
Received March 13, 2019, accepted April 11, 2019, date of publication April 18, 2019, date of current version April 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2911864

Hyperspectral Image Denoising Using Group
Low-Rank and Spatial-Spectral
Total Variation
TANER INCE , (Member, IEEE)
Electrical and Electronics Engineering Department, University of Gaziantep, 27310 Gaziantep, Turkey

e-mail: tanerince@gantep.edu.tr

ABSTRACT Hyperspectral images (HSIs) are frequently corrupted by various types of noise, such as
Gaussian noise, impulse noise, stripes, and deadlines due to the atmospheric conditions or imperfect
hyperspectral imaging sensors. These types of noise, which are also called mixed noise, severely degrade
the HSI and limit the performance of post-processing operations, such as classification, unmixing, target
recognition, and so on. The patch-based low-rank and sparse based approaches have shown their ability to
remove these types of noise to some extent. In order to remove the mixed noise further, total variation (TV)-
based methods are utilized to denoise HSI. In this paper, we propose a group low-rank and spatial-spectral
TV (GLSSTV) to denoise HSI. Here, the advantage is twofold. First, group low-rank exploits the local
similarity inside patches and non-local similarity between patches which brings extra structural information.
Second, SSTV helps in removing Gaussian and sparse noise using the spatial and spectral smoothness of
HSI. The extensive simulations show that GLSSTV is effective in removing mixed noise both quantitatively
and qualitatively and it outperforms the state-of-the-art low-rank and TV-based methods.

INDEX TERMS Denoising, hyperspectral image (HSI), mixed noise, group low-rank, spatial-spectral total
variation (SSTV).

I. INTRODUCTION
Hyperspectral imaging is the measurement of light spec-
trum over a large number of narrow wavelengths reflected
from objects. High spectral resolution in HSI provides higher
success rate in the identification of the substances com-
pared to the classical imaging methods. Therefore, hyper-
spectral imaging is used in various fields of science such
as remote sensing, astronomy, mineralogy and fluorescence
microscopy. HSI suffers many types of noise that are intro-
duced in imaging process due to several factors such as
atmospheric effects and imperfect hyperspectral sensors. The
types of noise which are frequently encountered are Gaussian
noise, impulse noise, stripes, which are termed as mixed
noise, seriously corrupts the hyperspectral data and affects
the success of post-processing operations such as classifica-
tion [1], unmixing [2] and target recognition [3].

The two-dimensional (2D) gray-scale image denoising
methods such as K-SVD [4], BM3D [5], NCSR [6] or other
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well-known methods can be utilized to denoise HSI by con-
sidering the each band of HSI as a 2D gray-scale image.
However, band-wise denoising methods do not consider the
spectral correlations between each band of the HSI, which
is the most crucial property of HSI. In literature, many HSI
denoising methods have been proposed [7]–[17]. In [7], Chen
and Qian propose a principal component analysis (PCA) for-
mulation to remove noise from low-energy PCA output chan-
nels which is believed to contain large amount of noise. [8]
employs the sparse representation and low-rank penalty for
redundancy and correlation (RAC). The sparse representation
captures the local RAC in spectral domain and global RAC in
spatial dimension and low-rank penalty captures the global
RAC in spectral dimension. Lu et al. [9] propose a spectral-
spatial adaptive sparse representation which explores the
correlated spectral and spatial information. Besides this,
low-rank approximation based methods which employ robust
principal component analysis (RPCA) have been proposed
for HSI denoising [18], [19]. The RPCA has attracted great
attention due to the success of recovering the subspace
structures possibly with outliers. It is used in many diverse
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applications such as image analysis, web data ranking and
computer vision. In the RPCA model, the lowest rank rep-
resentation of data among all possible solutions is obtained
and outliers are simultaneously removed by introducing a
sparse error matrix to the model. Since HSI has a low-rank
structure and it inevitably contains noise in the form of sparse
and Gaussian noise, RPCA based methods are utilized in
many studies for HSI denoising and restoration [10], [12],
[14], [15]. Zhang et al. [10] divide the HSI into overlap-
ping patches and solve low-rank matrix recovery (LRMR)
for each patch and aggregates the patches to obtain the
clean HSI. LRMR adopts the Go Decomposition (GoDec)
algorithm [20] to obtain the low-rank approximation of the
patches. The noise-adjusted iterative low-rankmatrix approx-
imation (NAILRMA) for Gaussian noise and noise-adjusted
iterative low-rank matrix recovery (NAILRMR) for mixed
noise are proposed in [12] that considers the noise level in
different bands of the HSI. Furthermore, nonconvex low-rank
approximation based denoising methods are also considered
in the literature. The weighted Schatten p-norm low-rank
matrix approximation (WSN-LRMA) [14] utilizes an itera-
tive approach to restore the HSI. Recently, nonconvex low-
rank matrix approximation (NonLRMA) [15] is proposed
for HSI denoising which approximates the rank of HSI in
iterative manner.

Besides this, in order to increase the success of denois-
ing results, spatial and spectral information are investi-
gated simultaneously in various studies. The low-rank spec-
tral non-local approach is used in [11] which includes the
low-rank representation of precleaned image patches and
the application of spectral non-local method to restore the
image. Reference [16] proposes a noise reduction algorithm
using hybrid spatial-spectral wavelet shrinkage that works
in spectral derivative domain and considers the dissimilar-
ity in spatial and spectral dimensions and the algorithm
is applied to denoise HSI. Furthermore, group low-rank
representation (GLRR) is proposed in [21] to exploit the
local similarity in a patch and non-local similarity across
patches in a group simultaneously. GLRR which uses
group low-rank and sparse based denoising scheme denoises
each group individually using LRMR. The low-rank rep-
resentation with spectral difference space (LRRSDS) [22]
denoises HSI by utilizing the LRR of the spectral differ-
ence image. Fan et al. [23] propose a denoising method
based on superpixel segmentation and low-rank represen-
tation (SS-LRR) to capture the spatial information more
effectively.

