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ABSTRACT A considerable amount of research has been done since long to select an appropriate similarity
or dissimilarity measure in cluster analysis for exposing the natural grouping in an input dataset. Still, it is
an open problem. In recent years, the research community is focusing on divergence-based non-Euclidean
similarity measure in partitional clustering for grouping. In this paper, the Euclidean distance of traditional
Fuzzy k-means (FKM) algorithm is replaced by the S-distance, which is derived from the newly introduced
S-divergence. Few imperative properties of S-distance and modified FKM are presented in this study. The
performance of the proposed FKM is compared with the conventional FKM with Euclidean distance and its
variants with the help of several synthetic and real-world datasets. This study focuses on how the proposed
clustering algorithm performs on the adopted datasets empirically. The comparative study illustrates that the
obtained results are convincing. Moreover, the achieved results denote that the modified FKM outperforms
some state-of-the-art FKM algorithms.

INDEX TERMS Fuzzy K-means clustering, S-distance, S-divergence.

I. INTRODUCTION
Clustering is an imperative unsupervised machine learning
approach employed in identifying some inherent structure
exists in a set of patterns or objects. The aim of cluster
analysis is to split set of objects, commonly vectors in a
multi-dimensional space, are grouped into subsets so that the
objects in the same subset are similar in some perception
and objects in different clusters are dissimilar in the same
perception.

Different selection of measured data or features, proximity
measures, clustering criteria, and clustering algorithms may
lead to totally different clustering results. In this study, Fuzzy
k-means (FKM) algorithm applies on some real and synthetic
datasets, where clustering criteria is same throughout the
study. It means the selection of proximity measure plays
an imperative job to find the cluster structure in data [1].
Even though the Euclidean distance has been the standard of
squared error distortion, a considerable amount of research
has been done to introduce non-linear distance measures [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

Recently, researchers have been substituting the Euclidean
distance in k-means by various non-linear distance metrics,
some of them even non-metric i.e. do not follow the triangle
inequality property [2]–[4]. One motivation is to introduce
non-linearity in clustering may result in identifying more
accurate cluster boundaries. One such attempt was made
to introduce general Bregman divergence as the similarity
measure in the k-means algorithm to increase its efficacy [2].
Some noteworthy divergence based similarity measures for
clustering include [5]–[9].

II. CLUSTERING
In this section, we first provide a formal definition of the clus-
tering problem. A brief introduction of the traditional FKM
is also presented since we have compared the performance of
the proposed FKM with traditional one.

A. BASIC PRINCIPLE
Clustering is the process of splitting d−dimensional m
data-points or the observations, A[= u1, u2, . . . , um], in Rn+
into ‘k’ groups of homogeneous data-points, C[= (C1,C2,

. . . ,Ck )] in such a way that the degree of strong association
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within group and weak association between different groups.
Then

Ci 6= φ for i = 1, . . . , k,

Ci ∩ Cj = φ for i = 1, . . . , k; j = 1, . . . , k and i 6= j,

∪
k
i=1Ci = C

B. FUZZY K-MEANS
From a machine learning perspective, clustering analysis
will give us an accurate and deep understanding into hidden
patterns of different groups. After clustering, the partition
matrix would be expressed as W (A)(k×m). It can further be
represented as W = [wab], where wab is the membership of
a data-point, ub, from cluster center, ca, of cluster, C , and
’a’ and ’b’ vary from 1 to k and 1 to m respectively. The
value of wab is 1 only when ub belongs to ca otherwise, wab
would be 0 in case of crisp partitioning. Clustering is the
subject of active research in several fields such as pattern
recognition [10], image processing [11], [12] especially in
satellite image analysis [13]–[17] and data mining [18], [19]
such as scientific data exploration, information retrieval and
text mining. In [20], Dalal and Harale presented cluster-
ing analysis techniques and divided them into three cate-
gories: partition based clustering [21], density based [22] and
hierarchical clustering [23], which are further sub-divided
and discussed in [19]. Interested readers are referred to
explore [24]–[26] for studying clustering algorithms in detail.
Undoubtedly, Fuzzy k-means (FKM) is one of the frequently
used partition-based clustering algorithms in pattern recogni-
tion. This algorithmwas introduced byDunn in 1973 [27] and
enhanced by Peizhuang in 1981 [28]. FKM performs group-
ing by exploring a set of fuzzy groups,W , and the associated
group centers,C , that denote the structure of the data-point as
best as possible iteratively. The FKM algorithm depends on
the input provide by the user, which represents the number
of clusters present in the data-points to be fuzzy clustered by
minimizing the within group sum of squared error objective
function, Es(W ,C), which is shown in equation 1.

