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ABSTRACT In this paper, the stability problem of discrete-time switched nonlinear systems with all
subsystems unstable is investigated. The nonlinear subsystems are represented by the Takagi–Sugeno (T-
S) fuzzy models. By constructing a novel piecewise multiple Lyapunov function approach, an exponential
stability condition of switched T-S fuzzy systems is first established with the bounded maximum average
dwell time. A numerical example is finally provided to illustrate the effectiveness of the obtained theoretical
results.

INDEX TERMS Discrete-time switched nonlinear systems, Takagi-Sugeno (T-S) fuzzy models, bounded
maximum average dwell time (BMADT), piecewise multiple Lyapunov function (PMLF).

I. INTRODUCTION
The switched system is a typical hybrid system consisting
of continuous-time or discrete-time subsystems and discrete
switching events [1]. This class of systems has widely appli-
cation backgrounds in information theory, flight control sys-
tems, power electronics and so on. Because of the numerous
applications, the theory of the switched system has been
developed rapidly in the past few decades. Stability problem
is one of the research priorities of the switched system.
In the early research work, the efforts are mainly focused
on the switched systems composed entirely of stable sub-
systems [2]–[7]. In recent several years, some results have
been achieved to deal with the case of switched systems
with some unstable subsystems [8]–[14]. The main idea of
these works [8]–[13] is to activate the stable subsystem long
enough to compensate for the state divergence of the unsta-
ble subsystem. The paper [14] designed a quasi-alternative
switching signal made the stable subsystems are not necessar-
ily running sufficient long time. However, when all the sub-
systems are unstable, these methods are no longer applicable.

On the other hand, in real life, system nonlinearity exists
widely in various fields such as robots, automotive, net-
work application, and so on. So that, the stability problems
and control issues for nonlinear systems have also been
broadly researched [15]–[20]. In order to deal with nonlinear
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parts, the Takagi-Sugeno (T-S) fuzzy model has been intro-
duced [21], which could approximate smooth nonlinear func-
tions to any arbitrary accuracy. Besides, convex conditions
of linear systems can be extended to nonlinear systems by
utilizing the T-S fuzzy model. Recently, many results of
switched nonlinear systems have been reached via T-S fuzzy
model, which show that T-S fuzzy model provides a very
efficient way to synthesize and analyze complex switched
nonlinear systems. To list a few, the problem of asynchronous
H∞ control for switched nonlinear systems was addressed
in [22], [23]. Robust stability problems and standard
L1-gain performance analysis of interval positive switched
T-S fuzzy systems was investigated in [24]. The problems
of stabilization for switched T-S fuzzy systems composed of
unstable subsystems were studied in [25]–[28].

In practical application, subsystems of switched systems
could be unstable due to sensor fails, equipment noise or actu-
ator failure. To the worst case, all the subsystems may be
unstable. Therefore, it has important theoretical significance
and practical application value to study the switched sys-
tem with all subsystems unstable. For this class of systems,
the stability results can be achieved by carefully design-
ing a state-dependent or time-dependent switching signal.
The state-dependent switching strategies must depend on the
the full plant state information [29], [30], which restricts
the implementation. The time-dependent switching strategies
are relatively easier for stability analysis. By using a dis-
cretized Lyapunov function technique, a sufficient condition
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for continuous-time switched linear systems was proposed
in [31]. Switching-time-dependent time-varying discretized
Lyapunov function was constructed to analyze the stability
and stabilization problems for the switched linear stochastic
systems in [32]. It’s worth noting that the results of the afore-
mentioned works are reached under dwell time switching.
The time intervals between two adjacent switching instants
are confined by a pair of upper and lower bounds. So these
results may be restrictive in some circumstances. Therefore,
it makes sense to extend the dwell time switching property
to the average dwell time (ADT), which allows the switching
activated outside the boundary. The paper [25] constructed
a ‘‘decreasing-jump’’ piecewise Lyapunov-like function to
analysis the finite-time exponential stabilization problem of
switched T-S systems under ADT switching. The paper [26]
studied the problems of stabilization for continuous-time
switched nonlinear systems composed of unstable subsys-
tems by usingADT switching. The paper [27] proposed a new
mode-dependent average dwell time (MDADT) switching
and time-scheduled multiple quadratic Lyapunov function to
tackle the stabilization problems of continuous-time switched
nonlinear systems. However, in order to obtain stability con-
ditions, the time intervals of each switching are still limited
by minimum dwell time boundaries in these works, which are
somewhat conservative.

