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ABSTRACT Remaining useful life (RUL) estimation is the key of prognostics and health management
(PHM) technology and is an effective way to ensure the safe and reliable operation of equipment. Aiming at
the lack of historical data and prior information for the newly developed small-sample systems, an adaptive
RUL estimation method based on the expectation maximization (EM) algorithm is proposed with three-
source variability. First, a degradation model based on a Wiener process is established to incorporate three-
source variability and dynamic sampling interval, and the analytical solution of RUL distribution is derived
in the sense of the first hitting time. Second, an adaptive parameter estimation method based on the EM
algorithm is proposed to update the model parameters by using the condition monitoring (CM) data from one
working system running up to the current moment. Finally, a practical example of a gyroscope in an inertial
navigation system is provided to substantiate the effectiveness and superiority of the proposed method. The
results indicate that the proposed method can efficiently improve the accuracy of the RUL estimation.

INDEX TERMS Remaining useful life, three-source variability, expectation maximization, dynamic sam-
pling interval.

I. INTRODUCTION
With the rapid development of high technology, a large
number of new devices have been successfully applied to
aerospace and weaponry systems, such as aerospace engines
and gyroscopes. Once the failure occurs for these devices,
the consequenceswill often be unimaginable, and thus its reli-
ability and safety put forward higher requirements. Prognos-
tics and health management (PHM) technology has become a
hot topic in the field of reliability research in recent years [1].
Its core idea is to estimate the remaining useful life (RUL)
of a system by using the condition monitoring (CM) data
from the system running up to the current moment, and taking
corresponding maintenance measures accordingly to reduce
the risk of system failure and improve reliability and security
[2]–[4]. However, these newly developed systems, which are
vital and small in quantity, generally have problems such
as lacking of historical data and prior information during
performing the PHM.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

As the key of PHM technology, the RUL estimation has
received extensive attention from the academic community
in recent years. According to the review by [7] and refer-
ences therein, the current RUL estimation approaches are
mainly classified as knowledge-based approaches [8], [9],
physical model-based approaches [10], [11], and data-driven
approaches [12], [13]. Knowledge-based approaches aim to
predict the RUL of the concerned system by modeling an
expert system or a fuzzy system. This type of approaches pri-
marily depends on expert’s experience with the CM data, and
thus it is not suitable for the newly developed systems. Physi-
cal model-based approaches rely on modeling the underlying
degradation process to be able to predict the occurrence time
of failures, but a deep understanding of the concerned sys-
tem’s physics is required. In contrast, data-driven approaches
are more widely used in the field of degradation modeling
and the RUL estimation due to their flexibility in applica-
tion. Nowadays, data-driven approaches primarily include
machine learning methods [14] and stochastic model-based
methods [5]. Machine learning methods usually utilize the
CM data to fit the evolution law of the concerned system, and
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then extrapolate to the failure threshold to achieve the RUL
estimation. However, such methods are difficult to obtain the
probability distribution which reflects the RUL uncertainty.
Contrastively, stochastic model-based methods can establish
a degradation model for the CM data and obtain the probabil-
ity distribution of the RUL based on probability theory, which
provide a basis for PHM. Compared with other methods,
stochastic model-based methods occupy a dominant position.
Si et al. [5] systematically reviewed stochastic model-based
methods, such as Wiener processes, Gamma processes and
Markov chain processes. So far, the Wiener process has
been widely used in the field of system reliability analysis
and the RUL estimation because of its good mathematical
properties and its suitability for describing non-monotonic
stochastic degradation process in engineering practice [14].
At present, the Wiener process has been successfully applied
to model the stochastic degradation systems, including gyro-
scopes [26], hard disk drives [13], proton exchange mem-
brane fuel cells [15], rotational bearings [36], and liquid
coupling devices [22].

In practice, the degradation processes of systems are usu-
ally affected by the multiple sources of variability contribut-
ing to the uncertainty of the RUL estimation. Therefore,
the multiple sources of variability should be incorporated
into degradation modelling to improve the accuracy of the
RUL estimation. According to existing studies [6], [13],
[16]–[19], temporal variability, unit-to-unit variability, and
measurement variability widely coexist in the degradation
process of a system. Temporal variability indicates the inher-
ent uncertainty associated with the degradation process over
time, which is the reason for modeling with a stochas-
tic process [20]. Unit-to-unit variability depicts the hetero-
geneity among different degradation units [19]. Specifically,
the degradation rate of units is practically different from each
other though the shapes of the degradation paths are similar.
Measurement variability means the difference between the
actual degradation state and the measurements. In practice,
due to the effect of external noise, disturbance, the precision
of instrument, etc., some measurement errors may inevitably
be introduced during the observation process called imperfect
measurements [13]. Therefore, the CMdata can only partially
reflect the actual degradation state of the system.

From the above introduction, it has been recognized that
an appropriate stochastic degradation model should incorpo-
rate three-source variability simultaneously. However, most
published works using stochastic degradationmodels focused
on the RUL estimation with one or two sources variabil-
ity [15], [20], [22], [23], [26]–[28], [36], [38].