Es(C,W ;A) =
m∑
b=1

k∑
a=1

(wab)s||ub − ca||2, 1 ≤ s <∞,

(1)

where the real number ‘s’ is familiar as fuzziness coefficient.
Moreover, it manages the influence of membership grades
in the performance index. The division becomes fuzzier (not
crisp) with the increasing of ‘s’ and researchers proved that
the FKM algorithm converges for any s ∈ (1,∞). The wab
indicates the degree of membership of ub in the cluster a, ub
is the bth of d-dimensional features, ca is the d-dimensional
center of the cluster and || · || is some inner product induced
norm expressing the similarity between any features and the
center. The error function relies on W and C , subject to two

constraints, which are shown in equations 2 and 3.

k∑
a=1

wab = 1, b = 1, 2, . . . ,m, (2)

where wab ∈ [0, 1], a = 1, 2, . . . , k and b = 1, 2, . . . ,m.

0 <
m∑
b=1

wab < k, a = 1, 2, . . . , k (3)

Fuzzy division is done through an iterative approach by min-
imizing an error function Es(W ,C) as depicted in equation 1,
with the update of membership wab and the cluster centers ca
using equations 4 and 5 respectively.

w(e+1)
ab =

1∑k
l=1

(
ub−c

(e)
a

ub−c
(e)
l

) 2
s−1

(4)

c(e+1)a =

∑m
b=1

[
w(e+1)
ab

]s
· ub∑m

b=1

[
w(e+1)
ab

]s (5)

This iteration will terminate while maxab{|w
(e+1)
ab − w(e)

ab |} <

ε, where ε is a stopping criterion between 0 and 1, whereas ‘e’
depicts iteration or epoch. This process converges to a local
minimum or a saddle point of Es(W ,C).

In this work, S-distance is used, which is derived from
the notion of S-divergence [3], [4], [29]. Various proper-
ties of this distance have been studied. All the experi-
ments have been performed on some real and synthetic
datasets. All the simulation results depict that the FKM using
S-distance outperforms the traditional FKM algorithm with
Euclidean-distance and along with different variant of FKM
such as Weighting in FKM, Minkowski metric weighted
FKM. Our claim has been validated by performing statistical
analysis on the obtained results.

III. S-DISTANCE AND ITS PROPERTIES
The definition followed by different properties of S-distance
is discussed in this section.
Definition 1: S-divergence is a metric stated over a set of

all positive definite matrices of size n×n, Sn, which could be
computed by equation 6.

∂s(U ,V ) = log(|
U + V

2
|)−

log(|U |)+ log(|V |)
2

, (6)

where |U | = determinant ofU . An injective function is stated
as ψ : Rn

+ → Sn such that ψ(u) = diag(u1, u2, . . . , um),
where u = (u1, u2, . . . , um) ∈ Rn

+ is a real positive vector
and Rn

+ is (0,∞) × (0,∞) × . . . × (0,∞)(n times). The
definition of S-distance is as follows:
Definition 2: The S-distance between any two data-points,

u, v ∈ Rn
+, could be stated as a function SD : Rn

+ × Rn
+ →

R+ ∪ {0}, which can also be expressed by equation 7.