Furthermore, total variation [24], which is an effective
method in gray-scale image denoising, is used in many stud-
ies to remove noise from HSI [13], [25]–[29]. Yuan et al.
propose a spatial-spectral adaptive TV (SSAHTV) model by
considering the smoothness in spatial and spectral views to
improve the denoising result [25]. Reference [13] employs
a TV regularized low-rank matrix approximation (LRTV) to
restore the HSI in which TV is applied in spatial dimensions.
Spatial-spectral TV (SSTV) model is introduced in [26] to

denoise in spatial and spectral dimensions. The low-rank
constraint SSTV (LSSTV) denoising method is considered
in [29] to utilize the spatial and spectral smoothness and
spectral correlation, simultaneously which is an effective
method in removing the mixed noise from HSI. The spatial-
spectral total variation regularized local low-rank matrix
recovery (LLRSSTV) is proposed in [27]. LLRSSTV utilizes
patch based low-rank approximation and SSTV simultane-
ously to remove the mixed noise efficiently. Reference [28]
applies weighted total variation regularized low-rank model
(LRWTV) for HSI restoration to preserve the spatial struc-
ture. The spectral-spatial weighted TV captures the spatial
and spectral information of HSI to preserve the details.
In [30], spectral difference-induced total variation and low-
rank approximation (SDTVLA) is introduced to remove the
structured noise such as structured stripes and deadlines.
Sun et. al propose a cross TV regularized unidirectional
low-rank tensor approximation (CrTVLRT) method [31] to
explore the spectral-spatial correlation and non-local self-
similarity simultaneously.

Patch based HSI denoising methods by arranging the 3D
subcube to matrix form for removing mixed noise cannot
exploit the full advantage of spatial and spectral informa-
tion. Therefore, tensor based methods are proposed for HSI
denoising [32], [33]. Huang et al. propose a group sparse and
low-rank tensor decomposition (GSLRTD) method [32] to
exploit the spatial and spectral information more effectively.
First, 3D HSI is divided into overlapping 3D tensor cubes,
then these cubes are clustered using k-means algorithm to
form a group tensor. Each group tensor is denoised by SLRTD
and clean HSI is obtained by aggregating all 3D cubes.
Fan et. al propose a spatial-spectral TV regularized low-rank
tensor factorization (SSTV-LRTF) method for mixed noise
removal [33], which prevents the loss of multiway structural
information in HSI.

Inspired by the GLRR [21] and SSTV based methods
[25]–[29], [33] proposed in the literature, we propose a group
low-rank approximation with spatial-spectral total variation
(GLSSTV) method to denoise the HSI in the presence of
mixed noise. Here, group low-rank representation exploits the
local similarity within a patch and non-local similarity across
patches, which brings extra structural information to help
the reconstruction of corrupted patches and SSTV eliminates
the noise further by utilizing the smoothness in spatial and
spectral dimensions simultaneously. Basically, GLSSTV is
related to aforementioned works. However, there are differ-
ences between GLSSTV and the others. GLRR [21] denoises
each group individually to recover the corrupted patches but
mixed noise cannot be removed completely. LLRSSTV [27],
which is a combination of patch-based restoration and SSTV,
do not consider the non-local similarity across patches.
Furthermore, LSSTV [29] utilizes SSTV and low-rank
approximation simultaneously without considering the patch-
based denoising framework.

The simulated experiments on simulated and real datasets
indicate that the proposed denoising scheme is effective
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in removing mixed noise from HSI and outperforms the
state-of-the-art methods proposed in the literature.

The rest of the paper is organized as follows. Section II
gives notations and necessary background for problem for-
mulation. Section III describes the proposed method. The
simulated and real data experiments are given in Section IV.
Finally, Section V concludes the paper. Some suggestions and
future works are given in this section.

II. NOTATIONS AND BACKGROUND
Throughout the paper, we denote the hyperspectral cubes as
Euler script letters, e.g., A. Matrices are denotes as bold-
face capital letters e.g., A, vectors are denoted as bold-
face lowercase letters, e.g., a, and scalars are denoted by
lowercase letters e.g. a. Some norms are used for tensors,
matrix and vectors. Let ai1,i2,...,im denote the (i1, i2, . . . , im)-
element of A. We denote the l1 norm as ‖A‖1 =∑

i1,i2,...,im |ai1,i2,...,im |, the Frobenius norm as ‖A‖F =

(
∑

i1,i2,...,im |ai1,i2,...,im |
2)1/2. These norms reduces to matrix

or vector norms if A is a matrix or vector. The nuclear norm
of A is denoted as ‖A‖∗ which is defined as ‖A‖∗ =

∑
i σi

where σi is the ith singular value of A.

A. PATCH BASED LOW-RANK MATRIX RECOVERY MODEL
Hyperspectral images inevitably contain noise in the form
of additive and sparse noise which includes Gaussian noise,
impulse noise, stripes and deadlines. Suppose that the obser-
vation model for HSI is given as

Y = X + S +N (1)

where Y , X , S and N denote the noisy HSI, clean HSI,
sparse noise and Gaussian noise, respectively. The size of
each term ism×n×p. It is known that there exist high spectral
correlation between the bands of HSI, (RPCA) [34], [35] can
be utilized in the patch-based denoising framework [10], [12].
The observation model for a subcube of size M × M × p
centered at location (i, j) can be written as

Y(i,j) = X(i,j) + S(i,j) +N(i,j) (2)

then the observation model is converted to a 2D Casorati
matrix form which means that each band of subcube is con-
verted to M2

× 1 vector and then each vector is stacked
column-wise to obtain the Casorati matrix. The observation
model for subcube centered at location (i, j) in matrix form
can be written as

Y(i,j) = X(i,j) + S(i,j) + N(i,j) (3)

where Y(i,j), X(i,j), S(i,j), and N(i,j) are the Casorati matrices
of Y(i,j), X(i,j), S(i,j) and N(i,j), respectively. The size of each
term is M2

× p. The rank-constrained RPCA formulation is
proposed to obtain clean HSI X, which is formulated as:

min
X(i,j),S(i,j)

‖X(i,j)‖∗ + λ‖S(i,j)‖1 (4)

s.t. , ‖Y(i,j) − X(i,j) − S(i,j)‖2F ≤ ε

rank(X(i,j)) ≤ r

where λ is the regularization parameter and r is defined as
the upper rank value of X(i,j). After all patches are restored,
patches are aggregated to obtain the clean HSI.