Recently, for degradation modeling with three-source vari-
ability, Ye et al. [13] established a Wiener process with
mixed-effects considering three-source variability, which
could be used to fit the hard disk drive wear data, but it is
limited to modeling the degradation process only. Si et al. [6]
proposed a linear Wiener degradation process with three-
source variability and incorporated the effect of three-source
variability into the RUL estimation. In this work, the RUL

estimation results considering three-source variability were
compared with the results considering only one or two
sources variability by the degradation data of gyroscopes.
The results indicated that considering three-source variabil-
ity could significantly improve the goodness of fit of the
model and the accuracy of the RUL estimation. On this
basis, Zheng et al. [19] further verified the superiority of
considering three-source variability through a simulation
study and the degradation data of 2017-T4 aluminum alloy.
To sum up, it is necessary to consider three-source variability
simultaneously in order to obtain more accurate estimation
results within the framework of stochastic modeling. How-
ever, a common assumption in these works is that there are
multiple sets of historical data for degrading systems. How-
ever, for the newly developed small-sample system, the above
methods are not applicable and the related research is very
limited. This motivates our research in this paper, i.e. devel-
oping an adaptive prognostic approach for newly developed
system with three-source variability.

In this paper, for the newly developed small-sample sys-
tems, we present an adaptive prognostic approach based
on the EM algorithm for RUL estimation with three-source
variability. Firstly, we establish a Wiener process based
state-space model with three-source variability. Then, the
analytical RUL distribution with three-source variability is
formulated through the joint posterior estimation of the
model’s random parameter and the underlying degradation
state. Based on the CM data of one working system running
to the current time, a parameter estimation method based
on the Rauch-Tung-Striebel (RTS) algorithm and EM algo-
rithm is proposed to realize adaptive estimation and online
updating of model parameters. Finally, we provide a practical
example of a gyroscope in an inertial navigation system to
verify the effectiveness of the proposed method. The results
indicate that the proposed method is not only suitable for the
newly developed small-sample systems, but also significantly
improves the accuracy of the RUL estimation.

The remainder of this paper is organized as follow: In
Section II, the recently related works are reviewed and dis-
cussed. Section III gives the degradation modeling for RUL
estimation with three-source variability. An adaptive param-
eter estimation method is proposed in Section IV. Section V
provides a practical case study of a gyroscope for demonstra-
tion. The paper is concluded in Section VI. All the lengthy
proofs in this paper are provided in the Appendix.

II. RELATED WORKS
There have been rapid development and extensive application
based on degradation modeling for RUL estimation, such
as in the examples in [15], [20]–[23], [26]–[28]. However,
it should be noted that the above works focused mostly
on the RUL estimation with one or two sources variability.
For example, in [15], the authors considered the temporal
variability and unit-to-unit variability to estimate the RUL
of the system, and utilized the EM algorithm to identify the
unknown parameters. However, the impact of measurement
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variability on the RUL estimation was ignored. In addi-
tion, the work in [27] proposed a degradation model based
on a Wiener process with Kalman filtering technique and
Bayesian updating to estimate the RUL of the system, but
only considered the temporal variability and unit-to-unit
variability in the RUL estimation as well. Therefore, many
researchers have begun to study the RUL estimation problems
with three-source variability.

However, in these works, most existing methods for the
RUL estimation either assume the existence of historical
degradation data for multiple sets of similar systems or deter-
mine the model parameters based on subjective information
such as expert knowledge and historical experience in model
parameter estimation [6], [13], [17]–[23]. For the newly
developed small-sample system, the existing RUL estimation
methods with three-source variability are no longer appli-
cable due to the lack of such historical data. For example,
Si et al. [6] addressed the RUL estimation problemwith three-
source variability based on a Wiener process. Following this
work, Zhang et al. [18] and Zheng et al. [19] considered the
stochastic degradation modeling problems under the three-
source variability. However, the common shared be these
studies is to assume the existence of historical degradation
data for multiple sets of similar systems in parameter estima-
tion, and then the hyper-parameters in the models are deter-
mined by off-line estimation method. Although the random
parameters can be adaptively estimated with the real-time
measurement data of the system, once the hyper-parameters
are determined, they will not be updated. However, when
the parameter estimation is not accurate enough, the RUL
estimation result will be affected and it is even difficult to
accurately predict. Furthermore, Wang and Tsui [20] pre-
dicted the RUL of lithium batteries, but the estimation of
hyper-parameters was still based on several batteries’ histor-
ical degradation data of the same type. To solve this prob-
lem, many researchers have conducted the related research.
For example, a regression model was proposed in [24] to
describe the degradation process, and Bayesian updating and
EM algorithm were used for parameter estimation. However,
the regression model is difficult to describe the stochas-
tic characteristics of the degradation process, and the RUL
estimation problem with three-source variability is not
considered. In addition, Alamaniotis et al. [8] modeled the
degradation system with expert knowledge and historical
experience to compensate for the lack of historical data,
but the model depended on the expert’s experience with the
degradation system. Consequently, the study of the RUL
estimation using degradation models with three-source vari-
ability for small-sample systems is still very limited. On the
other hand, most published works default to periodic mon-
itoring devices to obtain the CM data. However, due to
some subjective or objective reasons in practice, such as
changes in the testing plan and experimental equipment fail-
ures, the CM cannot always be carried out in strict accor-
dance with the planned cycle. Therefore, a more general form
should be considered, i.e., the sampling interval for the CM

is dynamic. So far, there is still very scarce research on this
issue.