SD(u, v) = ∂s(ψ(u), ψ(v)) (7)

The S-distance metric satisfies the following properties:
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Proposition 1: Non-negativity: SD(u, v) ≥ 0.
Proposition 2: Symmetry: SD(u, v) = SD(v, u).
Proof: SD(u, v) = ∂s(ψ(u), ψ(v)) = ∂s(ψ(v), ψ(u)) =

SD(v, u).
Proposition 3: SD(u, v) ≥ 0 and SD(u, v) = 0 iff u = v.
Proof: SD(u, v) = ∂s(ψ(u), ψ(v)) ≥ 0 and SD(u, v) = 0

iff ∂s(ψ(u), ψ(v)) = 0 iff ψ(u) = ψ(v) iff u = v.
Proposition 4: Triangle inequality: SD(u, v) ≤ SD(u, r)+

SD(r, v).
Proof: SD(u, v) = ∂s(ψ(u), ψ(v)) ≤ ∂s(ψ(u), ψ(r)) +

∂s(ψ(r), ψ(v)) = SD(u, r)+ SD(r, v).
Thus, elements of A are called points of the metric space,

and SD is called a metric or distance function on Rn
+, which

could be thought as SD(u, v) =
∑n

i=1 ∂s(ui, vi).
Now, its time to investigate some of the proper-

ties of S-distance measure in the form of following
theorems.
Theorem 1: S-distance is not a Bregman divergence.
Proof: We will prove by contradiction. Let us assume

that the original statement i.e. S-distance were a Bregman
divergence SD(u, v) is false. The original statement is false
if SD(u, v) is convex in u. Now, SD, could also be expressed
by equation 8.

SD(u, v) =
n∑
i=1

[log((ui + vi)/2)− (log(ui)+ log(vi)/2] (8)

The following expression could be obtained by taking
double-derivative both sides of equation 8 w.r.t.

ui.
∂2SD

∂su2i
=

1
ui + vi

−
1
2ui

∂2SD
duiduj

= 0 when i 6= j otherwise,

∂2SD

∂su2i
= −

1
(ui + vi)2

+
1

2u2i

∂2SD
∂u2i

< 0 could be obtained for

i ∈ {1, 2, . . . , n} when vi < (
√
2 − 1)ui∀i ∈ {1, 2, . . . , n}.

So, a diagonal matrix with negative diagonal entries can be
obtained, which is known as Hessian matrix. So, SD(u, v) is
not convex in u. Therefore, it is proved that S-distance is not
a Bregman divergence.
Theorem 2: SD(x◦u, x◦v) = xSD(u, v) for x ∈ Rn

+, where
x ◦ u represents the Hadamord product between x and u.

Proof: We know, (x ◦ u) = (x1u1, x2u2, . . . , xnun).
So, δs(xiui, xivi) = log( (xiui+xivi)2 ) − log(xiui)+log(xivi)

2 =

log(xi)+ log(
(ui+vi)

2 )− (log(ui)+log(vi)+2log(xi))
2 = log( (ui+vi)2 )−

(log(ui)+log(vi)+)
2 = δs(ui, vi)

∑n
i=1 δs(xiui, xivi) =∑n

i=1 xiδs(ui, vi) implying So, SD(x ◦ u, x ◦ v) = xSD(u, v)
Theorem 3: S-distance is f-divergence.
Proof: A divergence is called as f-divergence when that

divergence can be expressed in the following form φ(t) =
uφ( vu ), where t =

v
u The S-distance between u ∈ Rn

+ and v ∈
Rn
+ is given by SD(u, v) =

∑n
i=1[log((ui+vi)/2)−(log(ui)+

log(vi)/2] putting ti =
vi
ui
SD(u, v) =

∑n
i=1[log((ui +

uiti)/2)−(log(ui)+log(uiti)/2] SD(u, v) =
∑n

i=1[log(
(1+ti)

2 −
log(ti)
2 )] =

∑n
i=1 φ(t) =

∑n
i=1 xiφ(

vi
ui
) Since, SD(u, v)

can be expressed as
∑n

i=1 xiφ(
vi
ui
). Thus, S-distance is

f-divergence.

