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ABSTRACT Virtualization has achieved widespread adoption in various fields. As one of the most
significant technologies in network virtualization, an effective virtual machine placement can facilitate
to improve resource utilization in data center networks and cut down the enterprises’ operation cost.
In this paper, we proposed an energy efficient virtual machine placement scheme, which pursued to reduce
communication cost and power consumption over traffic-aware data center networks. To solve such an
optimization problem, an improved ant colony optimization with adaptive parameter setting was presented
to balance its fast convergence and robust search capability. Compared with existing algorithms, simulation
results demonstrated that our scheme achieved improvements in power consumption and communication
cost, and had a significant reduction in run time under different traffic patterns and configurations.

INDEX TERMS Ant colony optimization, data center networks, energy efficient, virtual machine placement.

I. INTRODUCTION
Recent years have witnessed a dramatic growth of cloud
services, which facilitates the development of the Internet and
the Internet of Things. Thanks to the cloud computing system,
little effort is required for customers to access cloud services
without deploying a complex infrastructure. To implement
such a system, in which the cloud service provider operates a
data center (DC), massive technologies are necessary. Virtu-
alization, one of themost critical technologies, has become an
indispensable technique in the operation of a cloud DC [1].
It provides a promising approach to make multiple applica-
tions running in different performance-isolated platforms —
virtual machines (VMs), which could be placed on several
physical machines (PMs) in data center networks (DCNs).
Not only does it enhance the flexibility and performance of
service, but also it improves resource utilization in DCNs.

The associate editor coordinating the review of this manuscript and
approving it for publication was Marco Anisetti.

With the growing popularity of virtualization, virtual
machine placement (VMP) has drawn considerable attention
in cloud computing, which addresses the issue of how to
place VMs on PMs efficiently. Several efforts have been
made from many different perspectives, such as the reduction
of operation cost [2], traffic or network optimization [3],
the improvement in revenue [4] and so on.

Due to the rapid development of cloud computing, DCs
encounter skyrocketing power consumption and electricity
bills [5]. Unfortunately, such a significant increase in power
consumption has inhibited or restricted the sustainable devel-
opment of cloud services and seriously troubled DC opera-
tors. Therefore, energy efficiency has become a crucial factor
in large-scale cloud DC. Driven by economic profit and sus-
tainable development, some work has focused on power con-
sumption over cloud DCNs [6]–[8]. For instance, Ye et al. [9]
designed a VMP scheme to minimize energy consumption
and load variance, maximize resource utilization and improve
the robustness of PMs.

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

60617

https://orcid.org/0000-0003-1795-4938
https://orcid.org/0000-0002-6409-2229


W. Wei et al.: Energy Efficient VMP With an Improved Ant Colony Optimization Over DCNs

Although there have been several research efforts to
improve the energy efficiency over DCNs, communication
cost has not been widely explored in energy efficient virtual
machine placement. In this paper, we focused on bridging
the gap and exploring a trade-off between communication
cost and power consumption over traffic-aware data cen-
ter networks. With consideration of adaptive transmission
rates at switch ports, we proposed an energy efficient VMP
scheme, termed E2VMP. Specifically, our target is to achieve
an energy efficient VMP strategy under the consideration
of the power consumption at adaptive switch ports. It has
been proved NP-hard in [10]. To solve such a bi-objective
optimization problem, an improved ant colony optimization
with adaptive parameter setting (AP-ACO) is developed to
balance its fast convergence and robust search capability.

The remainder of this paper is organized as follows.
Section II presents the related work, and an energy effi-
cient model of the VMP scheme is elaborated in Section III.
Section IV develops the improved ant colony algorithm with
the adaptive parameter setting in detail. It is then applied in
Section V to various conditions. Experiments are undertaken
to evaluate the effectiveness and the efficiency of E2VMP,
by comparing with the heuristic approaches such as first-fit
decreasing (FFD) and with metaheuristic optimization algo-
rithms such as ant colony optimization algorithm. Finally,
Section VI draws conclusions and gives an outlook to future
work.

II. RELATED WORK
We focus on an efficient VMP scheme based on ant colony
optimization algorithm. Here we present three relevant topics
of related work: VMP, energy-efficient technologies in DC,
and heuristic algorithms for VMP.