III. DEGRADATION MODELING FOR RUL ESTIMATION
WITH THREE-SOURCE VARIABILITY
In this paper, the linear stochastic degradation process
{X (t), t ≥ 0} is modeled by a Wiener process where X (t)
is driven by a standard Brownian motion (SBM) B(t). Then,
X (t) can be represented as

X (t) = X (0)+ λt + σB(t) (1)

where λ is the drift coefficient that is a random parameter
used to represent the degradation rate of the system, σ is the
diffusion coefficient which is a constant used to represent
the common features of all degraded systems. B(t) is the
SBM with σB(t) ∼ N (0, σ 2t) for t > 0, representing
the dynamic characteristics of the underlying degradation
process. Without loss of generality, it is assumed that the
initial state X (0) = 0 in the following.

In fact, each degraded system may experience different
experimental conditions during normal operation, and thus
different degraded systems may have different degradation
paths. As a result, it is necessary to consider the unit-to-unit
variability in the degradation model. In this paper, the random
parameter λ is used to describe the unit-to-unit variability, and
the SBM B(t) is used to describe the temporal variability. It is
further assumed that λ ∼ N (µλ, σ 2

λ ), and is independent of
{B(t), t > 0}. All of the above assumptions are reasonable
and are widely used in the field of degradation modeling and
the RUL estimation [5], [6], [18]–[20].

In addition, due to the effect of external noise, disturbance,
the precision of instrument, etc., the CM data inevitably
has measurement error in engineering practice. To describe
this measurement variability, the degradation measurement
process {Y (t), t > 0} can be mathematically formulated as

Y (t) = X (t)+ ε (2)

where ε is an Gaussian observation noise with ε ∼ N (0, γ 2),
representing the random measurement error. Furthermore,
we assume that ε, λ and B(t) are mutually independent.
By now, three-source variability is incorporated into the
degradation modeling process.

To integrate dynamic sampling interval into the degra-
dation model and achieve the adaptive estimation for RUL
under three-source variability, we consider establishing an
updating mechanism for the drift coefficient λ by a model
λk = λk−1+α at the current time tk , where α ∼ N (0, ν2) and
the initial coefficient λ0 follows λ0 ∼ N (µλ, σ 2

λ ). Therefore,
based on (1) and (2), suppose the degradation process and
measurement process are discretized at the discrete time point
tk (k = 1, 2, . . .). For convenience, letY1:k = {y1, y2, . . . , yk}
represent the CM data set and yk = Y (tk ) denote the CM
data at tk . Similarly, let X1:k = {x1, x2, . . . , xk} represent the
underlying degradation states set and xk = X (tk ). From (2),
We further express themeasurement equation as yk = xk+εk ,
where the random measurement errors εk are assumed to be
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independent and identically distributed (i.i.d.). As such, the
degradation equations with three-source variability can be
constructed within the framework of state-space modeling as

xk = xk−1 + λk−1 (tk − tk−1)+ ζk
λk = λk−1 + α

yk = xk + εk

(3)

where ζk = σ [B(tk )− B(tk−1)] and εk ∼ N (0, γ 2). Accord-
ing to the property of the SBM, we further have ζk ∼
N
[
0, σ 2(tk − tk−1)

]
. It is worth noting that in order to distin-

guish the existing periodic sampling, the dynamic sampling
interval of the CM is described by tk − tk−1, and thus the
periodic sampling is included as a special case. Specifically,
the periodic sampling means that tk−tk−1 is a constant. Here,
this paper considers tk − tk−1 as a variable which propagates
its impact on the derivation process of the parameter estima-
tion.

Based on other degradation modeling works such as [5],
[20], and [25], a system’s lifetime is defined as the time
when the underlying degradation state {X (t), t ≥ 0} reaches
a preset failure threshold ω for the first time, i.e., the first
hitting time (FHT). Therefore, a system’s RUL is defined as
the effective time interval from the current time to the system
failure time. According to the concept of the FHT, the RUL
Lk of a system at the current time tk can be defined as

Lk = inf { lk > 0 : X (lk + tk) ≥ ω} (4)

with the conditional probability density function (PDF)
fLk |Y1:k (lk |Y1:k ) where Y1:k is all the CM data up to tk .
In the following, the focus is on solving conditional PDF

fLk |Y1:k (lk |Y1:k ) of the RUL based on Y1:k and making
it continuously updated with the accumulation of the CM
data. According to the established degradation model (3),
We regard the underlying degradation state xk and the drift
coefficient λ as hidden states. Then, the state-space model
(3) can be further represented as{

zk = Akzk−1 + ηk

yk = Czk + εk
(5)

where zk ∈ R2×1, Ak ∈ R2×2, ηk ∈ R2×1, C ∈ R1×2, and
ηk ∼ N (0,Qk ), with

zk =
[
xk
λk

]
, Ak =

[
1 tk − tk−1
0 1

]
, ηk =

[
ζk
α

]
,

C =
[
1
0

]T
, Qk =

[
σ 2 (tk − tk−1) 0

0 ν2

]
,

respectively. Here, (·)T denotes the vector transposition.
For convenience, the expectation and variance of zk , which

are estimated on Y1:k , can be defined as

ẑk|k =
[
x̂k|k
λ̂k|k

]
= E (zk |Y1:k)