IV. PROPOSED FUZZY K-MEANS WITH S-DISTANCE
The FKM with S-distance achieves grouping by solving
equation 9.

min
C=(c1,c2,...,ck )∈Rn×k

W∈M

Es(C,W ;A)

=

m∑
b=1

k∑
a=1

(wab)sSD(ub, ca),

1 ≤ s <∞, (9)

where

M =
{
W = [wab]a=1,2,...,k

b=1,2,...,m

∣∣∣∣wab ∈ [0, 1],

k∑
a=1

wab = 1,
m∑
b=1

wab > 0
}

(10)

Generally, closed-form solution of equation 10 does not
exist [30]. According to the below mentioned theorem,
an alternating optimization method with modified equations
of 4 and 5 are available in literature to find a solution.
Theorem 4 (Alternating Optimization of FKM): Let τb ={
a|a ∈ {1, . . . , k}, ub = c(e)a

}
, where e represents the

eth epoch. Equation 11 is the modified form of equation 4
whereas equation 5 would be same, which are required in
alternating optimization algorithm for proof of convergence
globally to aminimizer or a saddle point ofEs. Theorem 4.1 is
identical to that in [31].

w(e+1)
ab =



(∑k

l=1

[
SD(ub, c

(e)
a )

SD(ub, c
(e)
l )

] 2
s−1
)−1

,

if τb = 0

1
|τb|

, if τb 6= 0 and a ∈ τb

0, if τb 6= 0 and a /∈ τb

(11)

The FKM criterion in equation 9 can be expressed with the
help of reduced unconstrained FCM criterion in theorem 4.2.
Theorem 5 (Reduced FKM Criterion [30], [32], [33]):

The reduced FKM criterion is reported in equation 12, which
is identical to

min
C∈Rn×k

E ′s(C;A) =
m∑
b=1

[ k∑
a=1

SD(ub, ca)
2

1−s

]1−s
(12)

C∗ is a local or global minimizer or a saddle point of E ′s if
(C∗,W ∗) is a local or global minimizer or a saddle point of
Es. (C∗,F(C∗)) is a local or global minimizer or a saddle
point of Es if C∗ is a local or global minimizer or a saddle
point of E ′s, where F : R

n×k
→ M;F(C) = W with each wab

estimated using equation 11. The detail proof of theorem is
explained in [32], [33].
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V. CONVERGENCE ANALYSIS
Let us consider f (γ1, γ2, . . . , γk ) = (

∑k
a=1 γ

q
a )1/q, where

q = 1
1−s < 0. Then equation 12 can be expressed as

E ′s(c1, c2, . . . , ck ;A) =
m∑
b=1

f (γk1, γk2, . . . , γkb)|γab=d(ub,ca)2

(13)

Lemma 5.1. can be stated with the help of equation 13, where
the right side of equation 14 is known as a majorant of E ′s.
Lemma 1 (Majorant of E ′s):

E ′s(c1, c2, . . . , ck ;A)

≤ majeE ′s = E ′s(c
(e)
1 , c

(e)
2 , . . . , c

(e)
k ;A)

+

m∑
b=1

k∑
a=1

df
dγab
|(e)

(
SD(ub, ca)2 − SD(ub, cea)

2
)
,

(14)

where the derivative is taken at c(e)1 , c
(e)
2 , . . . , c

(e)
k .

Proof: In [30], Gröll and Jakel proved that f (γ1, γ2, . . . ,
γk ) is concave. So,

f (γ1, γ2, . . . , γk ) ≤ f (ρ1, ρ2, . . . , ρk )+
k∑

a=1

df
dγaρa

(γa−ρa)

(15)

Equation 16 can be obtained by replacing γa and ρa using γab
and ρab respectively and taking the sum over all b.
m∑
b=1

f (γ1b, γ2b, . . . , γkb) ≤
m∑
b=1

f (ρ1b, ρ2b, . . . , ρkb)

+

m∑
b=1

k∑
a=1

df
dγabρab

(γab − ρab)

(16)

Equation 17 can be derived after putting the value of γab =
d(ub, ca)2 and ρab = d(ub, c

(e)
a )2 as well as equation 14.

E ′s(c1, c2, . . . , ck ;A)

≤ E ′s(c
(e)
1 , c

(e)
2 , . . . , c

(e)
k ;A)

+

m∑
b=1

k∑
a=1

s
df
dγab
|(e)

(
SD(ub, ca)2 − SD(ub, cea)

2
)
(17)

Every majorant obtained from equation 14 is a global majo-
rant. It could be said clearly that a majorant along an random
search direction is a global majorant. If and only if the search
direction passes the global minimizer of the global majorant
then the minimizers of global and directional majorants are
identical.
Theorem 6 (Alternating optimization as a Steepest

Descent Algorithm): If the steplength is tuned using the
majorization principle by the majorant based on equation 14
then the sequences c(e+1)a produced by the alternating opti-
mization algorithm in equations 11 and 5 and the sequences

of a steepest descent algorithm applied to equation 12 are
equivalent.