A. VIRTUAL MACHINE PLACEMENT
Virtual machine placement, a process of mapping VMs
to PMs, is indispensable for cloud computing. It is also
an essential approach for improving power efficiency and
resource utilization in cloud infrastructures. Therefore,
the VMP problem has drawn a lot of attention, and several
efforts have been made from many different perspectives,
such as the reduction of operation cost, the improvement in
the quality of service and so on.

In [11], a traffic-aware VMP scheme was proposed to
focus on the improvement of the network scalability, which
is solved by a two-tier approximate algorithm. Fang et al.
proposed an algorithm, termed VM-Group Mapping [12],
to optimize both VMP and traffic flow routing by turning off
unnecessary elements as many as possible. The researchers
in [13] investigated a multi-dimensional VM consolidation
model to place VMs onto as few PMs as possible and solve
this optimization problem by a simulated evolution search
heuristic. With more communication intensive applications
deployed in DCs, the consolidation of flows brings a new
challenge: it might cause network failures. To solve this
problem, a time-consuming heuristic algorithm for VMP had

been investigated in [14] to keep network survivable. In [15],
the authors introduced a service-oriented VMP scheme aim-
ing to minimize the communication cost between VMs sup-
porting the same type of services.

To narrow the gap between research prototypes and real-
world applications, many researchers have tended to approx-
imate by multiple-objective optimization. Gao et al. [16]
proposed a VMP scheme to reduce total resource wastage
and power consumption simultaneously. A power-aware and
performance-guaranteed VMP was proposed to balance the
trade-off between saving PM power and guarantee VM per-
formance [17]. Li et al. [18] focused on minimizing energy
consumption and maximizing resource utilization for virtual
network placement, and employed two chemical reaction
optimization algorithms to solve such a problem. In [19],
the VMP problem was formulated as joint multiple objec-
tive optimizations. To solve such an optimization problem,
researchers proposed the multi-level joint VM placement and
migration algorithm to minimize resource usage and power
consumption in DCs. Qin et al. [4] focused on the VMP
for bandwidth-hungry applications and proposed a multi-
objective Ant Colony System algorithm to maximize the
revenue of communications and the power consumption of
PMs. Differently, Hou et al. [20] concentrated on VMP over
edge devices layer of Internet of Things and designed a
VM scheduling and bandwidth planning algorithm to mini-
mize the number of upgrade batches.

B. ENERGY EFFICIENT TECHNOLOGIES IN DATA CENTER
The energy consumed by DCs is considerable, so many
energy efficient technologies should be applied to save
such colossal expense. Some research targets at maximizing
power capacity. For dynamically managing power in multi-
tenant DCs, Ren in [21] proposed a market-based solution
to optimize the utilization of IT resources (such as CPU or
memory). In [22], the authors developed a mixed integer
linear programming model to optimize VM allocation for the
DC with additional consideration of the power consumed by
communication fabric.

Differently, some other researches emphasis on minimiz-
ing power consumption. In [23], a framework, termed Mis-
tral, was proposed to optimize both power consumption and
performance benefits, with considering the cost of the search
itself in its decision making. Li et al. presented a joint
power optimization through VMP on servers with scalable
frequencies and flow scheduling in DCNs [24]. In addition,
to improve the energy efficiency of DCs, authors in [25]
formulated the energy consumption in VMP problem as a
profile-based optimization problem. In such an optimization
model, time intervals and resource usage were taken into
consideration to predict the workload.

In the same vein, the authors in [7] focused on energy
efficiency for virtual network embedding over optical DCNs.
In their work, a mixed integer linear programming model was
developed with power consumption added to achieve energy
efficiency and reduce the spectrum usage for survivable
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virtual network embedding. Dai et al. [8] aimed to reduce
much energy on networking equipment by powering down
communication ports and line-cards whenever the associated
servers are powered down. Verma et al. [26] employed a
modified intelligent water drop algorithm for dynamic provi-
sioning of VMs on hosts, so that the total energy consumption
of a DCN could be reduced in cloud computing environment.

C. HEURISTIC ALGORITHMS FOR VIRTUAL
MACHINE PLACEMENT
VMP problem in [27] is an instance of the multi-dimensional
bin-packing problem. One of the widely used algorithms to
solve bin-packing problems is the First Fit Decreasing (FFD)
algorithm. FFD is a classical bin-packing algorithm: the items
are sorted in non-increasing order of their size, and then in this
order the next item is always packed into the first bin where it
fits [28]. FFD ensures that larger size items will be processed
first. When it is applied to VMP problem, FFD enables VMs
in decreasing order of resource utilization and places each
VM into the first PM that has enough resource remaining.

