IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 10, 2018, accepted April 9, 2019, date of publication April 18, 2019, date of current version April 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2911884

INDleAuthor: A Metamodel-Based Textual
Language for Authoring Educational Courses

DANIEL PEREZ-BERENGUER"“! AND JESUS GARCiA-MOLINA?2

!Centro de Produccién de Contenidos Digitales, Universidad Politécnica de Cartagena, 30202 Murcia, Spain

2Departamento de Informatica y Sistemas, Universidad de Murcia, 30003 Murcia, Spain

Corresponding author: Daniel Pérez-Berenguer (daniel.perez@upct.es)

This work was supported by the European Union (Erasmus+ Programme) under Grant 2018-1-ES01-KA201-050924.

ABSTRACT This paper presents the INDIeAuthor authoring tool, which has been developed at the Digital
Content Production Center, Polytechnic University of Cartagena (UPCT). INDIeAuthor has been developed
in order for the university to have its own tool that supports all the desired features, in addition to a
platform with which to investigate innovative features. When building INDIeAuthor, we have overcome
some limitations identified for existing authoring tools: 1) Lack of two essential content reuse mechanisms:
defined-user templates and course-independent units; 2) No support to sequence the units on a course;
3) Gamification feature is either very limited or does not exist. Two new aspects of the proposal are: providing
a family of four textual domain-specific languages rather than a graphical user interface and applying
model-based software engineering techniques during the implementation of the languages. Four essential
aspects in the course definition can be specified to the language family: content, assessment, gamification,
and sequencing. We discuss the benefits of representing courses as models and present two utilities developed
as a proof of concept. This paper also contributes with the definition of a feature model that establishes a
conceptual framework in which to compare authoring tools. An evaluation of INDIeAuthor is also presented:
a case study was carried to evaluate the language characteristics, and the tool is contrasted with eight
widely-used authoring tools. This paper presented here is the baseline of INDIe Erasmus+ European project

that is currently ongoing.

INDEX TERMS Authoring tool, DSL, model-driven development, educational modeling.

I. INTRODUCTION

Higher education institutions are currently attempting to take
advantage of elearning technologies to improve learning and
teaching processes. Adopting elearning methods demands the
creation of online educational content with the aim of provid-
ing more effective and attractive courses. Producing content
is, however, a difficult and time-consuming task that requires
knowledge and skills in each of the activities involved, i.e.,
designing learning processes, developing learning material,
defining assessments or publishing content. Facilitating the
creation of quality content is, therefore, a crucial factor if
teachers are to be engaged in elearning practices. Institutions
must, therefore, provide adequate support to teachers, such as
training, guidelines and tooling. The Polytechnic University
of Cartagena (UPCT) consequently created the Digital Con-
tent Production Center (DCPC) in 2014.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

As result of the UPCT’s long-term vision the work of
the DCPC has been mainly directed towards developing the
UPCTforma content creation environment. The university
aims to achieve several benefits by having its own environ-
ment: (i) a content creation platform with all the functionality
desired, which can be extended at any time, (ii) avoiding the
problems of having to integrate different vendors’ tools, and
(iii) the ability to experiment in the scope of content creation
tools. As suggested in [1], a huge economy of scale could be
obtained if the platform results from a collective effort, but
no such initiative is planned in Spain.

UPCTforma integrates a course authoring tool denom-
inated as INDIeAuthor in an infrastructure that provides
some basic services with which to create content, such as
standard-based tracking and interoperability, video produc-
tion, and gamification activities. A detailed description of
the component-based architecture of the UPCTforma infras-
tructure is presented in [2]. In this paper, we focus on
INDIeAuthor.

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

51396

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1548-9294

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

There are many course authoring tools that vary widely in
their capabilities. Rather than choosing one or more of these
existing tools, we have developed INDIeAuthor as part of
the UPCT strategic vision commented on above. This devel-
opment effort involved experimentation regarding several
concerns of authoring educational courses and their content.
In this paper, we present the main research contributions of
our work.

We defined a feature model for authoring tools, which
was used to evaluate 8 widely-used tools. In this evalua-
tion, we identified three significant limitations of authoring
tools: (i) A lack of two essential content reuse mechanisms:
defined-user templates and course-independent units; (ii) The
ability to sequence the course units is not supported; (iii) The
gamification feature is either very limited or does not exist.

Authoring tools provide user graphical interfaces so as
to facilitate their use. However, we consider that a textual
authoring language could be a better choice in the case of
users who are teachers of STEM fields (Science, Technology,
Engineering and Mathematics). Many of these teachers have
programming skills and/or use LaTeX and might, therefore,
prefer a textual language to a graphical interface when pro-
ducing content. A high percentage of teachers at technical
universities such as the UPCT have these abilities.

INDIeAuthor has been designed as a textual authoring
language that overcomes the limitations indicated above. It
is actually a family of four domain-specific languages (DSL)
which correspond to four main concerns or viewpoints in the
creation of educational courses: content presentation, learn-
ing assessment, gamification, and content sequencing.

Model-Driven Engineering (MDE) approaches are increas-
ingly used to build DSLs [3], [4]. INDIeAuthor has been
implemented using a model-based approach to take advan-
tage of MDE techniques and tools. The notation of the four
DSLs were defined using a textual language workbench
based on metamodeling. Language workbenches automati-
cally generate the tools needed to manage DSL scripts (or
programs), such as the language editor and the ool that
converts DSL scripts into models [5], [6]. A INDIeAuthor
execution engine was developed by means of model-to-
text transformations [3] that automate the implementation of
courses. These transformations generate the software artifacts
that implement a course, which are integrated on a framework
that provides common functionality.

INDIeAuthor models provide an abstract representation
of the courses, which is platform-independent. This kind of
representation favors the integration of INDIeAuthor with
other tools, the portability of content to different platforms,
and the creation of utilities with which to manage contents. As
a proof of concept, we have developed a UML-based course
sequencing viewer and a generator of Beamer presentations
from INDIeAuthor content models.

A very limited number of works has explored how to apply
MDE techniques in elearning. To the best of our knowledge,
the most relevant proposals are [7] and [8], both of which
focus on the definition of an operational semantic for a DSL

VOLUME 7, 2019

whose objective is to automate a particular aspect of an
elearning application. Instead, here we provide a detailed
description of all the aspects involved in the creation of a
solution based on the current practice in MDE. We also
discuss the benefits of using models. In particular, we show
the gain in productivity with respect to a previous manual
development.

Easing content reuse and maintenance is essential if teach-
ers are to be engaged in the creation of content and not
abandon this pursuit. They will be discouraged if they come
up against hurdles caused by the lack of an appropriate reuse,
such as having to maintain several copies of the same content,
or not being able to effortlessly reuse the same content for
several courses. We have taken advantage of having a textual
language to experiment with the modularization of courses,
specifically, the ability for users to define templates and the
definition of units as modules that can be reused on different
courses.

Educational Modeling Languages (EML) [9], and IMS
Learning Design in particular [10], received a great deal of
attention in the past decade. Several EMLs were proposed
for the modeling of three key aspects of the course design:
content structuring, evaluation and learning activities. With
most EMLs, modeling courses requires a great amount of
effort, principally owing to the level of sophistication they
offer and the use of XML-based notations. The use of EMLs
is not currently a common practice, and these languages are
not supported by more widespread authoring tools or learning
platforms. INDIeAuthor is the result of a more pragmatic
point of view than the one that underlies EMLs. The cre-
ation of courses is based on a simpler vision: individual
learners follow a course that includes content and evaluation
units, content can be gamified and the order in which units
are accessed may depend of the learner’s level of achieve-
ments. Languages that are easy for teachers to use are also
offered.

The main research contributions of our work are, there-
fore, the following: (i) A feature model that establishes a
conceptual framework in which to compare authoring tools.
(i) A family of textual DSLs whose objective is to create
educational courses; these languages correspond to the main
concerns on authoring courses. (iii) To show how current
MBDE practices can be applied in the elearning domain. (iv)
The languages proposed provide mechanisms with which to
improve the features of current authoring tools as regards
modularization, sequencing and gamification. (v) An explo-
ration of the benefits of using models in the domain of the
course creation.

Finally, we would like to remark that the work here pre-
sented is the baseline of INDIe,! a three-year Erasmus+
Programme of the European Union whose aim is to develop
a platform for the creation, publication and sharing of digital
content for secondary education students.

Unteractive Digital Content Platform to Share, Reuse and Innovate in the
Classroom, 2018-1-ES01-KA201-050924

51397

IEEE Access

D. Pérez-Berenguer, J. Garcia-Molina: INDIeAuthor: Metamodel-Based Textual Language

Structure. The paper is organized as follows. Section II
introduces the required background. Section III first presents
the domain analysis carried out, after which the requirements
elicited are described. This section concludes with a brief
explanation of how a course is organized, and describe a
previously applied manual process. Section IV presents an
overview of the INDIeAuthor architecture, while Section V
describes the metamodel and notation for the 4 DSL defined.
Section VI explains the main issues regarding code gener-
ation, and Section VII shows the results of the evaluation
performed. Section VIII provides a discussion of the related
work, while Section IX shows our conclusions and further
work.

Il. BACKGROUND

This section introduces the background required for a better
understanding of the course authoring approach presented in
this paper. We first briefly describe the architecture of the
UPCTforma Infrastructure on which INDIeAuthor was built,
after which some basic concepts regarding DSLs and MDE
are presented, as our work involves the metamodeling-based
creation of DSLs.

A. UPCTforma INFRASTRUCTURE

As shown in Figure 1, the UPCTforma infrastructure is
composed of a set of highly decoupled software components
that are organized in three layers: Technical Services, Con-
tent Services and Learning Analysis. As indicated above,
a detailed description of the architecture of the UPCTforma
infrastructure is presented in [2].

The Technical Services layer includes the Interoper-
ability and Management components. Interoperability is
achieved using the IMS LTI standard. Content created with
a UPCTforma can be linked to any LTI-compliant learning
platform and content created with different UPCTforma com-
ponents can be integrated. The Management component is a
front-end that is in charge of the user control access and the

UPCTforma

Infrastructure

Learning

Content Services
Analysis

UPCTplay UPCTdeploy UPCTmedia UPCTmotiva

Multimedia
Component

Motivation
Component

Gamification
Component

Depleyment
Component

Technical Services

Caliper

Management Component
{Authentication, Roles, Permissions, ...}

Tracking Component
EventAnalyzer Component

Interoperability Component
L

FIGURE 1. UPCTforma architecture.

51398

communication between UPCTforma and external platforms
and tools.

The Content Services layer includes components that pro-
vide services related to the creation of content, namely: video
production (UPCTmedia component), creation of gamifica-
tion activities (UPCTplay component), learner motivation
management (UPCTmotiva component), and content deploy-
ment (UPCTdeploy component).

UPCTmedia component allows the creation, storage, pub-
lication and visualization either in streaming or on demand of
multimedia content. The videos generated can be integrated
into a course, linked to an elearning platform using the LTI
standard or published in open mode. UPCTplay component
includes a repository of games that can be integrated into a
course. Two group games are currently available as described
in [2]. INDIeAuthor courses are published in the UPCTforma
infrastructure and the UPCTdeploy component is in charge of
its deployment.