B. SPATIAL-SPECTRAL TOTAL VARIATION MODEL
The RPCA based denoising methods are effective in remov-
ing sparse noise from the data. However, Gaussian noise in
the HSI data cannot be removed completely. Furthermore,
if the sparse noise has a structured characteristics then sparse
noise can be regarded as low-rank part which means that
the sparse noise cannot be eliminated efficiently. Therefore,
using the spatial and spectral smoothness property of HSI, TV
is applied either band-by-band [13] or SSTV is applied in spa-
tial and spectral dimensions simultaneously [26], [27], [29]
to remove the Gaussian noise and sparse noise efficiently.
SSTV [26] model is formulated as

‖X‖SSTV = ‖DhXD‖1 + ‖DvXD‖1 (5)

Dh and Dv are horizontal and vertical two dimensional dif-
ference operators applied on spatial dimensions and D is
the one dimensional difference operator applied on spectral
dimension. SSTV is very effective in removing Gaussian and
sparse noise from hyperspectral data. However, it does not
utilize the spectral correlation between the bands of hyper-
spectral data. LSSTV [29] utilizes the spectral correlation
and spatial and spectral smoothness of HSI by using the low-
rank approximation and SSTV simultaneously. It has been
shown that superior performance is achieved in removing the
Gaussian and sparse noise. LLRSSTV [27] employs patch-
based low-rank approximation and SSTV simultaneously.

III. PROPOSED METHOD
A. GROUP LOW-RANK APPROXIMATION WITH
SPATIAL-SPECTRAL TOTAL VARIATION
We propose a novel denoising scheme that will employ group
low-rank approximation and SSTV regularization simulta-
neously, which we call group low-rank approximation with
SSTV regularization (GLSSTV). Group low-rank representa-
tion will provide the local similarity inside a patch and non-
local similarity between patches. SSTV is utilized to remove
the sparse noise and Gaussian noise by considering the spatial
and spectral smoothness of HSI.

First, we define an operatorR(q)(·) that extracts a subcube
of sizeM×M×p centered at location (i, j) and reshapes into
a patch matrix of sizeM2

× p. The total number of patches is
K = bm−ss c × b

n−s
s c where b?c rounds ? down to the nearest

integer. Therefore, a patch Y(q) for (q = 1, . . . ,K ) can be
represented as

Y(q) = R(q)(Y) q = 1, . . . ,K (6)

Then, we define a similarity matrix D where each element of
D is calculated based on Euclidean distance between patches
such that

Dqv = ‖Y(q) − Y(v)‖F q, v = 1, . . . ,K (7)
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We sort each row of D in descending order and collect the
(i, j) indices of the k patches that have the lowest Euclidean
distance in each row of D. The (i, j) indices of the k patches
in each group are stored in sets 3q = {3q1 , . . . , 3qk } for
(q = 1, . . . ,K ) which will be used in the reconstruction stage
of the proposed formulation.

At this point, we define an operator T 3q to create a group
for each patch Y(q) for (q = 1, . . . ,K ) such that

T 3q (Y) =


Y(3q1 )

Y(3q2 )
...

Y(3qk )


kM2×p

q = 1, . . . ,K (8)

Basically, T 3q is a two-step operator. First, it extracts K
subcubes of sizeM×M×p centered at location (i, j) and then
convert them to Casorati matrix form using operator R(q)(·).
Second, K groups are created using the indices provided by
3q for (q = 1, . . . ,K ).

Based on operator T 3q , our proposed rank constrained
group low-rank and SSTV model for HSI denoising as
follows.

min
X ,S

K∑
q=1

(
‖T 3q (X )‖∗

)
+ λ‖S‖1 + τ‖X‖SSTV

+ β‖Y − X − S‖2F
s.t. rank(T 3q (X )) ≤ r; q = 1, . . . ,K (9)

Here,
∑K

q=1
(
‖T 3q (X )‖∗

)
calculates the group nuclear norm

for each group, λ‖S‖1 accounts for the sparse noise in the
data, τ‖X‖SSTV considers the spatial and spectral smooth-
ness of the HSI and β‖Y − X − S‖2F balances the tradeoff
between noisy and clean data. Replacing the SSTV model in
(5) to (9) leads to following optimization problem.

min
X ,S

K∑
q=1

(
‖T 3q (X )‖∗

)
+ λ‖S‖1 ++β‖Y − X − S‖2F

+ τ‖DhXD‖1 + τ‖DvXD‖1
s.t. rank(T 3q (X )) ≤ r; q = 1, . . . ,K (10)

We employ Alternating Direction Method of Multipliers
(ADMM) [36] to solve (10). By including auxiliary variables,
we can write

min
J ,X ,S

K∑
q=1

(
‖T 3q (J )‖∗

)
+ β‖Y − X − S‖2F

+ λ‖S‖1 + τ‖P‖1 + τ‖Q‖1
+ µ‖P − DhXD− B1‖

2
F

+ µ‖Q− DvXD− B2‖
2
F + µ‖J − X − B3‖

2
F

s.t. rank(T 3q (J )) ≤ r; q = 1, . . . ,K (11)

where B1, B2 and B3 are Lagrangian multipliers and J ,
P and Q are the auxiliary variables to decouple the vari-
ables. We can write the individual problems for decoupled

variables as:

J : argmin
rank(T 3q (J ))≤r

K∑
q=1

‖T 3q (J )‖∗ (12)

+ µ‖J − X − B3‖
2
F

P : argmin
P

τ‖P‖1 + µ‖P − DhXD− B1‖
2
F (13)

Q : argmin
Q

τ‖Q‖1 + µ‖Q− DvXD− B2‖
2
F (14)

S : argmin
S

λ‖S‖1 + β‖Y − X − S‖2F (15)

X : argmin
X

β‖Y − X − S‖2F + µ‖J − X − B3‖
2
F

+µ‖P − DhXD− B1‖
2
F + µ‖Q− DvXD− B2‖

2
F

(16)

For problem (12), the optimization problem can be divided
into K independent optimization problems. We can write

argmin
rank(T 3q (J ))≤r

‖T 3q (J )‖∗ + µ‖T 3q (J )

−T 3q (X + B3)‖2F (17)

for each group (q = 1, . . . ,K ).
Solution to (17) can be obtained using the following

lemma.
Lemma 1 [37]: Consider the singular value decomposi-

tion (SVD) of matrix Q ∈ Rmn×p of rank r

Q = U6V∗, 6 = diag({σi}1≤i≤r ) (18)

where U and V are mn× r and p× r matrices. Then singular
value shrinkage operator obeys

Dρ(R) = argmin
Q

1
2
‖Q− R‖2F + ρ‖Q‖∗ (19)

where Dρ(R) = UDρ(6)V∗ and Dρ is defined as Dρ =
diag({σi − ρ}+)
Therefore, the solution to (17) for each group can be

obtained directly using Lemma 1.

T 3q (J ) = D1/2µ(T 3q (X + B3)) (20)

In order to take the consideration of rank(T 3q (J )) ≤ r ,
we set σ (i) = 0 for i > r for each group.
Then, we reconstruct J from K groups using the indices

provided by 3q such that

J = T T
3q

(
T 3q (J )

)
(21)

where T T
3q

(·) is inverse operator of T 3q (·).
T T
3q

(·) is a two-step averaging operation. We know that
T 3q (J ) creates groups for each patch J(q) such that

T 3q (J ) =


J(3q1 )

J(3q2 )
...

J(3qk )


kM2×p

q = 1, . . . ,K (22)
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and also a patch J(q) in a group can be included in C
groups, there will be multiple patches for J(q) denoted
as {J(l1)(q) , . . . , J

(lC )
(q) } where (l1, . . . , lC ) is the group indices

for J(q).
In the first step, we average the patches with the same

indices using

J(q) =
1
C

C∑
t=1

J(lt )(q) q = 1, . . . ,K (23)

In the second step, J is calculated by averaging the over-
lapped patches as

J =
K∑
q=1

RT
(q)(J(q))./

( K∑
q=1

RT
(q)R(q)

)
(24)

where RT
(q)(·) is inverse operator of R(q)(·) and it converts

J(q) to subcube J(q) and forms an m× n× p image where the
values of J(q) are put in the appropriate position in m× n× p
image and the rest of the image is set to zero.

∑K
q=1RT

(q)R(q)
is an m× n× pmatrix that averages the overlapped subcubes
formed by

∑K
q=1RT

(q)(J(q)).
The solutions to subproblems (13), (14) and (15) can be

obtained as

P = Rτ/2µ(DhXD+ B1) (25)

Q = Rτ/2µ(DvXD+ B2) (26)

S = Rλ/2β (Y − X ) (27)

where the soft-thresholding operator R(·) is defined as:

Rτ/2µ(o) =

{
o− τ/2µ, if o > τ/2µ
o+ τ/2µ, if o < τ/2µ.

(28)

Next, we obtain the vectorized form of subproblem (16) to
solve for X

x : argmin
x

β‖y− x − s‖22 + µ‖j− x − b3‖
2
2

+µ‖p−∇hx − b1‖22 + µ‖q−∇vx − b2‖
2
2 (29)

where ∇h = DT ⊗ Dh and ∇v = DT ⊗ Dv. Here, we use
the property of Kronecker productDhXD = (DT ⊗Dh)x and
DvXD = (DT ⊗ Dv)x.
Differentiating (29) with respect to x leads to following

linear system of equations

(β + µ+ µ∇Th ∇h + µ∇
T
v ∇v)x

= β(y− s)+ µ(j− b3)+ µ(p− b1)+ µ(q− b2) (30)

which can be solved using LSQR [38]. Then, X can be
obtained by converting vectorized form of x to the tensor
form.

The Lagrange multipliers B1, B2 and B3 are updated as

B1 = B1 + DhXD− P (31)

B2 = B2 + DvXD−Q (32)

B3 = B3 + X − J (33)

We summarize the proposed GLSSTV in Algorithm 1.