Bin-packing has been proven as an NP-hard optimization
problem [29], therefore effective and desirable algorithms
are important to obtain solutions. To solve such a problem,
the evolutionary computation and the swarm intelligence
algorithms have been suggested due to their simple oper-
ation and fast convergence [30]. Among several heuristic
algorithms, ant colony optimization algorithm and genetic
algorithm are two of the most popular approaches.

To minimize the required PMs to support the current load,
Feller et al. [31] proposed a max-min ant system meta-
heuristic with a single objective. Besides, the authors in
[32] designed a genetic algorithm for the VMP problem to
minimize resource wastage, power consumption, and heat
dissipation. In [16], Gao et al. introduced the ant colony
optimization algorithm and applied it to reduce total resource
wastage and power consumption simultaneously. The authors
in [33] proposed amulti-objective optimization scheme based
on the genetic algorithm aiming at maximizing server uti-
lization. To minimize the communication cost between VMs,
the work in [15] used Genetic Algorithm to seek an approx-
imate optimal placement solution in such a single objective
optimization. In order to accelerate the convergence of their
heuristic algorithm, Tang et al. [34] improved the genetic
algorithm with a local optimization procedure to solve such a
VMP problem in DCs.

All these methods mentioned above could contribute to
better performance of the DCN: either making efficient use
of resources or reducing the energy consumption in DCNs.
Thanks to these benefits, we can take advantage of a heuristic
algorithm to improve our design.

III. ENERGY EFFICIENT VMP SCHEME
In this section, we present a VMP model and consider both
server capacity constraint and the transmission rate of switch
ports. Then we formulate the optimization problem that aims
at reducing power consumption and communication cost.

FIGURE 1. An example of VM placement strategy with adaptive port rate
in a Fat-tree topology.

A. PROBLEM STATEMENT
To motivate and demonstrate the basic idea of our model,
as shown in Fig. 1, we present a simple example of VMP
in a Fat-tree topology with 4-port switches. For the sake of
simplicity, the bandwidth and data rate are normalized by
100 Mbps. For instance, the number 0.5 in Fig. 1 equals
50 Mbps in reality. The numbers above the links between
VMs represent the communication demand of VMs, and
those above and under PMs represent the flow sizes through
ports and the resource utilization of PMs respectively.
Besides, only VMs in the same application, showing in the
red box in Fig. 1, are able to complete data communication.
When assigning VM15, only PM1 and PM2 can hold it, and
the distance from both PM1 and PM2 to PM8 (which holds
VM14) are equal so that the communication cost is the same.
Thus the power consumption becomes the determining factor.

It has been revealed in [35], [36] that energy consumption
varies among different link rates at the switch in the real
world. Moreover, power consumption was tested in [36], and
the results showed that switches consume more power given
increasing either link rates or the number of links. Hence,
different from classic power-aware strategies, we consider not
only the power consumption of PMs and switches but also
that of switch ports. Considering that PM1 and PM2 are not
idle before VM15 is assigned, the routing of the flow is similar
in the network. Nonetheless, there is a big difference between
their power consumption of the ports due to their various
link rates. Specifically, if VM15 is placed PM1 or PM2,
the port rate of PM1 (that is 1.2) would be larger than that of
PM2 (0.7), resulting in more power consumption. With that
in mind, we prefer PM2 that consumes less power.

B. ENERGY EFFICIENT MODEL
Consider that there are V VMs that can be assigned to a
DCN. In the DCN, it consists of P PMs and S switches
equipped with K ports. VM = {VM v|1 ≤ v < V } and PM ={
PMp|1 ≤ p < P

}
respectively represent the set of VMs and

PMs. To indicate the mapping relationship between VM v
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TABLE 1. Notations.

and PMp, a binary variable A
p
v is introduced as follows.