Similar to the idea of analyzing the switched system com-
posed of stable and unstable subsystems, the paper [33] firstly
proposed a new BMADT and divergence time concept to
research the stability problem of switched linear systems.
The definition of BMADT is more general than the tra-
ditional maximum average dwell time (MADT) and dwell
time. The results under BMADT in [33] removed the min-
imum dwell time limitation relative to the ADT conditions
in [25]–[27]. However, the switching frequency was limited
by the compensation lower bound of BMADT. On the other
hand, the results cannot apply to switched nonlinear systems
directly as the stability conditions are nonconvex. To the best
of our knowledge, the research on switched T-S fuzzy systems
under BMADT condition has not been explored yet.

In this paper, we first defined a time span with fixed
compensation bounds for each switching based on the
BMADT method. If the dwell time belongs to this time span,
the switching is considered to be ‘‘stable-switching’’, and if
it is not, it is considered to be ‘‘unstable-switching’’. Besides,
a novel piecewise multiple Lyapunov function (PMLF) was
constructed with interpolation technique. In paper [25]–[27],
the value of the Lyapunov function is decreasing at the
switching instant and either increasing or decreasing during
two successive switching instants. But the value of our Lya-
punov function is always less than the value at last switching
instant in the defined time span, which meets the exponen-
tial decay condition. So, the state divergence made by the
‘‘unstable-switching’’ will be compensated by the ‘‘stable-
switching’’. Finally, stability conditions of the switched
T-S systems under BMADT switching are derived in terms
of linear matrix inequalities.

Themain contributions are list as follows: (1) TheBMADT
approach is firstly applied in switched nonlinear systems for
stability analysis. (2) New stability conditions of discrete-
time switched T-S fuzzy systemswith all subsystems unstable
are derived by constructing a novel PMLF. (3) The stability
conditions have removed the minimum dwell time limita-
tion of ADT conditions and switching frequency limitation
of BMADT conditions in [33]. (4) Larger MADT can be
obtained as the upper compensation bound increasing, which
can get less conservative results.

The rest of this paper is organized as follows. Section II
gives the system descriptions and definition. The stability
analysis and proofs are given in Section III. A numerical
example is provided to demonstrate the feasibility and effec-
tiveness of our results in Section IV. Section V gives the
conclusions.
Notations: The notations used are fairly standard.

P > 0(≥ 0) denotes a positive definite (semi-positive
definite) matrix P. The notation ‖ · ‖ denotes the Euclidean
norm for vectors. Rn represents the n-dimensional Euclidean
space. N and N+ denote the set of non-negative and positive
integers. The superscript ‘‘T’’ stands for matrix transpose.

II. SYSTEM DESCRIPTIONS AND PRELIMINARIES
Following class of discrete-time switched nonlinear system
are considered in this paper:

x(k + 1) = fσ (k)(x(k), k), x(k0) = x0, (1)

where x(k) ∈ Rnx is the state vector, and x0 and k0 denote the
initial state and initial time. σ (k) is switching signal which
takes values in the finite set S = {1, 2, ...,M}, M ∈ N+ is
the number of subsystems. fσ (k)(·) are nonlinear function. For
a switching sequence k0 < k1 < · · · < kp < · · · , while kp
is the switching time, 1p = kp − kp−1 is the corresponding
dwell time of p-th switching.