Algorithm 1 Algorithm for GLSSTV
Input: Y , M , s, λ, β, τ , µ, r , ε, k
Output: X

Initialization: X (0)
= J (0)

= S(0)
= 0, P (0)

= Q(0)
=

0, B(0)
1 = B(0)

2 = B(0)
3 = 0, x(0) = 0, maxiter = 50,

ε = 10−5

1: Step 1: Get T 3q for (q = 1, . . . ,K ) using (8).
2: Step2:
3: for i = 1 to maxiter do
4: for q = 1 to K do
5: T 3q (J (i)) = D1/2µ(T 3q (X (i−1)

+ B(i−1)
3 ))

6: end for
7: J (i)

= T T
3q

(
T 3q (J (i))

)
8: P (i)

= Rτ/2µ(DhX (i−1)D+ B(i−1)
1 )

9: Q(i)
= Rτ/2µ(DvX (i−1)D+ B(i−1)

2 )
10: S(i)

= Rλ/2β (Y − X (i−1))
11: Solve (30) for x(i) using LSQR [38]
12: Arrange x(i) to obtain X (i)

13: B(i)
1 = B(i−1)

1 + DhX (i)D− P (i)

14: B(i)
2 = B(i−1)

2 + DvX (i)D−Q(i)

15: B(i)
3 = B(i−1)

3 + X (i)
− J (i)

16: if ‖x(i) − x(i−1)‖2 < ε then
17: break
18: end if
19: end for
20: return X

B. COMPUTATIONAL COMPLEXITY
The computational complexity of GLSSTV is based on SVD
calculations, soft-thresholding operations and least square
solution. If we select a step size of s and a block size ofM for
a HSI with dimensionsm×n×p, there will be K = bm−ss c×
b
n−s
s c groups and k patches in each group. The size of each

group will be kM2
× p. At each iteration of GLSSTV, SVD

calculation in (20) requires O(KkM2p2) flops assuming that
kM2 > p and soft-thresholding operation needs O(KkM2p).
The soft-thresholding operators in (25), (26) and (27) require
O(3mnp) flops and the least square solution in (30) requires
O(3mn + 5p) flops using LSQR method [38]. Updating the
Lagrange multipliers in (31), (32) and (33) needs O(6mnp)
flops. Therefore, overall complexity of GLSSTV at each
iteration is O(KkM2p2 + KkM2p+ 9mnp+ 3mn+ 5p). The
main computational cost of GLSSTV comes from the SVD
calculation for each group which dominates the computa-
tional complexity of GLSSTV. Moreover, the computational
complexity of GLSSTV is higher compared to the compu-
tational complexities of the algorithms under comparison.
We report the computation times of each algorithm in real
data experiments in Section IV-H.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we perform several simulated data and real
data experiments to verify the effectiveness of GLSSTV for
HSI denoising. We compare GLSSTV with state-of-the-art
HSI mixed denoising methods proposed in the literature.
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We select nine HSI denoising algorithms. These are
LRMR [10] , NAILRMR [12], GLRR [21], TVL1 [39],
SSTV [26], LRTV [13], LSSTV [29], LLRSSTV [27].
LRMR and NAILRMR are well-known patch-based HSI
denoisingmethods which utilizes RPCA. GLRR solves group
low-rank RPCA. TVL1 uses 3D total variation to restore
video sequences. LRTV is a TV regularized low-rank matrix
factorization algorithm in which TV is applied each band of
HSI individually. SSTV combines spatial and spectral total
variation simultaneously. LSSTV combines SSTV with low-
rank constraint. LLRSSTV denoises HSI using local low-
rank patch-based RPCA with SSTV. The codes of LRMR,
NAILRMR, LRTV, LLRSSTV, TVL1 and SSTV are pro-
vided by authors. We implemented the algorithms GLRR an
LSSTV, since they are not available. The optimal parameters
of each of the algorithm is adjusted as it is explained in their
original papers.

FIGURE 1. (a) Pavia city dataset (b) Washington DC Mall dataset.

A. EXPERIMENTS ON SIMULATED DATA
We use two simulated datasets in the simulated data experi-
ments. The first one is Pavia city1 which was collected by the
reflective optics system imaging spectrometer (ROSIS-03).
The size of this dataset is 1400 × 512 × 102. As first bands
of Pavia dataset are noisy, we removed the first 22 bands.
We selected a subscene of size 200×200×80 which is shown
in Fig. 1(a). The second simulated dataset is Washington DC
Mall2 dataset which was collected by the hyperspectral digi-
tal imagery collection experiment (HYDICE) sensor. It has
a size of 1208 × 307 × 191. We selected a subscene of
256 × 256 × 191 which is shown in Fig. 1(b). Before the
simulations, the gray values of each band were normalized to
the range of [0, 1]. After denoising process, the gray values of
each band were stretched to original range. The peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [40] and
themean spectral angle distance (MSAD) are used to evaluate
the quality of the denoising results of each algorithm. The
mean values of PSNR and SSIM are denoted as MPSNR

1Pavia scenes were provided by Prof. Paolo Gamba from the Telecom-
munications and Remote Sensing Laboratory, Pavia university (Italy)
which can be downloaded at http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes.

2Available at Purdue University Research Repository (https://engineering.
purdue.edu/biehl/MultiSpec/hyperspectral.html)

and MSSIM. These metrics are calculated as:

PSNRl(X̂l,Xl) = 10 log
mn∑m

i=1
∑n

j=1[X̂l(i, j)− Xl(i, j)]2

SSIMl(X̂l,Xl) =
(2µXlµX̂l

+ C1)(2σX̂lXl
+ C2)

(µ2
Xl
+ µ2

X̂l
+ C1)(σ 2

Xl
+ σ 2

X̂l
+ C2)

MPSNR =
1
p

p∑
l=1

PSNRl(X̂l,Xl)

MSSIM =
1
p

p∑
l=1

SSIMl(X̂l,Xl) (34)

Here, Xl and X̂l denotes the original and restored HSI in lth
band.µXl andµX̂l

are the mean intensity values ofXl and X̂l .

σ 2
Xl

and σ 2
X̂l

are the variances of Xl and X̂l , respectively.

σX̂lXl
is the covariance between Xl and X̂l . MSAD is cal-

culated as

MSAD =
1
mn

mn∑
i=1

180
π
× arccos

(X i)T .X̂ i

‖X i‖.‖X̂ i‖
(35)

where X i and X̂ i denote the ith spectral signatures of clean
and denoised HSI, respectively.