Apv =

{
1, if VMv is assigned to PMp

0, otherwise
(1)

Table 1 summarizes several necessary notations in this
paper. Ru is defined as the resource requirement vec-
tor of VMu and Hp as the server-side resource capac-
ity vector of PMp. The distance between PMp and PMq
is denoted as dpq. Let suv denote the size of communi-
cation flow between VMu and VM v. In the DC, at its
snth switch, the flow size through port pn is denoted
as Fpnsn , (0 ≤ sn < S, 0 ≤ pn < K ). It could be calculated
according to the routing algorithm. Considering the port rate
constraint, Fpnsn should be less than the maximum transmis-
sion rate Fmax .
In DCNs, power consumption by computing nodes mostly

depends on the CPU,memory and disk storage, of which CPU
power consumption is dominant. In this paper, we focus on
the dominant power consumption at PMs and assume that
it has a linear relationship with CPU utilization, similar to
related works [14], [16]. According to [36], different rates
of switch ports consume power at different levels, then the
power model could be calculated as follows.

Power = PowerPM + PowerDCN
=

∑
All PMs

(PPM + k × UtiCPU )

+

∑
All Switches

(PSwi +
K∑

port=0

Pport ) (2)

where k is a constant factor obtained from the experiment
in [14].PowerDCN represents the power consumption of PMs.
PowerDCN is the power consumption of DCNs and equal to

the switch power plus the ports’ power. The power level of
port is denoted as Pport . UtiCPU means the CPU utilization.
Moreover, the communication cost could be obtained by

the following:

Cost =
P∑

p,q=1

V∑
u,v=1

suv · dpq · Apu · A
q
v . (3)

where suv is the size of communication flow between VMu
and VMv, dpq is the distance between PMp and PMq. Let A

p
u

be a binary variable that takes the value 1 if VMu is placed on
PMp; otherwise, the value is 0. And A

q
v is the same to Apu.

Thus, the multi-objective problem is formulated as
following:

minimize (Power,Cost) (4)

The objective function has two terms: one is aimed at
minimizing the total power consumption, and the other is to
minimize the total communication cost. The ultimate goal
of the objective is to minimize the whole consumed energy
and the optimized mapping solution to achieve a trade-off
between power consumption and communication cost.

Besides, the model has some constraints. It is subject to the
following equations:

P∑
p=1

Apu = 1, ∀u ∈ [0,V ) , (5)

V∑
u=1

Apu · Ru ≤ Hp, ∀p ∈ [0,P), (6)

Fpnsn ≤ Fmax , ∀switch ∈ [0, S) , ∀port ∈ [0,K )

(7)

Equation (5) states that each VM must be assigned to one
and exactly only one PM. Equation (6) presents the capacity
constraint of PMs to ensure the resources are available to
VMs. Equation (7) is the limitation of ports to avoid overload
and congestion. Given n VMs to be assigned to m PMs, there
are mn possible solutions in all. It is completely impractical
to make an enumeration of all solutions to find the best one.
In the next section, we apply E2VMP and improve ant colony
algorithm to search for near-optimal solutions.

IV. HEURISTICS ALOGRITHM
VMP problem has been proven as an NP-hard problem
which is difficult to find a solution in polynomial time.
Therefore, effective and desirable algorithms are important
to obtain solutions. To solve our energy efficient VMP
scheme (E2VMP)with bi-objective function, an improved ant
colony optimization with adaptive parameter setting, termed
AP-ACO is proposed to improve its convergence rate and
search capability.

The pseudo-code of E2 VMP is depicted in Algorithm 1.
E2VMP works in three stages: in the initialization stage, all
the parameters are initialized, and every pheromone trail is set
as τ0. In the iterative step, the number of ants and two critical
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Algorithm 1 E2VMP With AP-ACO Algorithm
Require:

Number of PMs:P; Number of VMs:V ; Number of cycles:
Cmax ;
Distance between PMp and PMq: dpq; Available resource
of PMp: ap; Resource request of VM v: ri.

Ensure:
VM placement solution

/*Initialization*/
Set values of parameters: P, V , Cmax , ρ;
Initialize values of α, β, and M ;
Initialize Pareto set Sopt ;
Run FFD algorithm to obtain PowerS0 and CostS0 ;
/*Iteration*/
for each t ∈ [1,Cmax] do

for each ant ∈ [1,M ] do
for each v ∈ [1,V ] do

Update the heuristic information;
for each p ∈ [1,P] do

if rv < ap then
Calculate the probability pv→p accord-

ing to Eq.(15);
end if

end for
Generate a random number q for ‘‘roulette

wheel’’ selection;
if q < pv→p then

Place VM v to PMp;
end if

end for
Add the current solution in Sopt ;

end for
// Construct optimal solution set
Remove dominated solutions in Sopt ;
Update pheromone information τi→p according to

Eq.(10);
Adjust α, β and M according to Eq.(16)-(18);
t ++;

end for
/*Iteration end*/
Return Sopt

factors of ant colony algorithm will change according to the
last iteration. Then the artificial ants start assigning VMs to
PMs with calculated probability. The probability is based on
the pheromone trail and the heuristic information which leads
ants to the promising VM placement configuration. In the
end, we can get the Pareto set by removing the dominated
solutions.