Proof: All coefficients df
dγab

of the strictly convex terms
d(ub, ca)2 are non-negative.

df
dγab

=
d

dγab

[ k∑
a=1

γ
q
ab

] 1
q

=

[ k∑
a=1

γ
q
ab

] 1
q−1

γ
q−1
ab

=

[ k∑
l=1

(
1
γlb

)−q] 1
q−1

(γ−qab )
1

q−1 =

[ k∑
l=1

γ
−q
ab

γ
−q
lb

] 1
q−1

=

[( k∑
l=1

[
SD(ub, ca)2

SD(ub, cl)2

] 1
s−1
)−1]s

= (wab)s ≥ 0

(18)

Hence, the majorant is convex w.r.t all ca. Moreover, majorant
is convex because at least one of the coefficients correspond-
ing to any ca is non-negative. So, the unique minimizer,
coa, of the majorant using the first-order both necessary and
sufficient condition is

Ocamaj
(e)
= E ′s(c1, c2, . . . , ck ;A)|ca=coa

= −2
m∑
b=1

df
dγab
|(e)(ub − coa) = 0, a = 1, 2, . . . , k

(19)

So, the value of c(e+1)a is

c(e+1)a = coa =

∑m
b=1

df
dγab
|(e)ub∑m

b=1
df
dγab
|(e)

(20)

Equation 20 would be same as equation 5 after replacing
df
dγab
|(e) by (w(e+1)

ab )s. The steepest descent can be computed
using equation 21.

c(e+1)a = c(e)a

−
1

2
∑m

b=1
df
dγab
|(e)︸ ︷︷ ︸

steplength α(e)a

·

(
− 2

m∑
b=1

df
dγab
|(e)(ub − c(e)a )

)
︸ ︷︷ ︸`
ca E

′
s(c1,c2,...,ck ;A)|cl=c

(e)
l , l=1,2,...,k

(21)

Lastly, the global minimizer majorants are majorants along
the direction with steepest descent.

Ocamaj
(e)E ′s(c1, c2, . . . , ck ;A)|cl=c(e)l
= OcaE

′
s(c1, c2, . . . , ck ;A)|cl=c(e)l , l=1,2,...,k︸ ︷︷ ︸

`
ca E

′(e)
s

(22)

Now, it is easy to define the convergence properties as fol-
lowing three corollaries using above mentioned optimization
theory.
Corollary 1 (Global Convergence of Reduced FKM): The

reduced FKM state in equation 9 converges globally to a local
minimizer or saddle point.
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Proof: using lemma 5.1. E
′(e)
s − E ′(e+1)s ≥ E ′(e)s −

maj(e)E ′s
(
c(e+1)1 , c(e+1)2 , . . . , c(e+1)k ;A

)
=
∑m

b=1
∑k

a=1
df
dγab
|(e)

(
SD
(
ub, c

(e)
a
)2
− SD

(
ub, c

(e)
a + α

(e)
a ·

OcaE
′(e)
s
)2)

=
∑m

b=1
∑k

a=1
df
dγab
|(e)

(
− 2α(e)a

(
ub − c(e)a

)T
OcaE

′(e)
s −(

α
(e)
a
)2∣∣∣∣OcaE

′(e)
s
∣∣∣∣2
2

)
=

∑k
a=1

(
− 2α(e)a

∑m
b=1

df
dγab
|(e)
(
ub − c(e)a

)T
OcaE

′(e)
s −∑m

b=1
df
dγab
|(e)
(
α
(e)
a
)2∣∣∣∣OcaE

′(e)
s
∣∣∣∣2
2

)
=
∑k

a=1

(
α
(e)
a
∣∣∣∣OcaE

′(e)
s
∣∣∣∣2
2 − 2 1

α
(e)
a

(
α
(e)
a
)2∣∣∣∣OcaE

′(e)
s
∣∣∣∣2
2

)
,

where OcaE
′(e)
s = −2

∑m
b=1

df
dγab
|(e)
(
ub − c(e)a

)
and α(e)a =

1
2
∑m

b=1
df
dγab
|(e)