In this paper, we describe the switched nonlinear system by
T-S fuzzy model, and the i-th fuzzy subsystem is represented
as follows:

Model Rule m for subsystem i: IF zi1(k) is Mim1 and · · ·
and zil(k) is Miml , THEN

x(k + 1) = Aimx(k), i ∈ S, m ∈ R = {1, 2, ..., r}, (2)

where zi1(k), zi1(k), · · · , zil(k) are the premise variables,
Aij is a real matrix with appropriate dimension, Miml is the
fuzzy set and r is the number of model rules. Through fuzzy
blending, the final outputs of the i-th fuzzy subsystem can be
inferred as follows:

x(k + 1) =
r∑

m=1

him(zi(k))Aimx(k), (3)

where him(zi(k)) are the normalized membership functions
and

him(zi(k)) =

∏l
n=1Mimn(zi(k))∑r

m=1
∏l

n=1Mimn(zi(k))
≥ 0, (4)
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r∑
m=1

him(zi(k)) = 1. (5)

For convenience, we use him to represent him(zi(k)) in the rest
of the paper.
Definition 1: [9] Given a switching signal σ (k),

the switched system (1) is said to be globally exponentially
stable (GES) if there exist scalars λ > 0, 0 < µ < 1,
such that the solution of the system satisfies ‖x(k)‖ ≤
λµk−k0‖x(k0)‖, ∀k ≥ k0 for any initial condition x(k0).
Definition 2: Given a switching signal σ (k) with the

switching sequence {kp} and k ≤ k ∈ N, for any
k ∈ [kp, kp+1 − 1], we define divergence time Tk,k (k) as

Tk,k (k) =
p−1∑
s=0

T s
k,k

(ks+1)+ T
p
k,k

(k), (6)

where

T s
k,k

(k) =


k − ks, k < ks + k,

0, ks + k ≤ k ≤ ks + k,

k − ks − k, k > ks + k.

(7)

k and k are the lower and the upper compensation bounds,
respectively.
Remark 1: The divergence time describes the time span

that outside the compensation bounds [k, k]. For each switch-
ing, the total divergence time will only increase when the
dwell time is less than k or larger than k.
Definition 3: [33] For finite time [k0, k], denote N (k) as

the switching number, if there exist k ≤ k ∈ N and positive
constant τk,k satisfies

N (k) ≥
k − k0
τk,k + k

− N0, (8)

Tk,k (k) ≤
τk,k · (k − k0)

τk,k + k
+ T0, (9)

then we said τk,k is the bounded maximum average dwell time
(BMADT) of the switching signal. N0 and T0 are correspond-
ing slack variables.
Remark 2: The BMADT describes the relationship

between divergence time and switching number. If we choose
Tk,k (kp) = 0, ∀p ∈ N, the definition of BMADT will be
reduced to dwell time in paper [31], [32]. When k = k = 0,
then total divergence time T0,0(k) = k−k0 is the total running
time. Accordingly, τ0,0 is the MADT defined in paper [25],
[26]. For the discrete-time switched system, if we set k = 1,
the MADT is τMADT = τ1,k + k.

III. STABILITY ANALYSIS
In this section, we consider the stability problem for discrete-
time switched T-S fuzzy systemswith all subsystems unstable
under BMADT switching signal.
Lemma 1: [34] Given two matrices A ∈ Rm×n, B ∈

Rm×n, and symmetric positive definite matrix P ∈ Rm×m,

then

ATPB+ BTPA ≤ ATPA+ BTPB. (10)

Lemma 2: For the discrete-time switched nonlinear sys-
tem (1). Given constants α > 1, 0 < β < 1 and 1 ≤ k ≤ k ∈
N+, if there exist nonnegative function Vσ (k)(x(k)) : RN

→

R,∀σ (k) = i ∈ S and two positive scalars γ1 and γ2 such
that

γ1(‖x(k)‖)2 ≤ Vi(x(k)) ≤ γ2(‖x(k)‖)2, (11)

Vi(x(k + 1)) ≤ αVi(x(k)), k ∈ [kp, kp + k − 1]

∪[kp + k, kp+1 − 1], (12)

Vi(x(k + 1)) ≤ Vi(x(k)), k ∈ [kp + k, kp + k − 1], (13)

Vi(x(kp + k)) ≤
1

αk−1
Vi(x(kp + k − 1)), (14)

Vσ (kp)(x(kp)) ≤ βVσ (kp−1)(x(kp)), (15)

then the switched nonlinear system (1) is GES for any switch-
ing signal with BMADT satisfies

τk,k < −
lnβ
lnα

. (16)

Proof 1: Consider the situation that k ∈ [kp + k, kp + k],
we have

Vσ (k)(x(k))

≤ Vσ (k)(x(k − 1))

· · ·

≤ Vσ (k)(x(kp + k))