A. HEURISTIC INFORMATION
The heuristic information is the main difference between a
real ant and an intelligent ant. In a real ant colony, ants
select their path with equal probability at the first beginning.

Differently, artificial ants can make use of the heuristic infor-
mation when they are searching for the optimal solution.
The heuristic information ηv→p indicates the desirability of
assigning VM v to PM p. To assess the desirability of each
move accurately, the heuristic information is dynamically
computed according to the current state of the ant. The way
ants release the heuristic information will influence the algo-
rithm. Therefore, we should efficiently execute the algorithm.
The proposed method to calculate the heuristic information
considers the partial contribution of each move to the objec-
tive function value.

With arranging all VMs randomly in an order called VO
and assigned VMs one by one to ideal PMs, we can calculate
the partial contribution of assigning VOu to PMp for the
communication cost according to the following equation:

ηcostu→p =
1

ε +
v∑

w=1

suw·dpq
CostS0

, Apu = 1 and Aqw = 1. (8)

Similarly, we can calculate the partial contribution of
assigning VOu to PMp for the power consumption as follow:

ηpoweru→p =
1

ε + 1/PowerS0
, (9)

where CostS0 and PowerS0 respectively represent the total
communication cost and the power consumption of the solu-
tion S0 generated by the FFD algorithm [37]. And ε is a very
small constant which can be defined as 0.00001.

B. PHEROMONE TRAIL UPDATE
The pheromone trail is another vital element of the probabil-
ity of assigning VOu to PMp. The value of pheromone trail
may increase, due to the secretion and diffusion or decrease,
as the evaporation. While the secretion of pheromone guides
E2VMP to a better solution, the evaporation also plays an
important role. It avoids a too rapid convergence towards
a suboptimal result, thus encouraging the ants to search
for a better solution. In the initialization phase, the ini-
tial pheromone level is set as τ0. In the iterative part,
the pheromone trail should be updated before reiterating the
process. Let ρ(0 < ρ < 1) denote the pheromone evap-
orating parameter, we can get the total pheromone trail of
iteration t − 1:

τu→p(t) = (1− ρ) · τu→p(t − 1)+1τu→p, (10)

where 1τu→p represents the increment of the total
pheromone trail.

Different from most ant colony algorithms, we employ
a pheromone diffusion model to simulate the real ant
colony. In the classic algorithm, the pheromone concentration
becomes a character of PMp and does not affect other PMs.
The information exchange among ants is insufficient and not
in time. Considering the diffusion, we can improve the col-
laboration among ants and reduce the times of iteration. The
diffusion model approximately subjects to Gaussian plume
model. Therefore, we enhance the pheromone of the PM
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whose objective function value is relatively small. Moreover,
the other PMs that are close to the selected PM will also
obtain pheromone. Hence 1τu→p can be calculated as fol-
lows:

1τu→p =

M∑
k=1

1τ ku→p, (11)

where M is the number of ants and 1τ ku→p represents the
pheromone increment that ant k leaves if VMu is placed to
PMp.
In the following, we will illustrate how to build 1τ ku→p.

According to the reality, the peak of pheromone appears at the
selected PM, so the expectation of the Gaussian distribution
is related to dpq. In AP-ACO, a better solution is expected
to obtain more pheromone, so the peak of a better solution
should be higher. In other words, the variance is smaller.
According to the demands above, we can define 1τ ku→p as
shown, in which Objbest represents the function value of the
best solution until this iteration:

1τ ku→p =


1

Objbest
√
2π
, Apu = 1

1

Objbest
√
2π
· exp

{
−

dpq2

2 · Objbest2

}
, Apu 6= 1.

(12)

To avoid search stagnation, the pheromone intensity is
defined with upper and lower limits: Tmax and Tmin, which
can be calculated as follows:

Tmax =
1

1− ρ
×

1
B
, (13)

Tmin =
1
5
· Tmax, (14)

where ρ denotes the pheromone evaporating parameter, andB
represents the value of the objective function corresponding
to the optimal solution at the end of the current iteration.