Learning analytics can be applied to any content produced
with UPCTforma. This capability is supported by the Learn-
ing Analysis layer that includes the Tracking and Learning
Event Analyzer components. The Tracking component cap-
tures, labels and stores the events occurring when learners
interact with content. It uses the IMS Caliper standard, which
is based on LTI. The Learning Event Analyzer component
performs time-real processing of the Caliper events to obtain
the information that is required for the learning analysis and
motivation. This processing must be implemented for each
course. The information obtained is stored in a database in
order to be accessed from data analysis and visualization
tools.

Creators can specify what conditions must be met to
send bot-based motivation messages. The Event Analyzer
component checks these conditions as it processes Caliper
events and sends a notification to UPCTmotiva component
whenever a condition is met. The UPCTmotiva component
then generates and sends the corresponding bot message, as
explained in detail in [2].

UPCTforma is currently based on the LTI and Caliper
standards, but other interoperability and tracking standards
could be supported because its architecture includes exten-
sion points for this purpose.

B. DOMAIN-SPECIFIC LANGUAGES

Domain-specific languages (DSL) offer constructs and nota-
tion tailored to solve problems in a particular application
domain. They make it possible to achieve a higher produc-
tivity than when using general-purpose languages (GPL),
because they provide a higher level of abstraction. DSLs have
been used from the early days of programming, but academic
and industrial interest in DSL has increased significantly over
the last 10 years. This has been mainly motivated by the
emergence of Model-Driven Software Engineering (MDSE
or simply MDE) [3]. MDE encompasses several software
development paradigms, one of which is Language-driven
development (a.k.a. Domain-Specific Development) that is

VOLUME 7, 2019

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

based on using DSLs to automate the construction of new
applications [11], [12]. In this kind of MDE solutions, DSLs
are used to create models that are the input employed to code
generators. The term “Modeling language™ is also frequently
used to refer to DSLs.

A formal definition of a DSL consists of three
basic elements: abstract syntax, concrete syntax, and
semantics,voelter-dsl,cabot2012. The abstract syntax spec-
ifies the language concepts and the relationships among
them. The concrete syntax defines the notation used to create
models. A textual or graphical notation is normally used.
In the case of textual DSLs, the terms “script’ or ‘“program”
are also used to refer to DSL models. Finally, the semantics
establishes the meaning of the DSL models. A translational
semantics is normally applied. Model-to-model (m2m) and
model-to-text (m2t) transformations are used to translate
models into the code of a language whose semantics is well
defined (i.e., a GPL). We used only m2t transformations,
which are discussed in Section VI. These transformations are
normally written with template languages, which are easy to
learn and use.

In MDE, Metamodeling is applied as a foundation on
which to build DSLs. A metamodel formally describes the
structure of models. A model is an instance of a meta-
model, and the term conforms-to is normally used to express
the instance-of relationship between a model and its meta-
model. Object-oriented meta-modeling languages, such as
Ecore [13], are normally used to define metamodels. These
languages provide the object-oriented basic concepts tradi-
tionally used to create domain or conceptual models: classes,
inheritance, aggregation, and references. Metamodels are,
therefore, the core element around which DSLs are defined:
The abstract syntax is expressed as a metamodel, the notation
describes how the metamodel elements are rendered, and
semantics is defined as a mapping between the DSL meta-
model and other representations (i.e., GPL or HTML code).
The separation between abstract and concrete syntax is a key
characteristic of metamodeling-based DSLs.

DSLs have traditionally been built from scratch, but tools
that automate their development have recently appeared.
These tools are commonly called “DSL workbenches”.
Some widely used workbenches are Xtext and MPS for
textual DSLs, and Sirius and Metaedit for graphical DSLs.
Given the DSL metamodel and the concrete syntax defi-
nition, these tools are able to automatically generate the
DSL editor. Most textual DSL workbenches also generate
the model injector, which takes a DSL script as input and
generates the corresponding model conforming to the DSL
metamodel.

A DSL family is a set of related DSLs whose
aim is to implement software solutions for a particular
domain [6], [14]. Each member of the family addresses a
different aspect or viewpoint of the solution. A solution is,
therefore, formed of models (or scripts) for the different
viewpoints, and these models are connected by means of
relationships among their elements. Two common kinds

VOLUME 7, 2019

of relationships among models of different DSLs are the
following [6]:

o Referencing. A model expressed with one language
L1 could reference elements of models expressed with
another language L2. This requires: (i) the metamodel of
the language L1 to import the metamodel of the language
L2, and (ii) the concrete syntax of the language L2 to
provide an importation mechanism.

e Modularization. An existing model could be reused in
the creation of new models of a language. The concrete
syntax should, therefore, support a namespace or pack-
age notion.

Two kinds of compositions are consequently required: lan-
guage composition and model composition [6]. Languages
should be composed so as to create a solution by combining
models of different languages, which involves element ref-
erencing. Models should be composed do as to modularize
models of a language. These two kinds of composition have
been applied when building INDIeAuthor.

1Il. DOMAIN ANALYSIS AND REQUIREMENT ELICITATION
Once the UPCTforma infrastructure had been developed,
we tackled the construction of INDIeAuthor. In order to
achieve a better understanding of the authoring tool’s domain
and elicit the requirements, we carried out a domain analysis.
The results of this analysis are explicitly presented in form
of feature diagrams [15]. In this section, we first present the
domain analysis performed, and we then describe the require-
ments of our tool. We also briefly describe how a course is
organized, and the course development process applied while
INDIeAuthor was being built.

A. DOMAIN ANALYSIS

An elearning authoring tool (or simply authoring tool) is a
software application that is specifically created to facilitate
the production of elearning courses. The feature of ‘“‘asyn-
chronous elearning (non live)” is also discussed in [16].
A course is organized in modules (e.g. lessons or units)
that include ‘“‘learning activities”. Learners must complete
learning activities to achieve the expected learning objectives.
A learning activity ranges from simple drag and drop activi-
ties to gamification activities with which to engage students
in the classroom. The use of mobile devices now allows the
predominant use of authoring tools that can deliver content
in HTMLS format [16], [17]. A list of 67 top tools can be
found in [18]. These tools are mainly used to create content
for companies, and their penetration into universities is very
limited.

Elearning courses can also be created by means of
general-purpose content creation tools (e.g. Flash and Pow-
erPoint), Web authoring tools (e.g. Dreamweaver) or manual
coding with software languages (e.g. Javascript and HTMLY5).
However, authoring tools are prevailing over these alterna-
tives because they provide two significant benefits: higher
productivity and the fact that non-programmer users can
create their own courses.

51399

IEEE Access

D. Pérez-Berenguer, J. Garcia-Molina: INDIeAuthor: Metamodel-Based Textual Language

FIGURE 2. Feature model for authoring tools.

There are many authoring tools, which differ in the fea-
tures provided. The number of features and the variability
in the form of their support makes it difficult to classify
them.

We have organized our domain analysis into three stages.
Firstly, we have studied several sources of information on
elearning authoring tools [16], [18], [19]. This information
was then used to define a feature model in order to system-
atically organize the set of relevant features representing the
variability of the domain. This framework has been used to
evaluate 8 widely used authoring tools.

Figure 2 shows the feature diagram proposed. Course-
independent units and Learning analytics features will be
expanded in separated diagrams. The diagrams for the Pub-
lish and Assessment features will not be shown owing to space
limitations. We comment on each of the features in the feature
model as follows.

1) CONTENT FEATURE

Courses are commonly organized in units (or lessons) formed
of sections. Sections may show different kinds of content. All
the tools provide typical widgets or control elements in Web
user interfaces. Video content is also supported by most of
the tools. Games are another kind of content that increasingly
provide more authoring tools.

Videos can be uploaded/published or accessed through a
link. An external streaming server and/or local server can be
used as a video-on-demand platform. Games are stored in a
repository, and can be for individuals or groups.

Templates provide a content reuse mechanism. A template
establishes an arrangement of content, including placehold-
ers. When a template is used, the creator must replace place-
holders with concrete content. Templates can be part of a
library provided by the tool or can be defined by content
creators.

Widgets, videos or games can be used to create learning
activities (e.g., complete a drag and drop activity, play a
video, or play a game of hangman). Each activity involves
one or more actions to be performed by learners. Scores can
be assigned to individual actions or activities to measure the
student’s learning progress.

51400

2) PUBLISH STANDARDS FEATURE

Once a course is created, it must be published to be accessible
from LMS or MOOC elearning platforms. There are two
options by which to publish a course: (i) it can be packaged
and uploaded onto an elearning platform, or (ii) it can be
published on the platforms supporting authoring tools (e.g.
the UPCTforma environment) and linked from an elearning
platform. Several standards with which to package content
are available (SCORM, xAPI, cmi5, IMS CC, IMS CP and
AICC), and IMS LTT is the standard used for remote access.

3) COURSE-INDEPENDENT UNIT FEATURE

This feature refers to the possibility of creating units that
are independent of a particular course. This would allow the
reuse of the same unit on different courses. A course would,
therefore, be created by combining (i.e., importing) several
separated units. We have identified two points of variation in
the combination of units.

o Importation: The format to express how a unit is
imported can be proprietary or standard, and the units
can be imported in the form of a link or content. If a
unit is imported as a link, the changes made to it are
automatically reflected on all the courses that import
it. Otherwise, an importation of content involves the
existence of several copies of the same content, and
content changes will require the modification of each
existing copy.

e Delivery: A course could be delivered to users in the
form of a single package or link. This feature is distin-
guished from the ‘““Publish standards” feature because
the tools can provide a different support for the publish-
ing of courses created by importing units

4) LEARNING PATHS FEATURE

Learning paths establish the order in which units or a unit’s
contents can be accessed in the learning process. By com-
pleting a learning path, learners achieve one or more learning
objectives. The term Sequencing is used to denote a learning
path through the units of a course, while the term Branch-
ing refers to sequence contents included in the same unit.

VOLUME 7, 2019

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

FIGURE 3. Multiple units feature for authoring tools.

Sequencing can be limited to express a sequential order for
units or a rule-based conditional access could be provided by
creators. In a conditional access, conditional expressions are
associated with units to check a learner’s level of achievement
(e.g. if the score is greater than a particular value). Conditions
can be expressed in different forms of rules. The absence of
a sequencing means that learners can freely choose the order
in which to complete the units.

5) ASSESSMENT FEATURE

Assessment or evaluation is a feature supported by all the
authoring tools, but in different ways. All the tools offer the
typical types of questions as a single answer, multiple answers
or a filling answer. We have distinguished four main points of
variation as: (i) whether the assessment can be performed in
a training mode; (ii) the kind of feedback given to learners
for correct and incorrect answers; (iii) what choices about
questions can be randomized, e.g. selection and the ordering;
(iv) whether the questions can be defined only by teachers or
they can be selected from a question bank that can be updated
by teachers.