In simulations, we added three types of noise to Pavia city
dataset and Washington DC Mall dataset.

1) Zero-mean Gaussian noise was added to all bands.
Each band has different noise intensities. The standard
deviation of the Gaussian noise of each band is selected
randomly from 0 to 0.2. The mean SNR value of all
bands for Pavia city and Washington DC Mall are
5.66 dB and 7.05 dB, respectively.

2) Impulse noise was added to all bands. The percentage
of impulse noise is selected randomly from 0 to 0.2

3) Stripes were simulated on 30% of the bands which
were selected randomly. The number of stripes of each
selected band ranges from 3 to 15 lines.

B. PARAMETER DETERMINATION
The parameters of the GLSSTV need to be carefully tuned to
obtain good denoising results. The parameter λ controls the
sparsity of the sparse noise S, τ adjusts the spatial-spectral
smoothness of the reconstructed X . A large value of τ will
oversmooth the image and too small value of τ will not
exploit the spatial and spectral smoothness of HSI and the
noise cannot be removed efficiently. β controls the quality of
the reconstruction between noisy image Y and reconstructed
image X . µ is the penalty parameter that effects the conver-
gence of the algorithm. In the experiments, we fixed the block
size and step size as M = 20 and s = 10. The rank values
for Pavia dataset and Washington DC Mall dataset are fixed
to r = 3 and r = 5, respectively.
In the first experiment, we analyze the influence of the

parameters λ and τ when other parameters of GLSSTV are
fixed as β = 5 and µ = 1. GLSSTV is solved by varying the
parameters λ and τ between 0.1 and 0.6 in steps of 0.1.
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FIGURE 2. MPSNR and MSSIM values of GLSSTV for Pavia city subscene by
varying parameters λ and τ when β = 5 and k = 4. (a) MPSNR. (b) MSSIM.

FIGURE 3. MPSNR and MSSIM values of GLSSTV for Washington DC Mall
subscene by varying parameters λ and τ when β = 5 and k = 4.
(a) MPSNR. (b) MSSIM.

FIGURE 4. MPSNR and MSSIM values of GLSSTV for Pavia city subscene
by varying parameter β when λ = 0.3, τ = 0.4 and k = 4. (a) MPSNR.
(b) MSSIM.

Figs. 2 and 3 show the MPSNR and MSSIM plots of
Pavia dataset and Washington DC Mall dataset, respectively.
We can see that λ = 0.3 and τ = 0.4 gives goodMPSNR and
MSSIM values for both datasets.

In the second experiment, we analyze the effect of β.
In this case, we fixed the parameters as λ = 0.3 and τ =
0.4. We solve GLSSTV for β values between 1 and 12 in
steps of 1. Figs. 4 and 5 show the MPSNR and MSSIM
plots. We can observe that β = 5 gives maximum MSPNR
and MSSIM values for both datasets. When β is greater
than 5, MPSNR and MSSIM values tend to decrease for both
datasets.

C. EFFECT OF NON-LOCAL LOW-RANK AND
SSTV REGULARIZATION
GLSSTV includes SSTV regularization and non-local low-
rank regularization. We perform experiments to see the effect
of SSTV and non-local low-rank regularization separately.
First, we solve GLSSTV by varying k from 1 to 10 and setting

FIGURE 5. MPSNR and MSSIM values of GLSSTV for Washington DC Mall
subscene by varying parameter β when λ = 0.3, τ = 0.4 and k = 4.
(a) MPSNR. (b) MSSIM.

FIGURE 6. MPSNR and MSSIM values of GLSSTV for Pavia city subscene
by varying parameter k . (a) MPSNR. (b) MSSIM.

FIGURE 7. MPSNR and MSSIM values of GLSSTV for Washington DC Mall
subscene by varying parameter k . (a) MPSNR. (b) MSSIM.

FIGURE 8. MPSNR versus iteration number for GLSSTV with the two
datasets in the simulated experiments. (a) The Pavia city subscene.
(b) The Washington DC Mall subscene.

τ = 0 when all other parameters are fixed. This means
that SSTV regularization is removed in the formulation of
GLSSTV. Second, in order to see the effect of SSTV regu-
larization, GLSSTV is solved for τ = 0.3 by varying k from
1 to 10. Figs. 6 and 7 show the MPSNR and MSSIM plots
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FIGURE 9. Denoising results of band 15 of Pavia city subscene using different denoising methods. (a) Original image.
(b) Noisy image (11.04 dB). The denoising results of (c) LRMR (29.75 dB). (d) GLRR (31.23 dB). (e) NAILRMR (25.47 dB).
(f) LRTV (28.18 dB). (g) TVL1 (33.56 dB). (h) SSTV (33.46 dB). (i) LSSTV (35.47 dB). (j) LLRSSTV (32.64 dB).
(k) GLSSTV (37.01 dB).

FIGURE 10. Magnified results of the region marked with red rectangle in Fig. 9. (a) Original. (b) Noisy. (c) LRMR. (d) GLRR.
(e) NAILRMR. (f) LRTV. (g) TVL1. (h) SSTV. (i) LSSTV. (j) LLRSSTV. (k) GLSSTV.

when k is varied for τ = 0 and τ = 0.3. We can observe
that when k increases, MPSNR and MSSIM decrease after
some k value for τ = 0. This is the expected result since
the similarity within a group may not be guaranteed when
k is large. However, when SSTV regularization is included
in GLSSTV formulation with τ = 0.3, MPSNR increases
and remains almost constant with increasing values of k .
Also MSSIM increase slightly and remain almost constant
for increasing values of k . Therefore, we can select k = 4
for GLSSTV to obtain good denoising results. In order to
prove the convergence of the proposed GLSSTV algorithm,
we give the MPSNR results versus iterations for Pavia and
Washington DC Mall dataset in Fig. 8, respectively. It can be
observed that after 40 iterations GLSSTV become stable.