C. ADAPTIVE PARAMETER SETTING
After defining the pheromone trail and heuristic information,
let pu→p denote the probability of assigning VMu to PMp.
Define the set of all available PMs for VMu as A, we can
easily calculate pu→p as follow:

pu→p =

[
τu→p(t)

]α
·
[
ηu→p

]β∑
q

[
τu→q(t)

]α
·
[
ηu→q

]β , PMq ∈ A (15)

where α and β represent the pheromone concentration and
the weight of the heuristic function respectively.

From Eq. 15, we can infer that the value of the α and
β will affect the algorithm performance to a large extent.
When the β is bigger, and α is smaller, the state transition
probability is greatly influenced by heuristic information.
In such a condition, although the algorithm convergence
speed would increase, the result is often inferior. On the other
hand, in the reverse situation, the state transition probability

is greatly influenced by pheromone, which usually makes
it difficult to find the optimal solution in limited iterations.
To pursue a more robust search and faster convergence on
the optimum solution, the parameters (α and β) should be
adjusted adaptively.

At the same time, the number of ants M has a significant
impact on the performance of the traditional algorithm as
well. If the number of ants is large, the global search ability
and stability of the algorithm can be improved at the cost
of a slower convergence. On the contrary, a smaller value
of M will result in algorithm premature stagnation due to
falling into partial optimization. To improve its convergence
and decrease the degrees of the precocity and stagnation,
the parameters α, β, and M are adjusted adaptively. They all
follow the logistic sigmoid function:

α =
αmax − αmin

1+ e−
Cmax
2 −C
P

+ αmin, (16)

β =
βmax − βmin

1+ e−
Cmax
2 −C
P

+ βmin, (17)

M = (int)
Mmax −Mmin

1+ e−
Cmax
2 −C
P

+Mmin, (18)

where Cmax denotes the upper limit of iterations and C rep-
resents the current iteration. P is a parameter that can be
dynamically adjusted, and its value determines how quickly
the size and parameters change with different values of C .

D. PARETO FRONT
To solve multi-objective optimization problems, several
objectives are required to be considered simultaneously.
However, due to conflicts and incomparability between those
targets, the best solution for one target may be the worst for
another one. In addition, in practice, there is no single best
solution for the problem but a set of solutions that are superior
when all objectives are considered [38].

The Pareto approach is more often used to cope with multi-
objective problems than the conventional weighted-formula
approach. The solution set is known as a non-dominated solu-
tion set. If the corresponding objective vectors of some solu-
tions, which contain all decision vectors, cannot be improved
in any dimension without degradation, the set of such solu-
tions can be considered as Pareto optimal, which constitutes
the so-called Pareto front [39]. For a given system, the Pareto
front or Pareto set is the set of parameterizations (allocations)
that are all Pareto efficient. Finding Pareto front is particu-
larly useful in engineering. By yielding all of the potentially
optimal solutions, a designer can focus tradeoffs within this
constrained set of parameters, rather than considering the full
ranges of parameters.

V. PERFORMANCE EVALUATION
A. SIMULATION SETUP
In this section, we use some simulation experiments to eval-
uate the performance of the proposed algorithm. The settings
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TABLE 2. Parameters.

FIGURE 2. Performance comparison on power consumption with
different VM numbers.

of various parameters have a direct effect on the algorithm
performance.

According to preliminary experiments, the pheromone
evaporating parameter determined to be ρ = 0.7, and con-
stant parameter P equals 30. The variable parameters are
initialized as M = 40, α = 0.1 and β = 5. The range of
parameters can be seen in Table 2. Also, we generated a Fat-
tree network that includes 54 PMs and 45 switches. Accord-
ing to [40], we consider the VM resource requirements are
uniformly distributed in [0.2, 0.6]. Since the DC traffic is
quite different from Internet traffic and it is often unavailable,
recent studies [41] have proposed some good characterization
on workload and traffic in DCNs. According to their studies,
we constructed a synthesized workload emulating the traffic.
For simplification, we assumed the traffic demands of VMs
meet the normal distribution.

B. SIMULATION RESULTS AND DISCUSSION
In this section, we will prove that AP-ACO is efficient under
different traffic patterns and configurations. We will compare
the performances of AP-ACO with three other algorithms:
Basic ACO algorithm, FFD algorithm and Random algo-
rithm. Each test below is repeated with 100 runs, and the aver-
age results over 100 independent runs are shown in figures.