6) LEARNING ANALYTICS FEATURE

Learning analytics can be defined as ‘“‘the measurement, col-
lection, analysis and reporting of data about learners and their
contexts, for purposes of understanding and optimizing learn-
ing and the environments in which it occurs” [20]. Learning
analytics, therefore, involves three aspects: tracking, event
analysis and visualization. We have considered variations for
each of them.

o Tracking. The features of tracking are: the event source,
the storage format and the storage platform. An event
can be recorded for user interactions with any kind
of content: widgets, multimedia elements, units and
courses. Events to be recorded can be predefined or a
tool can allow the elements whose interactions are reg-
istered to be chosen. The storage format can be private or
based on standards, such as SCORM, xAPI and Caliper.
The tracking generated can be stored on the elearning
platform on which the course is deployed or in private
or public learning record stores (LRS).

o Event analysis. The event analysis can be predefined or

VOLUME 7, 2019

FIGURE 4. Learning analytics feature for authoring tools.

the creators can provide a mechanism to implement the
desired analysis.

o Visualization A predefined analysis involves a set of
predefined dashboards. Conversely, dashboards could be
chosen if a course-specific analysis is implemented.

7) GAMIFICATION FEATURE
Units can be gamified by means of elements such as points,
badges, missions or ranking. For example, a ranking could be
based on the points obtained in the different units of a course,
or missions (extra units) can be proposed to the student.
User Interface Feature: Three kinds of user interfaces can
be considered: graphical, textual or hybrid.
License: We have distinguished free and proprietary
licenses.

B. REQUIREMENTS FOR INDIeAuthor

In this sub-section we describe the functionality provided
for INDIeAuthor. The configuration of the proposed feature
model provides a list of features. We have also considered
the following high-level quality attributes: interoperability,
reusability, maintainability, portability, and adaptability. The
ADL report states that some of these attributes are essential
features for learning environments [19]. We show the choices
for each point of variation of the top-level features below,
while in section VII, we discuss how the quality attributes
mentioned have been achieved.

1) CONTENT ELEMENTS

In addition to typical widgets, video and games will be sup-
ported by the UPCTmedia and UPCTPlay components of
the UPCTforma infrastructure. A template mechanism is pro-
vided that allows creators to define their own templates and
use predefined templates. Learning activities can be created,
and a score can be assigned to each activity.

A content unit is formed of one or more sections. Each
section begins with a background image and a title, and
is composed of rows and columns. A column can contain
visual elements (widgets, video and games) or recursively
nested rows and columns. A section is completed when all
its learning activities have been completed. Students must
perform one or more actions to complete an activity. When
an action is performed, a widget (e.g. a tick) is activated to
indicate this. A content unit is completed when all its sections

51401

IEEE Access

D. Pérez-Berenguer, J. Garcia-Molina: INDIeAuthor: Metamodel-Based Textual Language

have been completed. The learning progress in a section is
shown as the percentage of actions completed.

Some of the widgets provided are ImageTextOver (a hidden
text appears in an image when the learner clicks onto it), Ver-
ticalAccordion and HorizontalTabs (a vertical or horizontal
arrangement of tabs; the learner selects which content to view
by clicking a tab), AnimationInOut (animation on a graphic
provided by the creator, the learner has to click onto the wid-
get), RectangleDragAndDrop (drag and drop interaction in
which learners must correctly associate concepts and correct
definitions)

A bank of templates has been created with different means
of organizing content, such as: arow with a single column that
contains a Vertical Accordion widget (OneColumnVerticalAc-
cordion), or a RectangleDragAndDrop widget (OneColumn-
RectangleDragAndDrop).

2) PUBLISH STANDARDS

The option chosen was remote access through LTI links
because UPCTforma is LTI-compliant. The content created
is published in the UPCTforma deployment component, thus
allowing content to be linked from LTI-compliant e-learning
platforms and applications.

3) COURSE-INDEPENDENT UNITS

This feature is supported. Units are delivered as LTI interop-
erable links. They are imported through these links, and no
copies are made. Units must be configured as accessible to or
hidden from the student at the beginning of the course.

4) LEARNING PATHS

At this moment, sequencing but not branching is provided.
The content of a unit can be followed in any order. When
a course is produced, its creators will be able to choose the
kind of sequencing: Sequential, conditional and free access.
We have considered four types of conditional access: strong,
inhibitor, weak, and score. With the exception of score, these
types were taken from [21]. When conditional access is cho-
sen, each unit should be labeled with one of these types. When
a learner starts a course, all the units are closed except those
that the creator indicates should initially be open. The types of
access determine how the closed units will be opened. Units
labeled as strong or inhibitor indicate which units will be
opened or closed, respectively, when they are completed. The
Score label is used to indicate which units will be opened
depending on the score obtained. Finally, a unit can be labeled
as Weak to indicate that one or more units will be opened only
when it is opened.

5) ASSESSMENT

The tool should allow the creation of assessment units sep-
arated from content units. Training and evaluable units will
be provided. Final units will have only one attempt. It will
be possible to specify the number of attempts and the type
of grade (the highest, the lowest or the average) in training
units. We have considered four question types: SingleAnswer,

51402

MultipleAnswer, FillingAnswer, and TrueOrFalse. Feedback
will be provided for each correct or incorrect answer. It is
possible to define a bank of questions. The questions in
an evaluation unit can be defined by teachers or randomly
chosen from the bank.

6) GAMIFICATION

The tool makes it possible to gamify a complete course or
individual units. Typical gamification elements are, there-
fore, provided for this purpose: points, badges, missions and
ranking. Creators can assign badges or points for (i) the
completion of a content unit, (ii) the level of achievement
of learning activities, and (iii) the completion of an evalua-
tion unit depending on the score obtained. For each course,
a ranking is included to sort students according to the points
obtained in all the units. According to the obtained points,
missions or extra units can be proposed to the student.

7) LEARNING ANALYTICS

Tracking data are recorded in any kind of content: courses
and units (e.g. objectives achieved or time spent), evaluation
units (e.g. scores or responses), widgets (e.g. the answers in
a drag&drop), video (e.g. time taken to watch a video), and
games (e.g. points or time). Specifying events to be recorded
for each kind of element is a very time consuming task and
we have, therefore, preferred to record all the events. The
tracked events can be stored on elearning platforms or in LRS
(public or private). Predefined and customized analysis and
visualization can be performed. This is not addressed in this
paper, but a detailed explanation for a gamification activity is
provided in [2].

8) LICENSE
INDIeAuthor will be available as freeware software.

C. COURSE PRODUCTION MANUAL PROCESS

Prior to developing the authoring tool presented here,
courses were manually implemented by Web developers. The
CPDC/UPCT defined a content production process that is
explained in detail in [22]. This process consisted of four
stages.

1) PowerPoint is used to write a script that describes
the course content by using the templates and widgets
available. The teacher and a scriptwriter interact to
create the script. Each template and widget has an
identifier that allows it to be referenced.

2) the script is provided to the web developers. They
adapt the template code to each particular use, among
other development tasks. The scriptwriter tests that the
content developed conforms to the script. Once the
scriptwriter states that no errors have been detected,
the stage ends with the publication of the content.

3) the content published is reviewed by the teacher who
informs the scriptwriter of the changes to be made. This
phase ends when the content is validated by the teacher
and the scriptwriter.

VOLUME 7, 2019

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

4) a programmer specialized in interoperability adds the
code for the required standard: LTI or SCORM. The
URL for LTI or the SCORM file is provided to
the teacher. More stages are necessary if translation to
another language is required.
In next section, we show how this manual process was
automated in INDIeAuthor using a language engineering
approach.

IV. OVERVIEW OF THE INDIeAuthor ARCHITECTURE

As Figure 5 shows, INDIeAuthor consists of three elements:
(i) textual editors for the four DSL defined, (ii) a code
generator that integrates the DSL execution engines, and
(iii) a framework that is in charge of the interaction with
the UPCTforma infrastructure: UPCTmedia, Tracking and
Interoperability components. These three elements constitute
a model-based generative architecture. These architectures
are the result of applying a domain specific development
(a.k.a. language-driven engineering) [11], [12].

Content Assessment | Sequencing | Gamification

Editor Editor Editor Editor
Content Assessment Sequencing Gamification
DSL Engine DSL Engine DSL Engine DSL Engine

Code Generator

INDleAuthor

UPCTforma Authoring Framework

Content

Interoperability

Module Tracking Module
Module

T T T

T T T

1 1 1

A 4 A 4 v
Multimedia Tracking Interoperability
component component component

UPCTforma Infrastructure

FIGURE 5. UPCTforma authoring tool.

The INDIeAuthor framework provides the functionality
common to all the courses. With regard to learning data
tracking, several Caliper sensors must be implemented for
each course: a sensor for each unit and another for the course
itself. We have used several Caliper profiles to represent the
tracking data collected (entities, events and actions involved
in learning interactions).

The generative architecture built is based on a family of
four DSLs which make it possible to specify the main aspects
or viewpoints of a course.

o Content DSL to define content units,

o Assessment DSL to create assessment units,

o Gamification DSL to gamify content, and

o Sequencing DSL to specify the order in which units will

be presented to learners.

A textual editor is provided for each DSL. Scripts created
with these editors are converted into models by means of a
model injector. The DSL editor and model injectors have been

VOLUME 7, 2019

FIGURE 6. UPCTforma authoring tool architecture.

generated by the Xtext tool used to build the DSLs. Figure 6
illustrates how the generative architecture that implements
INDIeAuthor works. Once a teacher has created the scripts
(Content, Assessment, Gamification, and Sequencing) for
a particular course, he/she should use the Code Generator
tool to automatically generate the code (HTML, CSS, JSON,
JavaScript and PHP files) that implements the course in the
UPCTforma Authoring framework (framework completion
technique).

The Code Generator implements a workflow that exe-
cutes the DSL engines developed for each DSL, as shown
in Figure 5. These DSL engines have been implemented as
model-to-text transformations. These transformation will be
explained later in Section VI.

V. DSLS IN INDleAuthor: METAMODEL AND NOTATION
In this section, we present the metamodel and notation of
the four DSLs defined for INDIeAuthor. The concepts and
relationships of each metamodel will be described as the
notation is introduced.

A. A DSL FOR CREATING CONTENT UNITS

Figures 7 and 8 show the metamodel defined for the Content
DSL. A content definition can include zero or one content unit
or zero or more template and type definitions. The definitions
of templates and types should be declared separately from
those of units in order to favor reusability.

A template and several types are defined in the script
shown in Figure 10, and a content unit definition script is
shown in Figure 9. Each content definition must be part
of a package. Typical conventions of package naming can
be followed. A qualified name of a unit, template or type
is formed of its name preceded by the package name. The
package notion is used to achieve model composition (i.e.,
modularization), as described in Section II-B. We shall now
use these two scripts to describe the concepts and notation of
the Content DSL.