Pk|k =
[
ρ2x,k ρ2xλ,k
ρ2xλ,k ρ2λ,k

]
= cov (zk |Y1:k) (6)

where

x̂k|k = E (xk |Y1:k), λ̂k|k = E (λk |Y1:k),

ρ2x,k = var (xk |Y1:k)

ρ2λ,k = var (λk |Y1:k), ρ2xλ,k = cov (xkλk |Y1:k)

Similarly, the one-step ahead prediction of the expectation
and variance can be defined as

ẑk|k−1 =
[
x̂k|k−1
λ̂k|k−1

]
= E (zk |Y1:k−1)

Pk|k−1 =

[
ρ2x,k|k−1 ρ2xλ,k|k−1
ρ2xλ,k|k−1 ρ2λ,k|k−1

]
= cov (zk |Y1:k−1) (7)

Based on the above definition, we can utilize the Kalman
filtering algorithm to iteratively estimate the joint posterior
distribution of the underlying degradation state xk and the
drift coefficient λ at the current time tk when a new measure-
ment yk is available. The Kalman filtering algorithm contains
two recursive phases as follows.

State estimation:

Pk|k−1 = AkPk−1|k−1AT
k +Qk

K (k) = Pk|k−1CT
(
CPk|k−1CT

+ γ 2
)−1

ẑk|k−1 = Ak ẑk−1|k−1
ẑk|k = ẑk|k−1 +K (k)

(
yk − Cẑk|k−1

)
Variance update:

Pk|k = Pk|k−1 −K (k)CPk|k−1

where the initial iterative values are specified as

ẑ0|0 =
[

0
µλ

]
, P0|0 =

[
σ 2
x 0
0 σ 2

λ

]
.

It is worth noting that, the sampling interval is integrated
into ẑk|k and Pk|k by the Kalman filtering algorithm. σ 2

x is
the variance of the initial underlying degradation state x0.
According to the linear Gaussian properties of the Kalman
filtering algorithm, the PDF of zk based on Y1:k is bivariate
normal distribution with zk ∼ N

(
ẑk|k ,Pk|k

)
. Hence, we can

get the initial state z0 ∼ N
(
µ0,P0

)
, where µ0 = ẑ0|0 and

P0 = P0|0.
According to the estimated joint PDF of zk and the defini-

tion of the RUL in (4), the conditional PDF and the expecta-
tion of the RUL can be respectively calculated as follows (8)
and (9)

fLk |Y1:k (lk |Y1:k )

=

Bk
(
D2
kρ

2
λ,k+Fk

)
−AkCkDkρ

2
λ,k−CkFk λ̂k|k

Fk

√
2π
(
D2
kρ

2
λ,k + Fk

)3
× exp

−
(
w− x̂k|k − λ̂k|k lk

)2
2
(
D2
kρ

2
λ,k + Fk

)
 (8)

E (Lk |Y1:k)=AkGk − ϕ (9)
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where

Ak = w− x̂k|k + ϕλ̂k|k , Bk =
(
w− x̂k|k + ϕλ̂k|k

)
σ 2

Ck =
(
σ 2
+ ρ2xλ,k

)
ϕ − ρ2x,k , Dk = ϕ + lk , ϕ =

ρ2xλ,k

ρ2λ,k

Fk = ρ
2
x,k − ρ

2
xλ,kϕ + σ

2lk , Gk =
√
2

ρλ,k
D

(
λ̂k|k
√
2ρλ,k

)
The detailed proof for (8) and (9) can be found in [6] and

thus is omitted here. When (8) and (9) are used for real-time
estimation, the initial parameters of the model including µλ,
σ 2
λ , σ

2
x , σ

2, ν2, and γ 2 are unknown. Typically, historical
degradation data for multiple sets of similar systems are used
to determine the unknown parameters [6], [13], [17]–[23]. In
addition, once these parameters are determined by historical
degradation data, they are no longer updated in real-time
with measurement data. However, for the newly developed
small-sample system, due to the lack of historical degradation
data and prior information, it is necessary to continuously
update all model parameters with the real-time monitored
degradation data so that the estimated RUL can better reflect
the current health status of the system. For this purpose,
we develop an adaptive parameter estimation algorithm based
on the EM algorithm in the following section.

IV. ADAPTIVE PARAMETER ESTIMATION
The parameter estimation method presented in this paper
can use the CM data Y1:k of one working system to iter-
atively update the unknown parameters of the state-space
model (5), so that the RUL estimation results do not depend
on the selection of the initial parameters, thereby achiev-
ing a more accurate RUL estimation. To do so, we first let
2 =

[
µT
0 , vec {P0}

T , σ 2, ν2, γ 2
]T

denote the unknown
parameter vector, where

µ0 =

[
0
µλ

]
and P0 =

[
σ 2
x 0
0 σ 2

λ

]
, (10)

and vec {·} operator is a linear transformation which converts
the matrix into a column vector.