D. VISUAL COMPARISON
Fig. 9 shows the denoising results of band 15 of Pavia city
subcene and magnified results of the area marked with red

rectangle in Fig. 9 is shown in Fig. 10. This band is corrupted
by three types of noise including Gaussian noise, impulse
noise and stripes. It can be observed from Fig. 10 that LRMR
and GLRR are able to remove the sparse noise however
NAILRMR fails to remove stripes. TVL1 is also not able
to remove mixed noise. LRTV removes mixed noise but it
smooths the details in the image. LSSTV performs better than
SSTV as it can be seen from Figs. 10(h) and 10(i). LLRSSTV
removes sparse and Gaussian noise perfectly but stripes are
not removed very well. The results of GLSSTV is best in this
Pavia subscene which is also validated by the PSNR results
given in caption of Fig. 9.
The denoising results of the algorithms for band 6 of

Washington DC Mall subscene are shown in Fig. 11 and
the magnified results of the region marked with red rect-
angle in Fig. 11 are shown in Fig. 12. Visually, LRMR,
NAILRMR and GLRR are able to remove the mixed noise.
LRTV removes mixed noise whereas it smooths the details
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FIGURE 11. Denoising results of band 6 of Washington DC Mall subscene using different denoising methods. (a) Original
image. (b) Noisy image (11.32 dB). The denoising results of (c) LRMR (34.50 dB). (d) GLRR (34.39 dB). (e) NAILRMR
(34.69 dB). (f) LRTV (33.33 dB). (g) TVL1 (32.57 db). (h) SSTV (33.48 dB). (i) LSSTV (35.01 dB). (j) LLRSSTV (35.74 dB).
(k) GLSSTV (37.1 dB).

FIGURE 12. Magnified results of Fig. 11. (a) Original. (b) Noisy. (c) LRMR. (d) GLRR. (e) NAILRMR. (f) LRTV. (g) TVL1. (h) SSTV.
(i) LSSTV. (j) LLRSSTV. (k) GLSSTV.

TABLE 1. MPSNR and MSSIM values of the denoising results in the simulated experiment. Boldface means the best and underline means the second best.

in the image. TVL1 removes the sparse noise to some extent
but it does not remove it completely. LSSTV is better than
SSTV in removing noise because of an addition of a low-rank
constraint to SSTV formulation. LLRSSTV and GLSSTV
perform best and preserve the details in the image as shown
in Figs. 12(j) and 12(k).

E. QUANTITATIVE EVALUATION
Table 1 reports the quantitative evaluation results of all
algorithms under comparison for Pavia and Washington DC
Mall datasets. The best results of MPSNR, MSSIM and
MSAD values are given in bold and the values with the sec-
ond highest values are underlined. It is clear that GLSSTV
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FIGURE 13. (a) and (b) are PSNR and SSIM values of each band achieved
by different denoising methods in the experiment with the Pavia city
subscene, respectively. (c) and (d) are PSNR and SSIM values of the bands
between 20 and 40, respectively (marked by red rectangle in (a) and (b)).

FIGURE 14. (a) and (b) are PSNR and SSIM values of each band achieved
by different denoising methods in the experiment with the Washington
DC Mall subscene. (c) and (d) are PSNR and SSIM values of the bands
between 20 and 40, respectively. (marked by red rectangle in (a) and (b)).

outperforms the other methods in terms of MPSNR, MSSIM
and MSAD values. PSNR and SSIM values of each
band for Pavia and Washington Mall dataset are shown
in Figs. 13 and 14, respectively. The results can be clearly
seen in the magnified results of the region marked with red
rectangle for corresponding figures. It can be deduced that
GLSSTV performs better in most of the bands. Furthermore,
we show the spectrum of the individual pixels for

two datasets. Figs. 15 and 16 show the spectrum of the
pixels after denoising results. We can observe that, GLSSTV
approximates the spectrum of pixel better than the other
algorithms under comparison.

F. EXPERIMENTS ON REAL DATA
In this section, we perform several real data experiments to
validate the effectiveness of GLSSTV.

1) AVIRIS INDIAN PINES DataSet
AVIRIS Indian Pines dataset3 was acquired by the NASA
airborne visible/infrared imaging spectrometer (AVIRIS)
instrument over the Indian Pines test site in Northwestern
Indiana in 1992. It has 220 spectral bands with spatial size
of 220 × 220. Some bands of Indian Pines dataset are cor-
rupted by atmosphere and water absorption. In the experi-
ment, we use all of the bands of the Indian Pines dataset.
Fig. 17 shows the band 220 of the Indian Pines dataset
and magnified image of region marked with red rectangle
in Fig. 17 is shown in Fig. 18. It can be clearly seen that
LRMR, NAILRMR, GLRR and TVL1 are not able to remove
the noise and do not preserve the details in the image. LRTV
removes the noise but details are lost in the restored image.
LLRSSTV is also good at removing noise but the details
are not restored very well. LSSTV is better than SSTV in
removing noise and both methods preserve the details in the
image. GLSSTV removes the noise and performs the best in
preserving the details in the image.

2) HYDICE URBAN DataSet
In the second real data experiment, we used Hyperspec-
tral Digital Imagery Collection Experiment (HYDICE)
Urban dataset4 for comparison purposes. It has a size of
307 × 307 × 210. We selected a subimage of size
200×200×210. Fig. 19 shows the denoising results of band
139 of the Urban dataset. Band 139 contains sparse noise
and stripes. Only low-rank based methods such as LRMR,
NAILRMR and GLRR are not good at removing stripes.
LRTV removes the sparse noise and stripes but also removes
the details in the image. SSTV and LSSTV removes sparse
noise and stripes to some extent but they do not completely
remove the stripes. LLRSSTV and GLSSTV performs best in
removing the sparse noise and stripes.

