosen as the network depth
of the model.

The effects of the different channel numbers on the noise
resistance performance are shown in Table 7.

As shown in Table 7, with an increase in the proportion
of white Gaussian noise, the network performance decreases.
Additionally, with an increase in the channel number m,
the network performance improves. This is because the num-

FIGURE 12. The experimental results of different channel numbers (a) the
number of parameters under different channel numbers (b) the variation
trend of the earnings ratio with channel number.

ber of convolution kernels and the number of feature extrac-
tions increases. However, afterm = 8, the earnings ratio is not
higher than 0.05, and the change in the earnings ratio is very
small with increasing channel number, as shown in Fig. 12.

3) COMPARISON OF THE NOISE RESISTANCE AND
TRANSFER-LEARNING ABILITIES OF VARIOUS ALGORITHMS
To verify the noise resistance and transfer-learning abili-
ties of the proposed algorithm, the proposed algorithm is
compared with an SVM and the available deep learning
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TABLE 8. Experimental results of various algorithms for various percentages of added white Gaussian noise.

TABLE 9. Experimental results of various algorithms for transfer-learning ability.

TABLE 10. Experimental results of the transfer-learning ability of various algorithms for various percentages of added white Gaussian noise.

algorithms [7], [13], [20], [22], [23], [27]–[29] and [31]. The
parametersm = 8 and i = 2 are selected for the experimental
model according to the above experimental results. Tables 8,
9 and 10 summarize the experimental results.

As shown in Table 8, the experimental data show that the
proposed algorithm exhibits the second highest performance
under various percentages of addedwhite Gaussian noise, and
the noise resistance performance is 3-58% higher than that
of the available algorithms. Although reference [13] outper-
forms the proposed algorithmwith 0.96% of the test accuracy
in a 0 dB noise environment, the number of parameters is
more than 60 times than the proposed algorithm, as shown
in Table 3.

As shown in Table 9, the experimental data indicate that
the proposed algorithm exhibits the highest performance for
various datasets, and its transfer-learning ability is 1.45-52%
higher than that of the available algorithms. The anti-noise
ability of reference [13] is the best, but its transfer-learning
accuracy is 28% lower than the proposed algorithm.

As shown in Table 10, the experimental data indicate that
the proposed algorithm exhibits the highest performance for

TABLE 11. Classification of IMS bearing fault datasets.

various percentages of added white Gaussian noise, and its
transfer-learning ability is 3.82-64.06% higher than that of
the available algorithms.

In order to further verify the performance of the proposed
algorithm under complex operating conditions, an additional
comparative experiment using test-to-failure data is carried
out. This dataset was provided by the Center for Intelligent
Maintenance Systems (IMS), University of Cincinnati. The
bearing test rig and data description can be obtained from
reference [50].

The bearings experienced ‘‘increase-decrease-increase’’
degradation trends. This behavior is due to the ‘‘self-healing’’
nature of the damage [51], [52]. First, the amplitude of
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TABLE 12. Experimental results of noise resistance comparison of IMS datasets.

FIGURE 13. The values of root mean square (RMS) in dataset 2 of IMS.

vibration increases because of the impact caused by the initial
surface defect, such as spalling or cracks. Then the initial
defect is smoothed by continuous rolling contact leading to
the decrease of the impact amplitude. When the damage
spreads over a broader area, the vibration amplitude increases
again.

During the ‘‘self-healing’’ period, the amplitude of the fault
bearing is similar to that of the normal bearing, which makes
it difficult to detect the fault during the ‘‘self-healing’’ period,
as shown in Fig. 13. At the end of the experiment, the inner
race defect, outer race defect and roller element defect were
detected manually [50].

The fault data category is shown in Table 11.
As shown in Fig. 13, the red curve indicates the wear

process of the outer race defect in bearing 1. The ‘‘self-
healing’’ appeared after the failure on the fifth day, and
its amplitude was basically the same as that of the normal
bearing (green curve).