=
∑k

a=1
α
(e)
a
2

∣∣∣∣OcaE
′(e)
s
∣∣∣∣2
2 ≥

∑k
a=1

1
4m

∣∣∣∣OcaE
′(e)
s
∣∣∣∣2
2 since∑m

b=1
df
dγab
|(e) ≤ m and hence α(e)a ≥ 1

2m

So, E
′(e)
s ≥ E ′(e+1)s . Together with the boundedness of E ′s

obeys lime→∞

(
E ′(e)s − E ′(e+1)s

)
= 0. The right-hand side

of the inequality would be zero if the lest-hand side tends to
zero since it is bounded by zero. Convergence to a stationary
point can be deduced from lime→∞

∣∣∣∣OcaE
′(e)
s
∣∣∣∣2
2 = 0 ∀a, and

so, lime→∞OcaE
′(e)
s = 0. Only local minimizers or saddle

points appear as limit points since {E ′(e)s } is a non-decreasing
sequence.
Corollary 2 (Local Convergence of Reduced FKM): There

exists some neighborhood Z (c∗1, c
∗

2, . . . , c
∗
k ) if C =

(c∗1, c
∗

2, . . . , c
∗
k ) is a strict local minimizer of E ′s such that

if a starting point C (0)
= (c(0)1 , c

(0)
2 , . . . , c

(0)
k ) is chosen in

this neighborhood, the FKM algorithm converges to C∗ =
(c∗1, c

∗

2, . . . , c
∗
k ).

Proof: Since the FKMalgorithm is a globally convergent
gradient method by corollary 5.1., the well-known Capture
Theorem can be applied [34].
Corollary 3 (Convergence Rate of FKM): FCM converges

linearly near a nonsingular local minimum (a minimum with
a positive definite Hessian matrix).

Proof: The proof of this statement uses a Taylor expan-
sion of E ′s and the well-known convergence rate theorem for
quadratic functions [34].

VI. EXPERIMENTS
A. DATASET DESCRIPTION
Some real and synthetic datasets are used to validate the
proposed FKM in this study. Multi-class synthetic datasets
have been generated by assigning each class one or more
normally distributed clusters of points. The synthetic datasets
consist of 2_blobs (DB1), 3_blobs (DB2), 5_blobs (DB3),
and 10_blobs (DB4) in this work. The first row of figure 1
shows the data-points of DB1, DB2, DB3 and DB4 respec-
tively. On the other hand, the real datasets are collected
from the UCI Machine Learning Repository [35] and Keel
Repository [36]. The real datasets include Iris (DB5), Glass

(DB6), Cleveland (DB7), Bank Note Authentication (DB8),
Appendicitis (DB9), Breast Cancer Wisconsin (DB10) and
Mammography (DB11). Two sets of multi-spectral and
panchromatic images along with their ground truths are
also used in this work. Both the datasets acquired using
Worldview-2 sensor at 1:25,000 scale. Satellite image data
and spectral measurements were correlated and classified
to identify the location in the studied region. The first set
of images named as DB12, consists of one panchromatic
band of high resolution 0.46m and 8 multi-spectral bands
having 1.8m resolution. Themulti-spectral band includes red,
blue, green, near infrared, red-edge, coastal, yellow and near
infrared 2. The first four are the standard bands while the rest
are new bands [37]. The size of each image is 2048 × 2048
pixels. These images were captured on 11th September, 2011.
The images enclosed an area of 10.485 ha and the coordinates
of upper left corner are S32◦51′7.91′′ and W70◦39′5.10′′

respectively. The area corresponds to a rural zone located at
Valparaiso region in Comuna de Los Andes, Chile. Seven
land covers were found in the studied area in DB12. These
land covers are generic agricultural land, water bodies, and
four different types of crops (nectarine, grapevine, alfalfa
and maize) in different phenological stages and buildings
and urban construction. The nectarine crops area could be
separated further in two different crop areas: nectarin_1 and
nectarin_2. The panchromatic image of DB12 is shown in
figure 2a.