Moreover, we show the vertical mean profiles of band
132 in Fig. 23. LRMR, NAILRMR and GLRR are not good at
suppressing the rapid fluctuations whereas TVL1 suppresses
the fluctuations but do not preserve the structure. LRTV,
SSTV and LSSTV also are not good at suppressing the
fluctuations. LLRSSTV and GLSSTV performs similar and
performs best in suppressing the fluctuations.

3http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes

4http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-
ArticleView/Article/610433/hypercube/

52104 VOLUME 7, 2019



T. Ince et al.: HSI Denoising Using GLSSTV

FIGURE 15. Spectrum of noisy and denoised pixel using different methods for Pavia dataset at location (65,70).

FIGURE 16. Spectrum of noisy and denoised pixel using different methods for Washington DC Mall dataset at location (189,126).

FIGURE 17. Denoising results of Indian Pines dataset for band 220 using different denoising methods. (a) Original image. The denoising results of
(b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV. (h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 18. Magnified results of Fig. 17. (a) Original image. The denoising results of (b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV.
(h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

3) EO-1 HYPERION DataSet
Third set of real experiments are conducted on EO-1 Hyper-
ion DataSet.5 It has a size of 1000 × 400 × 242. The water

5http://www.gscloud.cn/

absorption bands are removed and we selected a subimage
of size 200 × 200 × 166. The Hyperion dataset is mainly
corrupted by stripes, deadlines and Gaussian noise. Fig. 21
shows the denoising results of band 132 of Hyperion dataset.
Magnified region marked with red in Fig. 21 is shown
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FIGURE 19. Denoising results of HYDICE Urban dataset for band 139 using different denoising methods. (a) Original image. The denoising results of
(b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV. (h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 20. Magnified results of Fig. 19. (a) Original image. The denoising results of (b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV.
(h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 21. Denoising results of EO-1 Hyperion dataset for band 132 using different denoising methods. (a) Original image. The denoising results of
(b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV. (h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 22. Magnified results of Fig. 21. (a) Original image. The denoising results of (b) LRMR. (c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV.
(h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

FIGURE 23. Vertical mean profiles for EO-1 Hyperion dataset for band 132 obtained after denoising using different methods. (a) Original. (b) LRMR.
(c) NAILRMR. (d) GLRR. (e) LRTV. (f) TVL1. (g) SSTV. (h) LSSTV. (i) LLRSSTV. (j) GLSSTV.

in Fig. 22. SSTV, LSSTV and GLSSTV remove the Gaussian
noise and stripes while preserving the details in the image.
LLRSSTV is also good at removing sparse and Gaussian

noise but some stripes are still left in the denoised image. The
other comparedmethods are not very good at removingmixed
noise from the image.
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TABLE 2. Classification accuracy results (mean accuracy (%)± standard deviation) of the indian pines dataset using different denoising methods.

TABLE 3. Computation times of the algorithms for real data experiments. Boldface means the best and underline means the second best.

G. CLASSIFICATION EXPERIMENT
Classification accuracy results are another performance mea-
sure for HSI denoising algorithms. We investigated the clas-
sification accuracy results using support vector machine
(SVM) classifier [1] with cross-validation for all denoising
results on Indian Pines dataset. Indian pines dataset contains
10249 samples and including 16 classes. We selected 10% of
samples randomly from each class for training and remain-
ing ones are selected as test data. We evaluated the Overall
Accuracy (OA), Average Accuracy (AA), Kappa values and
class accuracies. We repeat the classification process ten
times by selecting different training and test samples for each
trial and average the results. We give only the classification
accuracy results of SSTV and patch-based denosing methods.
LRTV and TVL1 are excluded in the classification experi-
ments, since they perform poorly in classification experiment.
Table 2 shows the classification accuracy results for each
of the denoising results. It can be observed that classifi-
cation accuracy results are increased after denoising pro-
cess. GLSSTV achieves best classification accuracy results
in terms of OA, AA and Kappa.

H. COMPUTATION TIME
There are several parameters that affect the computation time
of GLSSTV. These are block size M , step size s and number

of patches k . Selecting a small s causes high value of K ,
which leads to high computation time. Also, a large value
of M will increase the SVD computation time. In addition,
k affects the computation time. When k increases, the size of
the group increases. Therefore, it leads to high computation
time.

In the simulations, we performed the experiments on a
workstation with a 3.1 GHz Intel 4 core Xeon processor and
16 GB memory using MATLAB. The computation times of
the real data experiments are reported in Table 3. It can be
seen that GLSSTV has a longer computation times compared
to other methods due to the non-local low-rank approach
used in the algorithm. Computation of the low-rank approx-
imation of each group takes the main computational time.
Since SVD for each group is calculated separately, this
computation can be calculated using parallel computation to
reduce the computation time on a computer havingmulti-core
support.

V. CONCLUSION
In this paper, we have proposed a novel HSI denoising
method for mixed noise removal using rank constrained
group low-rank approximation and SSTV. Group low-rank
approximation exploits the local similarity inside a patch
and non-local similarity across patches. Therefore, additional
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structural information is exploited in HSI, which helps
the reconstruction of corrupted patches effectively. More-
over, SSTV removes Gaussian and sparse noise further by
utilizing the spatial and spectral smoothness of HSI. Experi-
ments on simulated datasets show that the proposedmethod is
effective in HSI denoising and outperforms the state-of-the-
art algorithms proposed in the literature in terms of PSNR and
SSIM. Furthermore, in real data experiments, the proposed
method reduces the mixed noise by retaining the fine details
in the image.

GLSSTV performs low-rank approximation based on 2D
matrix form of the 3D subcubes extracted from HSI which
ignores the spatial information inside a patch. Therefore,
as a future work, we will employ SSTV regularized group
low-rank tensor approximation to use the spatial information
effectively.
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