1) SIMPLE AND COMPOSITE TYPES

A type can be simple (or primitive), composite or widget.
There are five simple types: Text, Image, Video, Game, String
and Any. A text value is formed of one or more Paragraphs.
Video and game values are specified by means of the ID of

51403

IEEEACC@SS D. Pérez-Berenguer, J. Garcia-Molina: INDIeAuthor: Metamodel-Based Textual Language

[0..*] imports
E contentDefinition [0.] types

© author : EString

o title : EString importedNamespa

[NameElement

o

ce : EString

© name : EString

7Y [0..1] unit r ‘ [1..*] sections
I
E contentElement H Type .
0.4] rows
0.4 [1..1] type [1..1] listtype

[1..1] fieldtype 1.*] widgettypeelements

[[| [\ \
H widget E composite ‘ | [E PlaceHolder | | E simpleType || E compositeType || E widgetType

|
% [0.4] elements %

E Listtype |

‘ B Row H & column | | g Field | | B RecordType | |
< widih : EString ’ ‘

[0.*] columns [1..*] recordtype

[1..1] wi

N

FIGURE 7. Content DSL metamodel.

"
[0."] templates E] ContentDefinition
[0..*] rows

Q NameElement

= name : EString
/a)

H Fieldvalue E contentElement
- .1
[0..*] templateelements
[1..*] recordvalue:

—

‘ [1..*] listvalues
|)

H UseTemplate

E TemplateDef

[0..1] typetemplate

w

| El SimpleElement | | E RecordValue | | Q ListValue

[0..1] usetemplate

i
| { \ |

E Text E Image E Video a Game E Row

= url : EString = id : EString = id : EString

[Paragraph
= text : EString

[1..*] paragraphs

FIGURE 8. Content DSL metamodel (Templates and values).

a UPCTmedia video or a UPCTplay game, respectively. An A composite type can be a record or a list. A record is a set
image value is also specified using the URL that indicates its of pairs (or fields), and each pair is defined by its name and a
location. The Any type is used to indicate that a variable can type. A list is a sequence of values of the same type. Records
have a value of any existing type. and a list can be combined to form complex structures.

51404 VOLUME 7, 2019

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

A record value is constructed by giving a value to each field.
A list value is constructed by enclosing the list of values in
curly brackets. The DemoTemplatel content definition (see
Figure 10) includes examples of record and list type declara-
tions. The 7ab type is a record of two fields: name of text type
and content of Any type; The TabList type is a list of Tabs;
and the Animation type is a record of three fields: size of text
type, background of image type, and images whose type is a
list of images.

2) WIDGET TYPE

A widget type is declared by enumerating the types of the ele-
ments that form the widget element. For example, the Image-
TextOver widget type is declared as an enumeration of two
types: Image and Text, as shown in Figure 10 (line 14). Lists
make it possible to specify that a widget contains an arbi-
trary number of elements of a particular type. For example,
a VerticalAccordion can be formed of a variable number of
Tabs (Figure 10, line 6). Types of widgets provided by a
particular Web platform are declared in a pre-built content
unit definition. In our example, DemoTemplatel declares the
widget types used in the example of content unit definition,
but these declarations would be part of the content definition
including all the widget types of the Web platform used to
give the course.

A widget value is constructed by indicating the widget
name followed by the widget type’s name, and the list of
values enclosed in curly brackets. This list will include
a value for each type in the widget declaration, as illus-
trated by the value sectionlverticalaccordion of
VerticalAccordion type in the DemoUnitl script (Figure 9,
line 16-23). Note that a name is given to each widget added
to a course. This allows each widget to be associated with its
tracking. Widget values can be used in column statements and
template declarations, as explained below.

3) UNIT AND SECTION DEFINITION

A content unit definition aggregates one or more sections, and
each section organizes its content in a set of rows formed of
columns. Units and sections are identified by a name. A unit
can also specify the name of its author, and a section has
a title and a background image. Figure 9 shows the content
unit definition, denominated as ’DemoUnit1’, which has been
authored by ’Daniel Perez’ (line 4). This unit has only one
section, entitled ’Section 1°, whose background image is
the file named ‘‘cabecera.jpg” (line 6) and whose title is
“ENTREPRENEURSHIP” (line 7).

Rows and Columns are recursively composed, as a column
can also contain other rows. A row declaration includes one
or more column statements. A column statement specifies the
associated element, which can be a simple value, a widget
value, or a row. A row can be created from scratch or by
re-using a template, as illustrated by the two rows declared in
the "Section 1’ section (lines 8-23). The first row declaration
specifies a row that is created from scratch (lines 8-13). It has

VOLUME 7, 2019

1 ContentDefinition DemoUnit1 {

2 package upctforma.unitl;

3 import upctforma.templatel.x;

4 Unit ’Demo Unit 1’ ’Daniel Perez Berenguer’ {

5 Section Section] {

6 image ’cabecera.jpg’

7 title’ENTREPRENEURSHIP AND ENTREPRENEURS’
8

row{
9 column{
10 width *12’
11 Text{ p ’<h2> The importance of ...</h2>’}
12 }
13 |
14 row {
15 usetemplate *’OneColumnVertical Accordion’ {
16 Widget ’sectionlverticalaccordion’: Vertical Accordion{
17 [
18 {
19 name: Text{ p "NEED FOR ACHIEVEMENT" },
20 content: Video{ id "Nzk="}
21 }
22]

23 }}iiby

FIGURE 9. Example of unit definition.

only one column that contains a text value. The second row
declaration uses the OneColumnVerticalAccordion template
to create a vertical accordion that has only one tab (lines
14-23). We explain how the templates are declared and used
below.

4) TEMPLATES

Reusable content can be defined in the form of templates.
A template can be reused to define new units or templates.
A template specifies a content structure by indicating place-
holders rather than concrete elements. In a template declara-
tion, placeholders are expressed as the type of the expected
element (Simple or Widget). When using a template, it is
necessary to replace each of its placeholders with a content
element of the expected type.

The OneColumnVerticalAccordion template is defined in
the script shown in Figure 10 (lines 16 to 22). The template
arranges content in a single row with a single column that
expects a Vertical Accordion widget (i.e., a placeholder).

The use of a template is expressed by means of the usetem-
plate keyword followed by the template name, and a list
of values enclosed in brackets. The type of each value in
the list must be identical to the type associated with the
corresponding placeholder. The "Demo Unit 1’ unit (Figure 9)
shows an example of the use of a template in the declaration of
the second row (lines 15-23). A Vertical Accordion type value
replaces the single placeholder in the template declaration.
When using a template, it is necessary to import the tem-
plate definition. "DemoUnit]’ imports the OneColumnVerti-
calAccordion template (line 3). A content definition can also
import types. These importations are an example of model
composition.

51405

IEEE Access

D. Pérez-Berenguer, J. Garcia-Molina: INDIeAuthor: Metamodel-Based Textual Language

1 ContentDefinition DemoTemplate1{
2 package upctforma.templatel;
3 types{
4 Tab{ name: TextType, content: Any },
5 TabList{ list_of Tab },
6 widget Vertical Accordion{ TabList }
7 ImageList{ list_of ImageType},
8 Animation{
9 size: TextType,
10 background: ImageType,
11 images: ImageList
12),
13 widget AnimationInOut{ Animation },
14 widget ImageTextOver{ ImageType, TextType}
15 }
16 templates(
17 TemplateDef OneColumnVertical Accordion{
18 row{
19 column {
20 width *12’
21 Placeholder VerticalAccordion
22 Y

FIGURE 10. Example of template definition.

B. A DSL WITH WHICH TO CREATING ASSESSMENTS
Figure 11 shows the metamodel defined for the Assessment
DSL. An Assessment aggregates a set of assessment unit
definitions that can be of two kinds: Training and Final. A
training unit specifies the number of attempts and the type
of grade that will be stored (the highest, the lowest or the
average). Final units have only one attempt. Both kinds of
units aggregate Questions of different types: SingleAnswer,
MultipleAnswer, FillingAnswer, and TrueOrFalse. A single
answer question is defined by a statement (i.e., a Paragraph),
a set of Single answers, and the number of the correct answer.
A multiple answer question is defined by a statement (Para-
graph), a set of Multiple answers. A Multiple answer has a
boolean attribute that indicates whether it is true or false. A
filling answer question is defined by a set of Holes. A hole
has an attribute that indicates if the associated text is hidden
or visible. A true or false question is defined by a set of Asser-
tions. Each assertion has an attribute that indicates whether
it is true or false. Each question has a different feedback
depending on whether the answer is correct or incorrect.

Figure 12 shows an example of an assessment that aggre-
gates an assessment unit definition denominated as ’Evalu-
ationl’. This assessment unit is final and aggregates a set
of questions. The first question declared is of the ’single
answer’ type (lines 5-16). An assessment unit also declares
the number of questions that are shown in each attempt. This
number is 10 in the ’Evaluation1’ unit (line 3).

C. A DSL FOR SEQUENCING UNITS

Figure 14 shows the metamodel created for the Sequencing
DSL. A Sequencing definition determines the order in which
the units can be followed in the learning process. It consists
of a set of unit flows (Sequencing Unit metaclass). A unit flow
must be defined for each content and assessment unit. A unit

51406

flow expresses the initial status of the associated unit and
which units are open when the unit is completed. The initial
status can be open or closed. A closed status restricts access
to the completion of other units. Free access is achieved with
“open’ status for all units. Conditional learning paths can be
expressed by means of conditions that are assigned to units.
We have considered the four kinds of conditions introduced
in Section III: strong, weak, inhibitor or scores. Please note
that the sequencing a course requires the referencing of all its
content and assessment units. The Sequencing metamodel,
therefore, imports elements from Content and Assessment
metamodels, as shown in Figure 14. Moreover, a Sequencing
script must import all the units from the sequenced course,
as shown in the script in Figure 13. This script shows a unit
flow for the ’Evaluationl’ evaluation unit, which includes
conditional flows to the "Demo Unit 3’ and "Demo Unit 4’
units. The initial state of Evaluationl’ is closed.

D. A DSL FOR GAMIFYING UNITS

Figure 16 shows the metamodel created for the Gamification
DSL. Content and Assessment units, along with widgets, can
be gamified with badges, points and missions. A gamification
definition declares the badges used and specifies the gami-
fied units and widgets. This metamodel, therefore, imports
ContentUnit and Widget elements from the Content meta-
model, and AssesmentUnit elements from the Assessment
metamodel.

A badge is defined by its name, description, and url. A
gamified unit is defined by its URL and an image, and has one
or more achievements of points, badges and missions. Points
and badges can be awarded in three different ways: (i) when
the unit is completed (Completed type), (ii) depending on
the access frequency to the unit (LoginDaily type), or (iii)
depending on the score obtained in the unit (Scores type). In
the case of points, the number of attempts can be checked if
the type is Completed, and a score interval can be applied
if the type is Score. Widgets can only be gamified with
points. The gamification of a widget can be applied to all or
some of the units in which the widget is included (widgetref
relationship between WidgetGamify and WidgetType in the
metamodel). Missions (extra units) can be proposed to the
students on the basis of points accumulated on a course.

Figure 15 shows an example of a gamification script that
includes the following statements: the definition of a badge
(lines 5 to 8), the gamification of a RectangleDragAndDrop
widget with points (lines 10 to 13), and the gamification of
the Evaluationl assessment unit (lines 15 to 30), including a
mission proposed to the student based on the points obtained
on the course (lines 26 to 30). The completed point type
has been used to assign points according to the number of
attempts required by the student to finish the Rectangle-
DragAndDrop activity. The gamified unit declaration spec-
ifies that: (i) A ’Badgel’ is achieved when the ’FinalUnit1’
unit is completed, and (ii) the points achieved depending on
the grade obtained (e.g., 10 points if the grade is between
40.00 and 49.99).