The second set of images was captured on 19th January,
2012 using the same sensor. The images are covered in an area
of 157 ha of croplands at Coihueco district, in Nuble province,
Biobio region, Chile (S36◦37′15.7′′ and W71◦53′57.7′′). The
area is a good representation of diverse vegetation, forests,
rural constructions, and crops. The satellite images consist
of one panchromatic image of 0.59m resolution and 4 multi-
spectral of resolution 2.36m. Four spectral bands are as fol-
lows: blue band (450 to 510nm), green band (510 to 580nm),
red band (630 to 690nm), and near infrared (NIR, 770 to
895nm) band data. The size of each image is 2006 × 2172
pixels. Five land covers were found in DB13. These land
covers are forest, soil, crop, fruit, and urban construction.
The panchromatic image of DB13 is shown in figure 3a. The
labeled polygons included in the vector file are overlaid on
figure 2a and figure 3a, shown in figure 2b and figure 3b
respectively. Beside these in-situ data, pixel-wise ground
truth of land cover types are also provided with both the
datasets.

B. CLUSTER VALIDITY INDEX
For cluster analysis, the analogous question is how to quan-
tify the ‘‘goodness’’ of the resulting clusters? The notion of
‘‘goodness’’ is evaluated using validity indexes. The concept
of a validity index can be expressed mathematically. Let us
consider m data-points, A. A clustering algorithm divides A
into k-partitions namely, A1,A2, . . . ,Ak . The values of their
corresponding validity indexes are Z1,Z2, . . . ,Zk . The Zh1 ≥
Zh2 ≥ . . . ≥ Zhk will depict that Ah1 ↑ Ah2 ↑ . . . ↑ Ahk ,
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FIGURE 1. Clustering Results: (a) Original Structure (b) Grouping using FKM with Euclidean distance (M1) (c) Grouping
using Minkowski weighted FKM (M2) (d) Grouping using Weighting in FKM (M3) and (e) Grouping using the proposed
FKM (M4).

for some permutation h1, h2, . . . , hk of {1, 2, . . . , k}, where
Ai ↑ Aj denotes that the partition Ai is a better cluster than
Aj [38]. Numerical measures that are applied to conclude
different aspects of cluster validity, are classified into the
following two typesmainly. External index is used tomeasure
the extent to which cluster labels match externally supplied
class labels. Normalized Mutual Information (NMI) [39] and
Adjusted Rand Index (ARI) [40] are two external validity
indexes in this work. On the other hand, internal index is
used tomeasure the goodness of a clustering structure without
respect to external information. For this study, three internal

evaluation schemes namely, Silhouette index (SI) [41], Dunn
index (DI) [38] and Davies Boulden Index (DBI) [38] have
also been considered to determine the cohesiveness of the
obtained clusters. NMI is used as an index to compare per-
formance between two groups of data-points. On the other
hand, ARI has been considered as a cluster validation index.
Both of these metrics depict the mismatch between two data
clustering of a given set of data-points. The highest value
i.e. 1 indicates no mismatch whereas the lowest value i.e.
0 represents complete mismatch. Both of the metrics are used
to compare the partition achieved by the algorithms and the
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FIGURE 2. (a) Panchromatic image of DB12 and (b) corresponding in-situ
data showing selected regions of different types of land covers with color
labels.

FIGURE 3. (a) Panchromatic image of DB13 and (b) corresponding in-situ
data showing selected regions of different types of land covers with color
labels.

ground truth to estimate the performance of these algorithms.
These internal indexes measure how similar a data point
is to its own group (cohesion) compared to other groups
(separation). The ranges of SI varies from −1 to +1, where
a high value depicts that the data point is well matched to its
own group and poorly matched to neighbor groups. A higher
DI and lower DBI depict better clustering.

C. COMPUTATIONAL PROTOCOLS
Four experimental studies have been conducted on the above
said datasets using FKM with Euclidean distance (M1),
Minkowski weighted FKM (M2), Weighting in FKM (M3)
and the proposed FKM (M4).
PERFORMANCE COMPARISON: It is made sure that

same randomly chosen centroids were considered for each
of the algorithm and for estimating ARI, NMI, SI, DI, and
DBI values to maintain the consistency in results. The per-
formance of each clustering techniques do not rely on the
selection of initial set of centroids. However, the performance
relies on the clustering algorithm itself. The procedure is
repeated 10 times on each dataset. Then Wilcoxon signed,
ranksum and signtest have been conducted to know whether
two dependent data-points from populations having same
distribution on the obtained values of ARI, NMI, SI, DI and
DBI usingMi, where 1 ≤ i ≤ 4.