Then, the log-likelihood function of the CM dataY1:k with
respect to the unknown parameter vector 2 at time tk is

Lk (2) = log p (Y1:k |2) (11)

where p (Y1:k |2) is a joint PDF of the CM data Y1:k . The
maximum likelihood estimate (MLE) 2̂k of 2 on the basis
of Y1:k can be obtained by maximizing the likelihood func-
tion (11). That is

2̂k = argmax
2

Lk (2) (12)

However, since we regard zk as a hidden variable in (5),
then (12) cannot be directly maximized. The EM algorithm
provides a feasible solution to solve this problem. The basic
principle is to approximate the maximum likelihood estima-
tion of the parameters by maximizing the joint likelihood

function p (zk ,Y1:k |2), so that the estimated parameter vec-
tor 2 can be realized by iterating in the following two steps.
(1) E-Step

`
(
2|2̂

(i)
k

)
= Ezk |Y1:k ,2̂

(i)
k
{log p (zk ,Y1:k |2)} (13)

where 2̂(i)k represents the result of parameters iteration in the
ith step based on Y1:k .
(2) M-Step

2̂
(i+1)
k = argmax

2

{
`
(
2|2̂

(i)
k

)}
(14)

According to the EM algorithm [29], the iterative process
starts from the estimated value 2̂(i)k of the ith step in the
maximum likelihood sense, and is updated to a better esti-
mated 2̂(i+1)k in the (i + 1)th step, i.e., as the number of
iterations increases, the results of parameter estimation are
getting better and better. In the practical application of the
EM algorithm, it is generally difficult to obtain a satisfactory
estimation value in one iteration. Therefore, it is necessary to
perform multiple iterations until a given convergence crite-
rion is satisfied.
The EM algorithm is used to estimate the unknown param-

eter vector 2. The complete joint likelihood function for the
concerned model (5) is

log p (zk ,Y1:k |2)

= log p (Y1:k |zk ,2)+ log p (zk |2)

= −
1
2
log |P0| −

1
2

(
z0 − µ0

)T P−10

(
z0 − µ0

)
−

1
2

k∑
j=1

[
log

∣∣Qj
∣∣+ (zj − Ajzj−1

)TQ−1j (
zj − Ajzj−1

)]

−
1
2
k log γ 2

−
1
2

k∑
j=1

(
yj − Czj

)T (yj − Czj
)

γ 2 (15)

where the matrices P0 and Qj are positive definite matrices.
It is worth noting here that differing from the traditional

EM algorithm [30]–[33], the matrices Aj and Qj are var-
ied with the sampling interval because of considering the
dynamic sampling interval problem in this paper. We further
use E-Step to calculate (15), and obtain the following results.

`
(
2|2̂

(i)
k

)
= Ezk |Y1:k ,2̂

(i)
k
{log p (zk ,Y1:k |2)}

= −
1
2
log |P0| −

1
2
Tr
{
P−10 Ezk |Y1:k ,2̂

(i)
k

×

[(
z0 − µ0

) (
z0 − µ0

)T]}
−

1
2

k∑
j=1

{
log

∣∣Qj
∣∣+ Tr

{
Q−1j

[
8−9AT

j

−Aj9
T
+ Aj6AT

j

]}}
−

1
2
k log γ 2
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−
1
2
Tr

γ−2
k∑
j=1

[(
yj − Czj|k

) (
yj − Czj|k

)T
+CPj|kCT

] (16)

where

8 = Ezk |Y1:k ,2̂
(i)
k

(
zjzTj

)
9 = Ezk |Y1:k ,2̂

(i)
k

(
zjzTj−1

)
6 = Ezk |Y1:k ,2̂

(i)
k

(
zj−1zTj−1

)
(17)

Obviously, if we want to calculate (16), we must get the
conditional expectations given by (17). In this paper, we use
the RTS algorithm [34] to compute them and the specific
process is as follows.
Step 1: Backwards iteration

Sj = Pj|jAT
j+1P

−1
j+1|j

ẑj|k = ẑj|j + Sj
(
ẑj+1|k − ẑj+1|j

)
Pj|k = Pj|j + Sj

(
Pj+1|k − Pj+1|j

)
STj (18)

Step 2: Initialization

Mk|k = (I−KkC)AkPk−1|k−1 (19)

Step 3: Backward iteration of covariance

Mj|k = Pj|jSTj−1 + Sj
(
Mj+1|k − Aj+1Pj|j

)
STj−1 (20)

where Mj|k = cov
(
zj, zj−1|Y1:k

)
. ẑj|j, Pj|j and Pj+1|j can be

pre-computed by Kalman filter and the following lemma is
given for calculating the conditional expectation. Detailed
derivation process can be found in [34].
Lemma 1: Given the unknown parameter vector 2̂(i)k esti-

mated at the current time and the state-space model (5), we
have

Ezk |Y1:k ,2̂
(i)
k

(
yjzTj

)
= yjẑ

T
j|k

Ezk |Y1:k ,2̂
(i)
k

(
zjzTj

)
= ẑj|k ẑ

T
j|k + Pj|k

Ezk |Y1:k ,2̂
(i)
k

(
zjzTj−1

)
= ẑj|k ẑ

T
j−1|k +Mj|k (21)

Now the calculation of E-Step is completed. Then, we start
to compute M-Step by (16). For the convenience of deriva-
tion, let

5j = 8−9AT
j − Aj9

T
+ Aj6AT

j =

[
ς11(j) ς12(j)
ς21(j) ς22(j)

]
.