VOLUME 7, 2019

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

£l NameElement

© name : EString
/A

€ d [
2 TypeHole ~highest H evaluation
D Statement : visible = middle
= ot EStng hole lowest E EvaluationUnit
~, numberquestions
:Elnt=0
——
[|] [0.%] questions
‘ [Paragraph H Hole B Assertion |
-, type : TypeHole = || _ value : EBoolean —— | E Training || E Final |
visible = false [Question © Attempts : Elnt = 0
- correctfeedback grade : ’
EString © TypeGrade =
incorrectfeedback highest
: EString
—
[[[|
| H singleAnswer H MultipleAnswer E FillingAnswer || H TrueorFalse |
o correctanswer :
Elnt=0
/1 A
/T /A ‘ B single || B Multiple |
- value : EBoolean
S S A 0.4 holes = false
Pan) Fant [0.7] assertions
7T\0.4] answers T
[0.*] answers
FIGURE 11. Evaluation abstract syntax metamodel.
1 Evaluation ’Evaluation’ { Sequencing{
2 Final ’Evaluationl’ { import upctforma.templatel.=, upctforma.unitl.x,
3 numberquestions 10 upctformaevalua.evalual.x;
4 questions{ unitFlow{
5 SingleAnswer { state closed
6 statement ’ An enterprise is:’ evaluationunit "Evaluationl’
7 answers{ flow{
8 ’An economic unit of production.’, type scores
9 ’A department of a company.’, InitialScore 00.00 FinalScore 65.00
10 ’A stakeholder.’, nextunit 'Demo Unit 3’ },
11 9%’ The external functions develop by a company.’ flow{
12 } type scores
13 correct 1 InitialScore 65.01 FinalScore 100.00
14 correctfeedback ’Correct’ nextunit 'Demo Unit 4’} }
15 incorrectfeedback ’Incorrect’ unitFlow {..}
16 |3 }
17 MultipleAnswer { . .
18 FIGURE 13. An example of sequencing script.
19 }
3(1) } 1 These transformations take as input a DSL model and gener-

FIGURE 12. Example of assessment unit definition.

VI. CODE GENERATION FROM MODELS

A DSL engine was implemented for each INDIeAuthor DSL,
as shown in Figure 17. As indicated in section IV, each of
these engines was implemented as an m2t transformation.

VOLUME 7, 2019

ate code that is part of the implementation of the course (e.g.
HTMLS and JavaScript code). A workflow was implemented
to integrate the execution of the DSL engines. The content and
assessment scripts must be processed before the sequencing
of the gamification scripts. This is because units must be
available to express how they are ordered or gamified. In this
section, we describe how each of the DSL engines (i.e., m2t
transformations) works.

51407

IEEE Access

D. Pérez-Berenguer, J. Garcia-Molina: INDIeAuthor: Metamodel-Based Textual Language

v

| E} EvaluationUnit E]|

E ContentUnit Iz||

= author : EString = numberquestions : Elnt = (

[0.1] evalfef

E] SequencingUnit

043 = open
= URL : EString
= image : EString

)

[0..1] nextcontentunit
[0..*] unitsaccess

E conditionalAccess

type :
= MissionType =
strong

[0}.1] nextevaluationunit

B SequencingDefinit

Py [0..*] imports

-, importedNamespa

ce : EString

[0..*] units

-, state: StateType

[0..1] scorerange

MissionType
£ StateType

= strong

~ open = weak

= close

= inhibitor

= scores

g ScoreRange

initialScore :
[=]
EDouble = 0.0
finalScore :
=]
EDouble = 0.0

FIGURE 14. Sequencing abstract syntax metamodel.

Gamification {
import upctforma.templatel.#, upctforma.unitl.x,
upctformaevalua.evalual.x;
badges{
Badge Badgel {
description *Badge obtained by final unit 1’
url ’evaluationl.jpg’
}}
WidgetPoint {
10 widget RectangleDragAndDrop
11 Point{ type completed points 100 attempt 1 },
12 Point{ type completed points 80 attempt 2 },

O 001 WL Wi —

13 Point{ type completed points 50}
14}

15 UnitPoint{

16 evaluationunit "Evaluation1’

17 URL ’https://server_url/evaluationl/index.php’
18 image ’./images/evaluationl.png’

19 BadgeUnit{ type completed Badgel Evaluation] }
20 Point{ type scores points 10

21 InitialScore 40.00 FinalScore 49.99 },
22 Point{ type scores points 60

23 InitialScore 50.00 FinalScore 79.99 },
24 Point{ type scores points 100

25 InitialScore 80.00 FinalScore 100.00 }
26 missions{

27 Mission {

28 InitialPoint 80 FinalPoint 160

29 extraunit *Extra Unit 1’}

30 1}

FIGURE 15. Example of Gamification script.

A. CODE GENERATION FOR CONTENT DSL

Content models are independent of a particular software
technology (e.g. a programming language). We have used
HTMLS, CSS, JavaScript and PHP to implement content
units. The m2t transformation implemented is executed for

51408

each Content model, and a content unit is outputted in each
execution. Sections aggregated in the ContentUnit element
of a Content model are traversed. Firstly, a HTMLS5 section
is created with a title and a background image. The rows in the
section accessed are then traversed to generate the content to
be included in the section. It is necessary to check whether
or not a row is based on a template, and the placeholder
values are retrieved if a template has been used. The columns
in the row are then traversed to recover the associated con-
tent element. Code for each content element is generated,
and placeholders are replaced with values if required. Note
that LaTex mathematical expressions are supported as text
elements. A JSON file is additionally created for each unit,
which is intended to register the unit’s sections and widgets.
In this file, widgets are grouped by sections, and each of them
has a unique identifier. The INDIeAuthor Framework uses
this JSON file to show the percentage of widgets completed
for each section. Whenever a widget is completed, the frame-
work sends the unit progress to the elearning platform for
it to be stored in the grade book. This is carried out by the
Interoperability component. A PHP index file is also created
with a header and a section menu.

B. GENERATION CODE FOR ASSESSMENT DSL

The INDIeAuthor Framework contains the code that manages
assessment units. This code is parameterized by a JSON
file that includes data on an assessment: number of ques-
tions, assessment type (training or final), question statements,
responses, and the correct or incorrect feedback. The frame-
work uses this information to deploy the assessment unit.
The JSON file is generated by the m2t transformation imple-
mented, which is executed for each Assessment model.

VOLUME 7, 2019

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

2 RuleType
. - completed
[0.*] badges = loginDaily
- scores
E Gamification
[0..1] nexteval {0.] imports
[0.1] nextunit [0.4]widgets
| El contentunit El| | E EvaluationUnit L}
© author : EString ., numberquestions [0.] units E import
Eint=0 _, importedNamespa
ce : EString

[0.#] unitref

H unitcamify

1

El WidgetGamify

10.1] unitref [0..*] missions

H Mission

[0..*] defbadges

[0.7] pdintsunit

= URL : EString
© image : EString

[0.#] poirftswidgetdef

0.] widgetref _

[widgetType L]

[0.*] missionrange

[unitBadge

- type : RuleType =
completed

© name : EString

-, description :
EString

© url : EString

E scoreRange

- InitialScore :
EDouble = 0.0

- FinalScore :
EDouble = 0.0

[l PointAchievement >l
o, type : RuleType = [1..1] widgettype
completed
= points : Ent =0
= attempt : Elnt =
[widget L

[0.#] pointrange

FIGURE 16. Gamification abstract syntax metamodel.

FIGURE 17. Code generation from UPCTforma models.

C. CODE GENERATION FOR GAMIFICATION DSL
The m2t transformation implemented is executed if a Gami-
fication model exists. This transformation is organized in two
steps. Firstly, gamified widgets are iterated and a Javascript
object is generated for each of them. This object registers the
points that are assigned depending on the number of attempts
to complete the activity. As indicated previously, a widget
gamification definition can be applied to specific widgets or
all the units on a course. In the case of specific definitions,
a map is used to associate each generated Javascript object
with the units in which it is applicable.

Secondly, gamified units are iterated and another Javascript
object is generated for each of them. These objects register

VOLUME 7, 2019

points (by rank or attempts), badges and missions associated
with each unit. This object will be used to assign badges and
points during the user’s interaction. In addition, missions will
be proposed to students based on the points accumulated on
the course. It should be noted that all units can be deployed in
normal or gamified mode if there is a gamification definition.

D. CODE GENERATION FOR SEQUENCING DSL

The m?2t transformation implemented is executed if a
Sequencing model exists. Given an input sequencing model,
the code that implements the course sequencing is generated.
Unit flows are traversed and the access type specified for
each flow is checked. The following code is also gener-
ated: (i) State checking calls to routines of the INDIeAuthor
Framework; (ii) Code that shows an icon when a user signs
into a unit whose state is open. (iii) Code that places a visual
element (e.g. tick symbol) on the unit icon when a unit is
completed. (iv) A PHP index file.

VII. EVALUATION

INDIeAuthor is a course authoring tool that provides its
creators with a textual language that is formed of the four
DSLs described previously. We have evaluated both the lan-
guage and the tool. In this section, we present a case study
carried out to evaluate the characteristics of the language. We
also analyze the advantages of using MDE to implement the
language. In Section VIII, INDIeAuthor will be contrasted
with the tools evaluated in the domain analysis stage.

51409

IEEE Access

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

TABLE 1. User evaluation results.

Question Strongly agree Agree NAND Disagree Strongly disagree

Is the language easy to learn? 45.45% (10/22) 27.27% (6/22) 22.73% (5/22) 4.55% (1/22) 0% (0/22)

Is the language easy to use? 72.72% (16/22) || 22.73% (5/22) || 4.55% (1/22) 0% (0/22) 0% (0/22)
Has the language an appropriate 81.82% (18/22) || 9.09% (2/22) || 9.09% (2/22) || 0% (0/22) 0% (0/22)
€Xpressiveness !

Is the result obtained as I expected? 86.36% (19/22) 13.64% (3/22) 0% (0/22) 0% (0/22) 0% (0/22)
Would you use UPCTforma to produce || 57 y90, (1700 || 18.18% (4/22) || 4.55% (1/22) 0% (0/22) 0% (0/22)
your content?

A. METHODOLOGY

An experiment was conducted with a group of users. Twenty-
two users participated: 14 teachers, 4 scriptwriters and 4 web
developers. The teachers were experienced LaTeX users.
They had previously participated in a training course on
multimedia and gamification activities. These courses are
regularly offered by the DCPC to UPCT teachers. The
scriptwriters and web developers were DCPC workers. The
scriptwriters had no programming skills, but they had two
years of experience in creating scripts by means of the
Powerpoint-slide notation used in the manual process com-
mented on in Section III-C.