First, we experimented by placing 108 VMs in the Fat-
tree topology to compare four algorithms by calculating the
values of objective functions separately. In order to simplify
the calculation, the experiment [14] shows that the power
consumption of PMs can be described by a linear relationship
between the power consumption and CPU utilization, which
is PowerPM = 86.495+ 0.311× UtiCPU .
In order to get a better understanding of the compari-

son among these algorithms, we compared them from two
aspects: power consumption and communication cost. The
results can be seen in Fig. 2 and Fig. 3.

FIGURE 3. Performance comparison on communication cost with
different VM numbers.

FIGURE 4. Comparison on run time.

From Fig. 2 and Fig. 3, we can see that the power con-
sumption and communication cost are increasing when the
number of VMs is larger. In the same network topology, due
to the increase of VMs, more PMs are in the active model,
which will cost more energy. Also, when more VMs work,
the resource requirements will increase, leading to a large
communication cost. In addition, from the two figures above,
we can conclude that AP-ACO is the best algorithm among
the four. Obviously, the performance of Random algorithm
is the worst in that it is not able to find the best VMP
without using any technics. The ACO algorithm outperforms
FFD algorithm, because the ACO algorithm can search the
solution space more efficiently and globally. Furthermore,
the AP-ACO performs better than ACO algorithm, which
demonstrates the adaptive parameter setting and Pareto set
are efficient.

As we can observe from the Fig. 4, the time decreases
with the increase of bandwidth. This phenomenon can be
explained by the following reasons: when the communication
demand of VMs and flow sizes through ports are constant,
the wider the bandwidth is, the larger the amount of data is
transmitted per unit of time. We can also see that the meta-
heuristic optimization algorithms (ACO and AP-ACO) spend
a longer time than those of FFD algorithm and Random. This
results from the design of ACO-based algorithms. The move-
ment of ants will be calculated every iteration, which would
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FIGURE 5. Pareto frontier for communication cost and power
consumption.

consume a lot of time. Also, AP-ACO uses the result of FFD
as an initial feasible solution, it is reasonable that the run time
of AP-ACO is longer than that of FFD, but shorter than ACO.
In addition, AP-ACOwith adaptive parameter setting pursues
to balance its fast convergence and robust search capability,
which is the other reason for less time compared with the
classic ACO. Also, the Random algorithm just assigns VMs
to PMs in an unpredictable order, so mapping might fail
and should try again. Therefore, the Random algorithm will
consume more time than FFD algorithm. From the above
analysis, though AP-ACO would take a longer time for com-
putation, it can achieve the best performance.

In Fig. 5, we can see the Pareto front of AP-ACO. It is
formed by the point where the Pareto optimal solution is
mapped from the decision variable space to the target function
space. This figure shows that our algorithm can achieve the
Pareto optimal solutions, and solutions are uniformly dis-
tributed along the Pareto frontier. As every solution in the
Pareto set cannot make any improvement without weakening
at least one objective, we can infer that the Pareto solutions
can make a tradeoff between communication cost and power
consumption. Therefore, the best VMP can be chosen accord-
ing to the practical factors.

VI. CONCLUSION AND FUTURE WORK
This paper addresses an issue of energy-efficient VMP prob-
lem by a scheme, termed E2VMP. It formulates the VMP
as a bi-objective optimization problem and solves the VMP
problem based on ant colony optimization. In pursuit of fast
convergence and robust search capability, we improve the ant
colony optimization algorithm, named AP-ACO, to find the
best solution of the placement. The performance of our pro-
posed scheme is evaluated in comparison with FFD algorithm
and Random algorithm. From the simulation, we prove that
the proposed algorithm could find the best solution at the
cost of run time. The results show that E2VMP is adaptable
to different configurations and efficient to different traffic
patterns.

However, there are still a few limitations in our work. The
first one is that we just focus on CPU power consumption,
which is the dominant consumption. Further extension of
power consumption is left out of consideration and left for

our further study. The other one is that we do not evaluate
VMP algorithms with real trace data of the cloud platform.
In the future, we will extend our experimental results through
trace-driven simulation, in order to evaluate our VMP algo-
rithm. Furthermore, we will concern methodology to reduce
computational time and explore a more effective solution to
cut down power consumption and communication cost.
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