The result is given by the following theorem.
Theorem 1: For the model in this paper, the globally

unique optimal solution 2̂(i+1)k to (14) is

µ
(i+1)
0k = ẑ0|k

P(i+1)0k = P0|k

FIGURE 1. Flowchart of the proposed method.

(
σ 2
)(i+1)
k
=

1
k

k∑
j=1

(
ς11(j)

tj − tj−1

)
(
ν2
)(i+1)
k
=

1
k

k∑
j=1

ς22(j)

(
γ 2
)(i+1)
k
=

1
k

k∑
j=1

[(
yj − Czj|k

) (
yj − Czj|k

)T
+ CPj|kCT

]
(22)

The proof of this theorem is provided in the Appendix.
In sum, the flowchart of the proposed method is shown

in Fig. 1.
As shown in Fig. 1, once a new CM data is available, the

model parameters can be adaptively estimated and updated in
real-time using the RTS algorithm (18)-(20) and the EM algo-
rithm (13)-(14). To estimate the RUL distribution, theKalman
filtering algorithm is used to jointly estimate the underlying
degradation state and the drift coefficient. According to the
estimated parameters (22) and the above joint estimation
results, the RUL is estimated by (8) and (9).

V. EMPIRICAL STUDY
In this section, we provide a practical example of a gyroscope
in an inertial navigation system to verify the effectiveness and
superiority of the proposed method.

The gyroscope fixed on the inertial platform is a key
component of the aerospace and missile weapon system, and
its performance directly affects the accuracy of navigation.
When the inertial platform is working, the high-speed rotation
of the gyroscope’s rotor will inevitably cause mechanical
wear of the rotating shaft. As the wear accumulates, the drift
coefficient increases and eventually leads to the failure.
Therefore, accurately estimating the RUL of the gyroscope
is critical to improving the safety and reliability of the entire
system.
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FIGURE 2. The actual degradation data and the predictions of our model.

The following is to demonstrate the proposed approach
through the CM data by a certain type of the gyroscope
in [27]. In the experiment, the fault threshold of the drift coef-
ficient was set as ω = 0.37(◦/h) according to the technical
index of this gyroscope, and the health status of the gyroscope
was monitored with the sampling interval of 2.5 hours. When
the gyroscopewas running to 180.5 hours, the drift coefficient
reaches the fault threshold for the first time, and its lifetime
was considered to be terminated. As shown in Fig. 2, a total
of 73 CM points of drift coefficient degradation data were
collected during the monitoring period.

Fig. 2 shows that the drift coefficient of the gyroscope
increases with the monitoring time as a whole. Using the
proposed method, the one-step prediction value of the drift
coefficient and the PDF of the estimated RUL at the cur-
rent time can be obtained at each CM point. To be more
specific, the initial parameter vector of the model are set as
20 = [0.005, 0.0002, 0.0001, 0.0001, 0.0001, 0.001]T, and
the one-step prediction of the degradation path by Kalman
filter is illustrated in Fig. 2. Obviously, the predicted path is
quite close to the actual degraded path, and the root mean
square error (RMSE) of the predictions is 4.4281 × 10−5,
which indicates that our developed model can effectively
model the gyroscope degradation path. With the accumula-
tion of the CM data, the model parameter vector 2̂k , includ-
ing µλ, σ 2

λ , σ
2
x , σ

2, ν2 and γ 2, are adaptively estimated and
updated at each CM point. Correspondingly, the parameter
updating process is shown in Fig. 3.

Fig. 3 shows that the model parameters can converge
quickly with the accumulation of the CM data. Once the
model parameters are updated at each CM point, the PDF
and the expectation of the estimated RUL under three-source
variability can be calculated by (8) and (9). Furthermore,
Fig. 4 shows the results of the proposed method for the RUL
estimation, where α − λ performance is adopted to quantify
the accuracy of the RUL estimation [39], [40].

Fig. 4(a) illustrates the distributions for the RUL estimation
at every five CM points and the expectation of the estimated
RUL at each CM point. It can be clearly observed from the

FIGURE 3. Adaptive updating process of model parameters.

FIGURE 4. The results of the proposed method. (a) The PDFs of the
estimated RUL at different CM points. (b) α − λ performance of the RUL
estimation (α = 20%).

Fig. 4 that the estimated RUL is significantly different from
the actual RUL due to the lack of degradation data at an
early stage of the CM. However, as the CM time increases,
the accuracy of the RUL estimation is constantly improved
and the PDF curve of the estimated RUL is getting narrower
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FIGURE 5. Comparative results of the proposed method and the
method in [6].

and sharper, which indicates that more and more degradation
data are used to estimate the model parameters. Furthermore,
the uncertainty of the RUL estimation continues to decrease,
which is especially important in the PHM decision-making
field [37].