The experiment consisted of two sessions of 3 hours each.
In the first session, the participants received training in the
four DSLs. A user manual available on [23] was previously
delivered to the participants. This manual uses a demo course
to illustrate the syntax and semantics of each statement of the
four DSLs. DSL statements were presented in the session for
an hour and half. The participants were then asked to create
the demo course and complete a questionnaire. A computer
with DSL editors and engines, a document that described
the course elements, and the URL of the questionnaire to
be completed (Google Forms) were provided to each user.
Once the course and questionnaire details had been clarified,
the participants started to create the course. It was estimated
that the time required to produce the course would be in the
range of 90 to 160 minutes. The second session was held
the next day, and the participants also completed the course
development and the questionnaire.

The demo course is structured as follows. It is formed of
three content units, an assessment unit, a gamification defini-
tion, and a sequencing definition. Unit 1 includes 4 sections,
7 gamified widgets, 3 LaTeX mathematical expressions and
6 rows of text. Units 2 and 3 are both composed of a section,
a gamified widget, and a row that contains a text element.
The assessment unit includes ten single answer questions.
With regard to course sequencing, Unit 1 is the only unit open
when starting the course. The assessment unit must be opened
when Unit 1 is completed. Either Unit 2 or Unit 3 will be
opened, depending the score obtained in the assessment unit.
Points and badges must be specified for the four units and the
widgets.

Once the participants finished writing all the DSL scripts,
they were able to check the automatically generated course
using a Web browser. They then had to complete the

51410

anonymous seven-question questionnaire intended to obtain
feedback on their experience. The questions were graded
using a 5-point Likert scale. A free text question was also
included to enquire about the difficulties encountered when
using the DSLs. These questions were asked in order to
assess three characteristics of the DSLs that are of interest:
Functional suitability, Usability, and Expressiveness. We also
evaluated Productivity and Maintainability.

B. RESULTS AND DISCUSSION
The average times (measured in minutes) the participants
spent producing the course were 80 (developers), 106 (teach-
ers), and 135 (scriptwriters). The scriptwriters spent nearly
75% longer than the developers. The fact that scriptwriters
are not experienced in coding could explain this increase. The
time spent creating the course was, therefore, in the estimated
range for the participants. Table 1 shows the questions and the
percentage for each of their roles.

We shall now analyze the results obtained in order to
evaluate the characteristics mentioned above.

1) FUNCTIONAL SUITABILITY
In [24], functional suitability refers to the degree to which
a DSL meets the needs of the application domain. A DSL
is functionally suitable if it provides constructs for the all
concepts and relationships in the domain (completeness), and
allows domain-specific solutions to be adequately expressed
(appropriateness).

Most of the participants (95.45%) would use the authoring
tool to produce their content. All the participants indicated
that the results obtained were as expected.

2) USABILITY

This refers to the degree to which the DSL is easy to use. This
quality concerns the ease of reading and understanding the
code (understandability), and the ease of learning it (learn-
ability). INDIeAuthor promotes usability by offering simple
statements that make it possible to write clear and concise
code.

The vast majority of the participants (95.45%) agreed or
totally agreed that the language is easy to use. All the partici-
pants completed the course development within the estimated
time, which could have contributed to their perception.

All the teachers and developers felt comfortable with the
textual syntax, and they expressed their preference for the

VOLUME 7, 2019

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

textual DSLs over the use of GUIs. However, the scriptwriters
stated that they would prefer a typical authoring tool provid-
ing a GUI. They also considered that the DSLs were more
difficult to use than the Powerpoint-slide notation.

72.72% of the participants agreed or totally agreed that the
language is easy to learn. Although the scriptwriters had two
years experience in writing scripts with the Powerpoint-slide
notation, they encountered difficulties when writing DSL
scripts. They got very confused with the use of separators
(curly brackets and commas). In fact, they required help from
the trainers. However, they recognized that they could be
fluent in the four DSLs in a short time.

3) EXPRESSIVENESS

In the case of DSLs, an adequate expressiveness is achieved
by having a single construct for each domain concept, and
ignoring domain concepts that are not needed to express solu-
tions. All the developers and teachers totally agreed that the
DSL expressiveness is appropriate. Three teachers indicated
that not supporting code content was an important limitation
for courses in a Computer Science syllabus. But this evi-
dences the lack of a kind of content rather than a concept in
the domain. The language can be easily extended to support
new kinds of content.

We obtained some interesting feedback from the free text
question in the questionnaire. The scriptwriters showed a
preference for WYSIWYG editors. The teachers suggested
some extensions, such as supporting code content and import-
ing content from Powerpoint presentations. They also indi-
cated some improvements to the syntax, such as those related
to ranges. The developers mentioned the convenience of edit-
ing styles.

4) PRODUCTIVITY
One of the main benefits of using DSLs is the improvement to
productivity. DSLs allow solutions to be expressed at a higher
level of abstraction, (more simple and concise programs), and
this can significantly shorten the development time. We ana-
lyzed to what extent INDIeAuthor is productive by means of
two experiments.

In the first, we contrasted the effort required to develop
a 198-page course using INDIeAuthor and a traditional web
development. The process explained in section III-C was
applied in the traditional solution. Table 2 compares the
development times for traditional and INDIeAuthor solu-
tions. The time spent in the scriptwriting, web development
and interoperability stages are shown. When using DSLs,
the web development and interoperability stages are not nec-
essary, as the code is automatically generated. This means a
reduction of 57.1 hours (59%) in the development time. The
scriptwriting time was increased by only 2 hours (5%), but
the effort devoted to the scriptwriting task should be reduced
as the scriptwriters gain experience in the language. In this
experiment, a scriptwriter used INDIeAuthor to create the
course, but please recall that the university’s objective is for
teachers to directly use the tool to create their own courses.

VOLUME 7, 2019

TABLE 2. Comparison of effort (hours) required to develop a course with
INDleAuthor and a traditional solution.

Scriptwriti Web Interoperability Total
criptwriting developing implementing time
Traditional 38 56,10 3 97,10
solution
INDIeAuthor 40 0 0 40
language

TABLE 3. Size of the metamodel, grammar and model transformation for
INDIeAuthor.

Metamodel Grammar Model to Text
elements rules transformation
Content 30 classes
creation 49 relations 38 1451 code lines
DSL 5 constraints
Asse_ssment 17 classes .
creation 21 relations 22 84 code lines
DSL
Course 12 classes
Sequencing 16 relations 17 271 code lines
DSL ’
59 classes
Total 86 relations 77 1806 code lines
5 constraints

Some metrics commonly used to measure the size of a
metamodel, (number of elements, relationships and OCL
constraints), the grammar (number of rules), and model trans-
formations (number of rules and lines of code) are shown
in for INDIeAuthor. It took approximately 400 hours to
develop the INDIeAuthor DSL. As gaining productivity was
estimated to be 59% for the 198-page course, the development
of only 5 courses of a similar size would be sufficient for a
return on investment.

In the case of the UPCT, the construction of INDIeAuthor
has meant a significant saving of effort, as a Web development
was being applied to produce courses. However, the existence
of authoring tools, which also automate the process of creat-
ing a course, entails a comparison of INDIeAuthor with these
tools to check whether the degree of automation provided
is similar. A second experiment was, therefore, carried to
contrast the productivity of INDIeAuthor with that of another
authoring tool. Two teachers, who participated in the case
study, received an hour and a half’s training in the use of
the EasyGenerator authoring tool. After this training, they
used this tool to create Unit 1 of the demo course. They
had required 40 and 44 minutes to produce this unit with
INDIeAuthor, and the times taken with EasyGenerator were
42 and 41 minutes, respectively. Experienced Latex teachers,
may, therefore, require a similar effort to create courses using
a WYSIWYG editor and a textual notation. Please note that
the participants ‘“‘copied&pasted’ the code examples of the
INDIeAuthor user manual to create the content of the demo
course, signifying that they only had to customize the copied
code to the context of use.

5) MAINTAINABILITY
INDIeAuthor facilitates maintenance by being easy to use and
understand. The effort required to discover code affected by

51411

IEEE Access

D. Pérez-Berenguer, J. Garcia-Molina: INDIeAuthor: Metamodel-Based Textual Language

changes is easier than using a general-purpose programming
language, and is not more difficult than using languages such
as HTML or XML.

When MDE techniques are used to implement a language,
any change to the language requires the modification of three
artifacts: metamodel, concrete syntax, and model transforma-
tions. In the case of INDIeAuthor, the use of viewpoints (i.e.,
the organization as a DSL family) facilitates the evolution of
the language. For example, in order to add a new content type,
it is necessary to add a new class to the Content metamodel, a
new rule to the grammar of the notation defined for this meta-
model, and rules to the corresponding model transformation
so as to generate code content. However, artifacts related to
the other DSLs will not be affected.

C. BENEFITS OF USING MDE TECHNIQUES

The main benefit of MDE is commonly recognized as its
improvement to productivity. Section VI describes how mod-
els have been used to generate code in INDIeAuthor, and
the gain in productivity in relation to the previous manual
solution has been analyzed above. Here, we address other
significant benefits obtained with MDE.

Models have advantages over other metadata formats such
as XML and JSON. In particular, they allow the represen-
tation of data at a higher level of abstraction, and model
transformations can be applied to automate tasks. Below,
we present two proof of concept utilities that have been
developed for INDIeAuthor.

On the one hand, we have implemented a utility that is
able to convert INDIeAuthor content units into Latex Beamer
presentations. Beamer is a LaTeX class consisting of a set
of LaTex commands. We have written an m2t transforma-
tion that establishes a mapping between Content metamodel
elements and Beamer commands. A Beamer presentation
for Unit 1 of the demo course [25] can be found in [26].
A Beamer section is generated for each section in the model,
a Beamer frame is generated for each column in a row, and
visual elements associated with columns are transformed into
Beamer commands. More details on the mapping can be
found in [27].

The second tool developed is a utility to draw course
sequencing flows. These flows are represented by means of
UML activity diagrams. Courses are represented as activities
and branching is used to represent the conditional access to
courses. We used PlantUML? to develop this course sequenc-
ing viewer. PlantUML is a textual DSL that generates UML
diagrams in several formats (e.g. PNG and Latex). We imple-
mented an m2t transformation to map course elements onto
UML activity diagram elements expressed in the PlantUML
language. Figure 18 shows the sequencing flow for the Demo
Unit 1. By representing the courses as models, we have taken
advantage of an existing DSL to easily achieve a graphical
representation of course sequencing.

2http://plantuml.com

51412

FIGURE 18. Example of course sequencing flow drawn as a UML activity
diagram.

Models favor certain software qualities, such as interoper-
ability, portability and evolvability. As noted in [3], a meta-
modeling language provides a lingua franca that facilitates
the integration of tools: data from a tool can be represented
in the form of models, and these models can be mapped
onto models that represent data from another tool. Since they
are technology-independent representations, models promote
portability among platforms and migration to new tech-
nologies. Adobe’s announcement in 2017 that Flash Player
updates and distribution will stop by the end of 2020° is an
example of the content migration scenario. Adobe encourages
Flash content authors to migrate to new technologies such
as HTMLS. This would entail producing the content from
scratch or the development of tools able to automate the
migration. Both solutions would be very costly. Model trans-
formations provide a more productive technology with which
to implement software migrations [28]. Migrating INDIeAu-
thor content to a new platform implies only implementing
the model transformations required to convert content models
into the representation used on the target platform. Note
that migrating INDIeAuthor content to new Web technolo-
gies does not involve changes to the existing scripts, but
rather extending the DSL engine in order to address the new
technology.