In order to increase the difficulty of classification,
we choose bearings in ‘‘self-healing’’ period as fault data, and
normal bearings with similar amplitude as normal data. Also,
a length of 1024 is directly sampled as a sample instead of
overlapping sampling due to relatively enough IMS datasets.

The noise resistance comparison of IMS datasets are shown
in Table 12.

As shown in Table 12, compared with references [31]
and [7], although the experimental data show that the pro-
posed algorithm exhibits the third highest performance under
train time and the second highest performance under test
time, the test accuracy of the proposed algorithm is the
highest than that of the available algorithms under various

FIGURE 14. The distribution of the output characteristics with the number
of network layers.

percentages of added white Gaussian noise. On the other
hand, as shown in Table 3, the amount of calculation of
reference [7] is 10 times that of the proposed algorithm. The
network structure of reference [7] is only 4 layers and the
proposed algorithm is 28 layers, which lead to the waiting
time caused by data dependence is 7 times of reference [7].

Besides, because there is more than 30 times acceleration
gap between GPU and CPU, which indicates that the par-
allel computing is one of the main reasons that the actual
acceleration effect of experiment is far lower than the theo-
retical acceleration effect. At the same time, the multi-core
CPU used in the experiment has only a small amount of
parallel computing power, which also slightly reduces the
acceleration effect of the algorithm in the test process. Even
so, the computational time and performance of the proposed
algorithm are better than the available algorithms.

C. VISUALIZATION OF THE NETWORK LEARNING
PROCESS
Because the principle of a convolutional neural network is
similar to a black box, the internal working mechanism can-
not be explained. Therefore, the output characteristics of
the network training process and model testing process can
be visualized using the T-SNE method after dimensionality
reduction so that the entire network operation process can be
easily understood. The visualization of the network learning
process is shown in Fig. 14.

From Fig. 14, we can see that the characteristics of all the
raw data samples are mixed together and cannot be distin-
guished. As the number of convolutional layers increases,
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the distance between the features of different types becomes
larger, while the distance between similar tags decreases,
presenting the phenomenon of clustering. In the last layer of
the convolutional layer, we can see that the features of the
same label are clustered into one group, which shows that the
CNN can effectively extract information related to category
mapping. With a deepening of the network, the learning
ability of the network for features becomes stronger, and the
classification accuracy is also higher.

V. CONCLUSION
In this paper, fault prediction of rotatingmachinery is studied.
Based on the premise that a wavelet packet transform can
effectively extract frequency domain information and the
amount of calculation of a one-dimensional convolution is
small, a lightweight deep learning fault prediction method
based on a deep residual convolutional network is proposed.
The algorithm can effectively improve the recognition accu-
racy and ensure a fast calculation speed and a small parameter
space. The proposed network structure has no parameters to
be trained in the wavelet packet transform, and the floating-
point computation can be neglected, so only the data of the
other layer can be calculated. Moreover, the proposed hybrid
network has at least 18 convolutional layers, which are much
larger than 1D-LeNet5 and DNN in network depth and has a
stronger ability to extract features.

A variety of comparative experiments are carried out by
using open CWRU and IMS datasets. The results show that
the number of decompositions of the WPT layer is 4, the pro-
posed algorithm has better noise resistance, which results in
a satisfactory division of the frequency domain, a moderate
length and a large amount of information. To evaluate the
contribution of the model parameters to the model perfor-
mance, the performance parameter earnings ratio is intro-
duced in this paper to select the super parameters. When
the network depth and the channel number of the model are
2 and 8, the algorithm proposed in this paper achieves a small
amount of computation and a large earnings ratio. Addition-
ally, the experimental data show that the noise resistance
performance is 3-58% higher than that of the available algo-
rithms under various percentages of added white Gaussian
noise. The transfer-learning ability is 1.45-52% for various
datasets and 3.82-64.06% for various percentages of added
white Gaussian noise, which has a better transfer-learning
ability than the available algorithms.
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