In order to further illustrate the advantages of the proposed
method, we compare the proposed method with the method
in [6] about their performance in the RUL estimation. It is
worth noting that the method in [6] needs initial parameters as
well the proposedmethod. In order to compare the advantages
of the two methods, the initial parameters of the proposed
method in the following comparison are randomly generated,
whereas we consider two cases for the initial parameters of
the method in [6]. One is to reasonably select the initial
parameters and the other is to randomly generate the initial
parameters. Fig. 5 shows the comparison results.

As shown in Fig. 5, for the method of reasonably select-
ing the initial parameters in [6] and the proposed method
of randomly generating the initial parameters, it is intuitive
that the variation range of the PDFs of the estimated RULs
covers the actual RULs. In addition, at an early stage of the
CM, the uncertainty in the estimated RUL of the proposed
method is greater than that from the method in [6]. But with
the accumulation of the CM data, our estimated PDFs of
the RULs are narrower and sharper than the results of the
method in [6], which indicates that the estimated RULs of the
proposed method are less uncertainty and higher accuracy,
especially after the convergence of parameter estimation.
However, if the initial parameters of the method in [6] are ran-
domly generated, the RUL estimation resultsmay be incorrect
as shown in Fig. 5, i.e., the actual RULs are outside the ranges
of PDFs of the estimated RULs.

The reason for the above problems is that the method in [6]
is limited by the amount of data, and the initial parameters of
the model cannot be estimated in real-time, so that the RUL
estimation results depend largely on the selection of the initial
parameters. In addition, the method in [6] does not utilize the
real-time degradation data of the current working system to

FIGURE 6. The MSE of the estimated RUL at all CM points.

update the model parameters. The obtained RUL estimation
results are more suitable to describe the common properties
of similar systems, and it is difficult to reflect the specific
characteristics of the current working system. In comparison,
the proposed method has better robustness for the selection
of initial parameters of the model, and even the randomly
generated initial parameters can get better results. As a result,
for the newly developed small-sample systems, since there
are no enough historical degradation data to select the initial
parameters at the beginning, the proposed method may be
more suitable for the RUL estimation.

In order to further quantify the comparison results,
the mean square error (MSE) is introduced, which takes
into account the accuracy of the RUL estimation and the
uncertainty of the RUL distribution, and thus it is a commonly
used indicator in the RUL prediction, defined as

MSEk =
∫
∞

0
(lk − Lk)2 fLk |Y1:k (lk |Y1:k )dlk (23)

where Lk is the actual RUL at tk time and fLk |Y1:k (lk |Y1:k )

is the PDF of the estimated RUL.
Since the method with random initial parameters in [6] will

get unsatisfactory results, it is no practical significance to cal-
culate its MSE. Therefore, Fig. 6 shows the MSE comparison
of the proposed method and the method in [6] (reasonable
selection of model initial parameters) at all CM points. In the
early stage of estimation, the calculated MSE results are not
satisfactory because the parameter estimate of the proposed
method has not yet converged. But with the convergence of
parameters and the accumulation of the CM data, the MSE
of the proposed method is significantly lower than that from
the method in [6]. These comparisons show that the proposed
method can effectively overcome the problem of inaccurate
parameter estimation caused by the small amount of data, and
improve the prognosis accuracy.

VI. CONCLUSION
In this paper, we consider a general linear degradation model
based on the Wiener process to simultaneously characterize
the temporal variability, unit-to-unit variability and mea-
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surement variability in the RUL estimation. In this case,
we formulate the PDF and expectation of the estimated RUL.
The main contribution of this paper is to present an adaptive
parameter estimation method based on the EM algorithm to
solve the problem of the lack of historical degradation data in
the newly developed small-sample systems. By constructing
the state-space model and the proposed parameter estimation
method, the RUL estimation results and themodel parameters
can be adaptively estimated and updated in real-time when a
new measurement data is available. Finally, the effectiveness
of the proposed method is verified via a practical example
of gyroscope in the inertial navigation system. Comparisons
with the existing approach show that the proposed approach
can effectively overcome the influence of inaccurate param-
eter estimation caused by less data. In addition, the proposed
method can improve the accuracy of the RUL estimation and
has good robustness for selecting initial parameters of the
model.

There are several directions to be further studied. Firstly,
the limitation of the proposed method is that we only consider
a general linear degradation model based on the Wiener
process, but for complex engineering systems in practice,
a nonlinear degradationmodel may bemore appropriate. Sec-
ondly, the proposed model is constructed under the assump-
tion of the gradual degradation process, but the failure of
complex systems is due to the interaction between internal
degradation and external shocks, frequently. Therefore, the
proposed model can be extended to a degradation model
which incorporates the impact of shocks in the further work.
In addition, we primarily focus on the issues associated with
the RUL estimation and parameter estimation, but the funda-
mental purpose of the RUL estimation is to formulate a more
reasonable maintenance strategy in practice. Therefore, how
to use the results of the RUL estimation to make maintenance
decisions scientifically is worthy of further study.