The separation between abstract and concrete syntax is a
key characteristic of metamodeling-based DSLs. This sep-
aration makes it possible to define different notations for
the same metamodel and the semantics is not affected. For
example, a graphic notation could be defined for INDIeAu-
thor using some of the available graphical DSL defini-
tion tools, such as Sirius. The metamodels and the model

3 https://theblog.adobe.com/adobe-flash-update/

VOLUME 7, 2019

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

transformations existing for INDIeAuthor would be com-
pletely reusable.

To the best of our knowledge, no authoring tool supports
the exportation of courses in the form of models. An inno-
vative feature of INDIeAuthor is, therefore, that it represents
courses as Ecore models. Ecore was chosen as a metamod-
eling language because it is the core element of the EMF
platform that is widely used in the academic and industrial
MDE community.

VIIl. RELATED WORK

This section presents related work organized in three
categories: studies on authoring tools, educational model-
ing languages, and MDE-based approaches used to develop
learning applications. Moreover, INDIeAuthor is contrasted
with some widely used authoring tools.

1) STUDIES ON AUTHORING TOOLS

Elearning consortiums, networks and forums have published
reports in order to provide useful information with which
to choose an authoring tool, such as [16] and [19]. These
studies identify a set of features to be considered when com-
paring tools. Some catalogs are also available on websites
specialized in elearning topics [18]. These catalogs classify
tools in several categories and list the features supported by
each tool.

To the best of our knowledge, the feature model presented
in this paper is the first effort made to establish a conceptual
framework with which to compare authoring tools from the
point of view of their technical features and functionality.
This proposal allows a systematic and comprehensive com-
parison of authoring tools. Such a comparison is beyond the
scope of this paper. We shall highlight below only the main
differences between INDIeAuthor and some leading author-
ing tools. Please note that our feature model does not consider
the evaluation of the qualities of the authoring tools, such
as pedagogical quality and usability. Other frameworks are
required for this. Diwakar et al. [29] present a comparative
analysis focused on the pedagogical features of authoring
tools. Three comparison dimensions are identified and a set
of features to be supported by tools is established for each
of them. It is noteworthy that all the features of each dimen-
sion are supported in INDIeAuthor except for collaborative
learning.

2) CONTRASTING INDleAuthor WITH OTHER

AUTHORING TOOLS

We have selected seven leading authoring tools from anal-
yses reported in [16] and [19]. These tools were compared
to INDIeAuthor by using the feature model proposed in
Section III-A. A course was, therefore, produced with each of
the tools evaluated, which was published using the standards
offered. The tracking data generated was also checked. The
platforms used to test the courses created were Moodle and
SCORM Cloud.

VOLUME 7, 2019

None of the tools evaluated provide the following features
supported in INDIeAuthor: (i) the definition of new tem-
plates, (ii) the units are independent of a particular course,
(iii) courses are formed of standards-based units that are
imported in the form of a link, (iv) it is possible to gamify
complete courses or individual units, (v) the definition of
course sequencing, and (vi) predefined tracking data for all
the widgets and video. SCORM-based tracking is supported
by all the tools, and XAPI is imposed as a new standard
format (it is supported by 6 of the tools evaluated). SoftChalk
uses LTI but generates tracking data in a proprietary for-
mat. LTI/Caliper is supported only in INDIeAuthor. Lectora
Inspire allows configurable tracking data. In INDIeAuthor
this feature was discarded because it is time consuming.
Five tools provide predefined data analysis and visualization.
In addition to this feature, tracking data are available for
teachers in INDIeAuthor, thus enabling them to implement
a customized analysis and visualization, as described in [2]

Tables summarizing the results of the comparative study
have not been included here owing to space limitations. They
can be found in [30]. These tables show the choices of each
tool for the proposed feature model.

3) EDUCATIONAL MODELING LANGUAGES

Learning design can be carried out as a modeling activity. Var-
ious languages with which to model aspects related to learn-
ing design have, therefore, been defined. These are referred
to as “‘educational modeling language™ (EML). A classifi-
cation of these languages is presented in [9], where three
categories are identified: evaluation, content-structuring and
learning activity definition. The IMS consortium has pro-
duced specifications for each of these categories: IMS-QTI
for evaluation [31], IMS SS for sequencing courses [32], and
IMS LD for teaching-learning processes [10]. These specifi-
cations have not, however, been adopted by industry. To the
best of our knowledge, no commercial authoring tools and
LMS support them. The remaining EMLs have also received
little attention from the elearning community to date. Three
main factors have influenced this lack of interest: (i) they
are difficult for content creators to use, (ii) they provide a
XML-based notation to express models, rather than of DSLs,
and (iii) the lack of tools to support them.

Some EMLs, e.g. IMS LD and EML-OU [33], define their
semantic or conceptual model by means of a metamodel.
However this metamodel is not formally expressed with a
metamodeling language. In contrast to EMLs, INDIeAuthor
provides a simpler vision of the learning design: individual
learners follow a course that includes content, evaluation
and gamification units, and the order in which units are
accessed can depend of the learner’s level of achievement.
INDIeAuthor integrates four languages that correspond to
three categories established in [9]. This avoids having to
use different tools to model basic aspects of learning. For
example, IMS LD is meant to model the learning-teaching
process but has no evaluation and content-structuring aspects;
and IMS QTI and IMS SS are focused on expressing

51413

IEEE Access

D. Pérez-Berenguer, J. Garcia-Molina: INDIeAuthor: Metamodel-Based Textual Language

evaluation and sequencing, respectively. We should also
stress that INDIeAuthor languages were built by applying a
metamodeling-based language development, rather than
using a machine-readable notation, such as XML. The con-
structs and notation of these languages are tailored to the
course creation domain. The inadequacy of XML notations
for educational modeling languages is noted in [34], where
the authors propose a graphical DSL for IMS LD.

4) MODEL-DRIVEN APPROACHES TO DEVELOP

LEARNING APPLICATIONS

MDE paradigms have been extensively applied in many
domains, but the number of relevant works is very limited
in the elearning field. The idea of applying language-driven
development to build elearning applications was described
in [7] and [8]. These works outline how the use of DSLs
differs from the conventional approach based on manual
coding. Martinez-Ortiz et al. [7] illustrate the approach pre-
sented by introducing a sequencing language that includes
a rule mechanism that allows the expression of an adaptive
learning process. The abstract syntax of this language is
expressed as an information model in the form of a UML
class diagram, and three kinds of concrete syntax are briefly
presented: textual, graphical and XML-based notation. How-
ever, unlike INDIeAuthor, metamodeling techniques are not
really applied: the metamodel is not formally defined by
means of a metamodeling language (e.g. Ecore), metamodel-
based language workbenches are not used to define the con-
crete syntax, and model transformations are not implemented
to build the language engine. Instead, the work is mainly
focused on the definition of an operational semantics for the
language example. Moreover, the benefits of using DSLs,
and particularly how productivity can be improved in relation
to conventional development, are not discussed. All these
issues are addressed in depth in our work. We have defined
semantics by means of the translational style (DSL sentences
are translated into sentences of languages with a well-defined
semantics). Translation and interpretation are commonly used
to build DSL execution engines in MDE paradigms [6]. The
approach described in [7] is also presented in [8], where it is
applied to create Socratic tutors. The work is again focused
on the operational semantics of a DSL example. A graphical
DSL for IMS LD is presented in [34], but the graphical rep-
resentations are directly transformed into XML, rather than
generating models.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we present the INDIeAuthor course authoring
tool developed at the DCPC/UPCT. When building INDIeAu-
thor, we experimented with several issues related to author-
ing tools: (i) several innovative features are supported, (ii)
a textual notation is provided in order to create courses,
(iii) MDE principles, techniques and tools were used to create
a generative architecture based on a family of 4 textual DSLs,
and (iv) a feature model was defined as a result of the domain

51414

analysis performed. Below, we show the main conclusions
drawn in our work.

A. SOME CONSIDERATIONS REGARDING THE CURRENT
STATUS OF AUTHORING TOOLS

As indicated in Section III-A, the authoring tools available
vary greatly as regards their features, and several surveys are
frequently published to help users choose the most appro-
priate tool to satisfy their requirements. Here, we illustrate
how a conceptual framework in the form of a feature model
could be useful to classify authoring tools. The feature model
presented may be a first step in that direction. The authors
of [29], present a pedagogical analysis of authoring tools
carried in the context of engineering faculties. As noted in
the previous section, all the features identified in that study
as regards creating content with pedagogical quality are sup-
ported by INDIeAuthor, except for collaborative work. It is
worth noting that our tool significantly improves the reuse
currently provided by authoring tools by means of 2 new
mechanisms: units can be reused on different courses and
user-defined content templates. In INDIeAuthor, we have
also explored more powerful gamification and sequencing
mechanisms than those currently supported by a very reduced
number of tools. The authoring tool market is continuously
changing to provide better capabilities. With INDIeAuthor,
the UPCT wishes to have its own authoring tool for its
teachers, along with an environment that will make it possible
to research new features and innovative ideas. INDIeAuthor
is available as freeware for any interested educator.

B. CREATING COURSES WITH TEXTUAL LANGUAGES

To the best of our knowledge, all the authoring tools pro-
vide WYSIWYG editors, and some of them incorporate a
scripting language to allow users to implement certain tasks.
However, we have investigated the use of textual languages
in INDIeAuthor. Starting with the fact that Latex and textual
modeling provide some advantages over graphical editors,
our research hypothesis was that “‘textual languages could be
productive as regards creating educational content, especially
for teachers of STEM fields, who are usually experienced in
programming and/or LATEX".

The choice between Latex and WYSIWYG editors [35]
to prepare documents is a scenario in which the use of a
textual language is contrasted with a graphical editor. The
authors of [35] show some of the benefits of using a tex-
tual language such as Latex: the ability to easily modularize
documents, avoiding the use of proprietary formats that are
likely to change, favoring the use of control version sys-
tems, the separation of concerns (e.g. content and presen-
tation) can be done properly, and the ability to transform
textual scripting into other formats. These advantages are
applicable to our approach, as is illustrated throughout this
paper. Our approach also provides a productivity similar to
authoring tools with WYSIWYG editors. Moreover, the case
study shows the appropriateness of our notation. The work

VOLUME 7, 2019

D. Pérez-Berenguer, J. Garcia-Molina: INDleAuthor: Metamodel-Based Textual Language

IEEE Access

presented, therefore, provides evidence that supports the
research hypothesis.