VII. RESULTS AND DISCUSSION
Table 1 reports the mean ARI, NMI, SI, DI and DBI values
computed by Mi, where 1 ≤ i ≤ 4 on synthetic and

TABLE 1. The values of ARI, NMI, SI, DI, and DBI for synthetic and real
datasets.

real datasets. It is clear from table 1 that the proposed M4
outperforms Mi, where 1 ≤ i ≤ 3 since most of the ARI and
NMI values are closer to the highest value i.e. 1. In most of

VOLUME 7, 2019 55127



A. Karlekar et al.: FKM Using Non-Linear S-Distance

TABLE 2. P-Values obtained from ARI, NMI, SI, DI, and DBI for Wilcoxon
signed rank test to compare M4 with Mi , where 1 ≤ i ≤ 3.

the cases, M4 produces greater mean ARI and NMI values
over other algorithms, which denotes the effectiveness of
M4. The values of SI, DI and DBI for the same datasets

TABLE 3. P-Values obtained from ARI, NMI, SI, DI, and DBI for Wilcoxon
ranksum test to compare M4 with Mi , where 1 ≤ i ≤ 3.

are showed in table 1. The obtained results again prove the
effectiveness of the M4 over Mi, where 1 ≤ i ≤ 3 because
the values generated by M4 are more closer to idea values
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TABLE 4. P-Values obtained from ARI, NMI, SI, DI, and DBI for Wilcoxon
sign test to compare M4 with Mi , where 1 ≤ i ≤ 3.

compared to values obtained by Mi, where 1 ≤ i ≤ 3.
The non-parametric Wilcoxon signed, ranksum and signtest
have also been conducted for comparison of M4 with Mi,

FIGURE 4. Clustering Results: (a) The output of DB12 using M1 (b) The
output of DB13 using M1 (c) The output of DB12 using M2 (d) The output
of DB13 using M2 (e) The output of DB12 using M3 (f) The output of DB13
using M3 (g) The output of DB12 using M4 (h) The output of DB13
using M4.

where 1 ≤ i ≤ 3 based on the p-values estimated by
ARI, NMI, SI, DI and DBI. The second, third, fourth and
fifth rows of figure 1 show the output of clustering algo-
rithms namely,M1,M2,M3 andM4 respectively on synthesis
datasets. Figures 4a, 4c, 4e and 4g show the clustering out-
puts ofData12 usingM1,M2,M3 andM4 respectively. On the
other hand, the clustering results ofData13 usingM1,M2,M3
and M4 are shown in figures 4b, 4d, 4f and 4h respectively.
Table 2 to table 4 show the calculated p-values. All most
all the achieved results suggest that we can reject the null
hypothesis for 5 % level of significance. It means significant

VOLUME 7, 2019 55129



A. Karlekar et al.: FKM Using Non-Linear S-Distance

evidence is available based on data with us in order to say that
M4 algorithm outperforms Mi, where 1 ≤ i ≤ 3 discussed
in this study. It is also clear from table 2 to table 4 that the
statistical results for DB1 is not significant in some cases
since p-values are greater than 0.05. However, ARI, NMI, SI,
DI and DBI values of table 1 are good enough. So, we can
conclude that most of the cases the proposed method with
S-distance outperforms state-of-the-art methods.

VIII. CONCLUSION
In this study, a new distance metric onRn

+ has been addressed
using S-divergence. Different properties of the S-distance
has also been discussed. Classical FKM algorithm has been
revised, where Euclidean distance has been replaced by the
proposed distance. A theoretical analysis of the FKM with
S-distance has also been studied by providing the proof
of convergence. The study of data complexity metrics is
an promising area of research in the field of clustering.
It deserves further study. So, we would focus on the analysis
of several dataset characteristics to retrieve information from
them and this could further be considered to design the proper
clustering algorithm.
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