APPENDIX
PROOF OF THEOREM 1
The core goal of the M-step in (14) is to find the parameter
vector 2 maximizing `

(
2|2̂

(i)
k

)
. The stationary point can

be obtained by ∂`
(
2|2̂

(i)
k

)
/∂2 = 0. In addition, we need

to prove that 2̂(i+1)k is the only stationary point of `
(
2|2̂

(i)
k

)
.

Note that the third term of the formulation `
(
2|2̂

(i)
k

)
in (16), which is the only term depending uponQj. However,
we cannot get the estimated σ 2 and v2 in the (i + 1)th step
by directly taking the partial derivative with respect to Qj
because the matrices Aj and Qjare varied with the sampling
interval. Therefore, the third term is rewritten as follows:

k∑
j=1

{
log

∣∣Qj
∣∣+ Tr

{
Q−1j

[
8−9AT

j −Aj9
T
+Aj6AT

j

]}}

=

k∑
j=1

{
log

∣∣Qj
∣∣+ Tr

{
Q−1j 5j

}}

=

k∑
j=1


log

[
σ 2v2

(
tj − tj−1

)]
+

Tr




1

σ 2
(
tj−tj−1

) 0

0
1
v2

[ ς11(j) ς12(j)

ς21(j) ς22(j)

]
=

k∑
j=1

{
log

[
σ 2v2

(
tj − tj−1

)]
+

ς11(j)

σ 2
(
tj − tj−1

)+ ς22(j)
v2

}
(24)

Then we can take the partial derivatives with respect to σ 2

and v2 in (24), respectively. As a result, in the (i+ 1)th step,
we have (

σ 2
)(i+1)
k
=

1
k

k∑
j=1

(
ς11(j)

tj − tj−1

)
(
ν2
)(i+1)
k
=

1
k

k∑
j=1

ς22(j) (25)

Via a similar method, we can take the partial derivatives
with respect to µ0, P0, and γ 2 in (16), respectively. Then,
we obtain (27)-(29), as shown at the top of the next page.
As a result, in the (i+ 1)th step, we have

µ
(i+1)
0k = ẑ0|k

P(i+1)0k = P0|k(
γ 2
)(i+1)
k
=

1
k

k∑
j=1

[(
yj − Czj|k

) (
yj − Czj|k

)T
+ CPj|kCT

]
(26)

This completes the proof that 2̂(i+1)k is the only stationary

point of `
(
2|2̂

(i)
k

)
, i.e., (22). We now prove that 2̂(i+1)k is

the maximum point of `
(
2|2̂

(i)
k

)
, i.e., the Hessian matrix of

`
(
2|2̂

(i)
k

)
is a negative definite matrix at 2 = 2̂(i+1)k , and

hence the second partial derivative ∂2`
(
2|2̂

(i)
k

)
∂2∂2T is

calculated by (30), as shown at the top of the next page, where

φ =

k∑
j=1

(
ς11(j)

tj − tj−1

)
, ψ =

k∑
j=1

ς22(j),

ϑ =

k∑
j=1

[(
yj − Czj|k

) (
yj − Czj|k

)T
+ CPj|kCT

]

For the notation convenience, let n1 =
(
−P−10|k , 0, 0, 0, 0

)
,

n2 =
(
0,− 1

2P
−1
0|k ⊗ P−10|k , 0, 0, 0

)
, . . . , n5 =

(
0, 0, 0, 0,

−
1
2

k3

[ϑ]2

)
denote the rows of the Hessian matrix, respectively.

Firstly, we derive the first row of the Hessian matrix, i.e.,
n1 =

(
−P−10|k , 0, 0, 0, 0

)
. Obviously, the partial derivative

of (27) with respect to the unknown parameters σ 2, ν2 and
γ 2 are equal to zero, respectively. According to the standard
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∂`
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2|2̂

(i)
k

)
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2
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Tr
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(27)
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(30)

Kronecker product identities in [35], we further have

∂2`
(
2|2̂

(i)
k

)
∂µ0∂µ

T
0

∣∣∣∣∣∣
2=2̂

(i+1)
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and
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(
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(i)
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T
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2=2̂

(i+1)
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1
2

∂
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2P−10
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This completes the proof of the first row of the Hessian
matrix. Other rows are computed in a similar method. Hence,
we have the following results.
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This completes the proof of each row of theHessianmatrix.
Finally, let us now prove that the Hessian matrix is a negative
definite matrix at 2 = 2̂

(i+1)
k . For this purpose, the order

principal minor determinant of the Hessian matrix is calcu-
lated as follows:

11 = −P−10|k < 0, 12 =
1
2
P−10|k ·

(
P−10|k ⊗ P−10|k

)
> 0,

13 = −
1
2
k3

[φ]2
12 < 0, 14 = −

1
2
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13 > 0,

15 = −
1
2
k3

[ϑ]2
14 < 0. (37)
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The results indicate that the Hessian matrix is a negative
definite matrix at 2 = 2̂(i+1)k and 2̂(i+1)k is the only station-

ary point of `
(
2|2̂

(i)
k

)
. As a result, 2̂(i+1)k given by (22) is

the globally unique optimal solution.
This completes the proof of Theorem 1.
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