C. REPRESENTING EDUCATIONAL CONTENT AS MODELS
Starting from our experience in MDE field, we stated the
following research hypothesis: “Some significant benefits
can be achieved by representing educational courses as mod-
els”. The convenience of using models to represent artifacts
involved in educational design was introduced by ‘“Edu-
cational Modeling Languages”. However, the use of XML
notations was a serious inconvenience for the acceptance
of these languages. An MDE-based approach was proposed
in [7] and [8], but it was not based on the MDE common
practices and also failed to clearly show the benefits of repre-
senting courses as models. In this paper, we show how current
MDE techniques can be used to automate the development of
learning applications, in particular an authoring tool. We also
demonstrate how the representation in the form of models
facilitates the building of utilities for course management.
As indicated in Section I, the work presented in this paper
is the basis of a three-year KA2 European project. Teachers
from three countries will be able create and share content
using INDIeAuthor and INDIeOpen (the content repository).
This project intends to develop a more mature freeware
version of INDIeAuthor. The future directions of our work
will, therefore, be focused on the aims of this project. The
work planned includes: (i) developing a graphical notation
using the Sirius workbench [36]; (ii) creating widgets for new
content, such as code and an interactive video; (iii) designing
a DSL whose objective will be to configure the tracking data
analysis and visualization desired by teachers; (iv) defining a
search functionality for the content repository; (v) establish-
ing a mapping between INDIeAuthor and Powerpoint in order
to import/export courses between both tools; (vi) applying a
model checking to detect errors in the sequencing model.

REFERENCES

[11 L. S. Bacow and et al., Barriers to Adoption of Online Learn-
ing Systems in US Higher Education. New York, NY, USA: Ithaka,
2012.

[2] D. Pérez-Berenguer and J. Garcia-Molina, “A standard-based archi-
tecture to support learning interoperability: A practical experience in
gamification,” Softw., Pract. Exper., vol. 48, no. 6, pp. 1238-1268,
2018.

[3] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engi-
neering in Practice. San Rafael, CA, USA: Morgan & Claypool, 2012.

[4] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice
in model-driven engineering,” IEEE Softw., vol. 31, no. 3, pp. 79-85,
May 2014.

[S] M. Fowler, Domain—Specific Languages. Reading, MA, USA:
Addison-Wesley, 2010.
[6] M. Voelter. (2013). DSL Engineering. [Online]. Available:

http://dslbook.org/

[7]1 1. Martinez-Ortiz, J.-L. Sierra, B. Ferndndez-Manjén, and
A. Fernandez-Valmayor, “Language engineering techniques for the
development of e-learning applications,” J. Netw. Comput. Appl., vol. 32,
no. 5, pp. 1092-1105, 2009.

[8] J.-L. Sierra, B. Fernindez-Manjén, and A. Fernindez-Valmayor,
“A language-driven approach for the design of interactive applications,”
Interacting Comput., vol. 20, no. 1, pp. 112-127, 2008.

VOLUME 7, 2019

[9]

[10]

(11]

[12]

[13]

[14]

(15]
[16]

[17]

(18]

(19]
(20]
(21]

[22]

(23]

(24]

[25]
[26]
(27]

(28]

(29]

(30]
(31]
(32]

(33]

(34]

(35]

[36]

B. Ferndndez-Manjon and J. M. Sdnchez-Pérez, “A conceptual introduc-
tion and a high-level classification,” in Computers and Education. E-
Learning, From Theory to Practice. Springer, 2007, pp. 27-40.

IMS Learning Design. Accessed: Aug. 31, 2018. [Online]. Available:
https://www.imsglobal.org/learningdesign/index.html

T. Clark, P. Sammut, and J. S. Willans. (2015). “Applied metamodelling:
A foundation for language driven development (third edition).” [Online].
Available: https://arxiv.org/abs/1505.00149

S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full
Code Generation. Hoboken, NJ, USA: Wiley, 2008.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Reading, MA, USA: Addison-Wesley,
2009.

J. S. Cuadrado and J. G. Molina, “A model-based approach to families of
embedded domain-specific languages,” IEEE Trans. Softw. Eng., vol. 35,
no. 6, pp. 825-840, Nov. 2009.

K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Reading, MA, USA: Addison-Wesley, 2000.

P. Shank and J. Ganci, “eLearning authoring tools 2013: What we’re using,
what we want,” The eLearning Guild, Survey, 2013.

The Ultimate List Of HTMLS eLearning Authoring Tools.
Accessed: Nov. 14, 2018. [Online]. Available: https://elearningindustry.
com/

eLearning Authoring Tools. Accessed: Nov. 14, 2018. [Online]. Available:
https://elearningindustry.com/directory/software-categories/elearning-
authoring-tools

Choosing Authoring Tools. Accessed: Aug. 31, 2018. [Online]. Available:
https://www.adlnet.gov/public/uploads/Choosing AuthoringTools.docx

G. Siemens. (Aug. 5, 2011). Learning and Academic Analytics. [Online].
Available: http://www.learninganalytics.net/?p=131

P. Herzig, “Gamification as a service,” Ph.D. dissertation, Dresden Univ.
Technol., Dresden, Germany, 2014.

D. Pérez-Berenguer and J. Garcia-Molina,
creacion de contenido online interactivo,” Revista Educacion a
Distancia, vol. 51, Nov. 2016, Art. no. 3. [Online]. Available:
https://revistas.um.es/red/article/view/275151/199631

UPCTauthor User Manual. Accessed: Dec. 9, 2018. [Online]. Available:
http://cped.upct.es/upctforma/

G. Kahraman and S. Bilgen, “A framework for qualitative assessment
of domain-specific languages,” Softw. Syst. Model., vol. 14, no. 4,
pp. 1505-1526, 2015.

Unit 1 of the UPCTauthor Demo Course. [Online]. Available: http://cpcd.
upct.es/autor/unidad1/

Beamer presentation for Unit 1.
upct.es/upctforma/beamer.pdf
UPCTauthor Beamer Details. [Online].
upct.es/upctforma/beamerdetails.html

F.J. B. Ruiz, J. G. Molina, and O. D. Garcia, “On the application of model-
driven engineering in data reengineering,” Inf. Syst., vol. 72, pp. 136-160,
Dec. 2017.

A. Diwakar, M. Patwardhan, and S. Murthy, ‘‘Pedagogical analysis of
content authoring tools for engineering curriculum,” in Proc. IEEE 4th
Int. Conf. Technol. Educ. (T4E), Hyderabad, India, Jul. 2012, pp. 83-89.
Authoring Tools Comparative Study. Accessed: Dec. 9, 2018. [Online].
Available: http://cpcd.upct.es/upctforma/study.html

IMS Question & Test Interoperability Specification. Accessed: Nov. 14,
2018. [Online]. Available: https://www.imsglobal.org/question/index.html
IMS Simple Sequencing Specification. Accessed: Nov. 14, 2018. [Online].
Available: http://www.imsglobal.org/simplesequencing/index.html

R. Koper, “Modeling units of study from a pedagogical perspective: The
pedagogical meta-model behind EML,” Educ. Technol. Expertise Centre,
Open Univ. Netherlands, First Draft, Tech. Rep. version 4, Jun. 2001.

1. Martinez-Ortiz, J. L. Sierra, and B. Ferndndez-Manjon, ‘“‘Authoring and
reengineering of IMS learning design units of learning,” IEEE Trans.
Learn. Technol., vol. 2, no. 3, pp. 189-202, Jul. 2009.

What are the Benefits of Using LaTeX Over MS Word, Especially for a
Scientific Researcher Doing a Lot of Biology and Mathematics? Quora,
Mountain View, CA, USA, Accessed: Nov. 14, 2018.

Sirius Website. Accessed: Nov. 14, 2018. [Online].
https://eclipse.org/sirius/

“Un enfoque para la

[Online]. Available: http://cped.

Available: http://cpcd.

Available:

51415

IEEE Access

D. Pérez-Berenguer, J. Garcia-Molina: INDIeAuthor: Metamodel-Based Textual Language

DANIEL PEREZ-BERENGUER received the
Degree in computer science from the University
of Murcia, Murcia, Spain, in 2002, where he is
currently pursuing the Ph.D. degree.

He is also an Associate Professor with the
Department of Information Technology and
Communications, Universidad Politécnica de
Cartagena, where he also leads the Digital Content
Production Center. His research interests include
educational technology, authoring tools, gamifica-

tion, and learning analytics.

51416

JESUS GARCIA-MOLINA received the Ph.D.
degree in chemistry from the University of Murcia,
Spain, in 1987, where he has been a Full Professor
with the Faculty of Informatics, since 1991.

He leads the Modelum Group, an R&D group
focused on model-driven engineering with a close
partnership with industry. He has authored two
textbooks, and its main research contributions are
listed in DBLP. His research interests include
model-driven development, domain-specific lan-

guages, and model-driven modernization.

VOLUME 7, 2019

	INTRODUCTION
	BACKGROUND
	UPCTforma INFRASTRUCTURE
	DOMAIN-SPECIFIC LANGUAGES

	DOMAIN ANALYSIS AND REQUIREMENT ELICITATION
	DOMAIN ANALYSIS
	CONTENT FEATURE
	PUBLISH STANDARDS FEATURE
	COURSE-INDEPENDENT UNIT FEATURE
	LEARNING PATHS FEATURE
	ASSESSMENT FEATURE
	LEARNING ANALYTICS FEATURE
	GAMIFICATION FEATURE

	REQUIREMENTS FOR INDIeAuthor
	CONTENT ELEMENTS
	PUBLISH STANDARDS
	COURSE-INDEPENDENT UNITS
	LEARNING PATHS
	ASSESSMENT
	GAMIFICATION
	LEARNING ANALYTICS
	LICENSE

	COURSE PRODUCTION MANUAL PROCESS

	OVERVIEW OF THE INDIeAuthor ARCHITECTURE
	DSLS IN INDIeAuthor: METAMODEL AND NOTATION
	A DSL FOR CREATING CONTENT UNITS
	SIMPLE AND COMPOSITE TYPES
	WIDGET TYPE
	UNIT AND SECTION DEFINITION
	TEMPLATES

	A DSL WITH WHICH TO CREATING ASSESSMENTS
	A DSL FOR SEQUENCING UNITS
	A DSL FOR GAMIFYING UNITS

	CODE GENERATION FROM MODELS
	CODE GENERATION FOR CONTENT DSL
	GENERATION CODE FOR ASSESSMENT DSL
	CODE GENERATION FOR GAMIFICATION DSL
	CODE GENERATION FOR SEQUENCING DSL

	EVALUATION
	METHODOLOGY
	RESULTS AND DISCUSSION
	FUNCTIONAL SUITABILITY
	USABILITY
	EXPRESSIVENESS
	PRODUCTIVITY
	MAINTAINABILITY

	BENEFITS OF USING MDE TECHNIQUES

	RELATED WORK
	STUDIES ON AUTHORING TOOLS
	CONTRASTING INDIeAuthor WITH OTHER AUTHORING TOOLS
	EDUCATIONAL MODELING LANGUAGES
	MODEL-DRIVEN APPROACHES TO DEVELOP LEARNING APPLICATIONS

	CONCLUSIONS AND FUTURE WORK
	SOME CONSIDERATIONS REGARDING THE CURRENT STATUS OF AUTHORING TOOLS
	CREATING COURSES WITH TEXTUAL LANGUAGES
	REPRESENTING EDUCATIONAL CONTENT AS MODELS

	REFERENCES
	Biographies
	DANIEL PÉREZ-BERENGUER
	JESÚS GARCÍA-MOLINA