≤
1

αk−1
Vσ (k)(x(kp + k − 1))

≤
1

αk−1
· αVσ (k)(x(kp + k − 2))

· · ·

≤
1

αk−1
· αk−1Vσ (k)(x(kp))

= Vσ (k)(x(kp))

≤ βVσ (kp−1)(x(kp)). (17)

Without loss of generality, we suppose ∀k ∈ [kp, kp+1−1],
p ∈ N+, k > kp + k,1p = kp − kp−1 < k, we have

Vσ (k)(x(k))

≤ αVσ (kp)(x(k − 1))

· · ·

≤ αk−kp−kVσ (kp)(x(kp + k))

≤ βα
T p
k,k

(k)
Vσ (kp−1)(x(kp))

≤ βα
T p
k,k

(k)
· αVσ (kp−1)(x(kp − 1))

· · ·

≤ βα
T p
k,k

(k)+kp−kp−1Vσ (kp−1)(x(kp−1))

≤ β2α
T p
k,k

(k)+T p−1
k,k

(kp)Vσ (kp−2)(x(kp−1))

· · ·
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≤ βN (k)α
T p
k,k

(k)+
∑p−1

s=0 T
s
k,k

(ks+1)Vσ (k0)(x(k0))

≤ βN (k)α
Tk,k (k)Vσ (k0)(x(k0))

≤ β

k−k0
τk,k+k

−N0
α

τk,k (k−k0)

τk,k+k
+T0

Vσ (k0)(x(k0))

≤
αT0

βN0
(βατk,k )

k−k0
τk,k+k Vσ (k0)(x(k0)). (18)

Let λ = γ2
γ1
·
αT0

βN0
, µ = (βατk,k )

1
τk,k+k , then with (11)(16) we

have λ > 0, µ = exp{
lnβ+τk,k lnα

τk,k+k
} < 1,

‖x(k)‖2 ≤
1
γ1
Vσ (k)(x(k))

≤
1
γ2
λµk−k0Vσ (k0)(x(k0))

≤ λµk−k0‖x(k0)‖2. (19)

so ‖x(k)‖ ≤
√
λ
√
µk−k0‖x(k0)‖ satisfied Definition 1,

the switched nonlinear system (1) is GES with BMADT satis-
fies (16). This completes the proof.

For (p + 1)-th switching, we define the time span
[kp + k, kp + k] with compensation bounds [k, k]. When
the corresponding dwell time belongs to the time span,
the switching is considered as the ‘‘stable-switching’’,
otherwise it is the ‘‘unstable-switching’’. From the proof
process (17) it can be seen that the value of Lyapunov func-
tion decay exponentially when the switching occurred in the
‘‘stable-switching’’ time span. In the divergence time span,
the value of Lyapunov function can either increase or decay.
Therefore, the state divergence can be absorbed by the
‘‘stable-switching’’.
Remark 3: The existing stability conditions of switched

systems with all subsystems unstable under ADT switch-
ing are usually limited by a minimum dwell time condition
[25]–[27]. The dwell time of each switching should not
be less than a lower bound τmin. The proposed BMADT
approach eliminates this limitation.
Remark 4: In paper [33], the switching signal must satis-

fying the condition Nk (k) ≤ εN (k). ε is a constant belong
to the span [0,1). Nk (k) is the switching number when
dwell time is less than k. The constructed Lyapunov function
for switched nonlinear system in this paper eliminates this
restriction.

Then, the stability result of switched T-S fuzzy system (3)
can be given in following theorem.
Theorem 1: Consider switched T-S fuzzy system (3). Given

constants α > 1, 0 < β < 1, 1 ≤ k ≤ k ∈ N+, and m ∈ R,
if there exist matrices Pi,f > 0, f ∈ [0, ..., k],∀(i, j) ∈ S ×
S, i 6= j, such that[

−αPi,f ATimPi,f+1
Pi,f+1Aim −Pi,f+1

]
< 0, f ∈ [0, ..., k − 2], (20)[

−Pi,f ATimPi,f+1
Pi,f+1Aim −Pi,f+1

]
< 0, f ∈ [k, ..., k − 1], (21)

[
−αPi,k A

T
imPi,k

Pi,kAim −Pi,k

]
< 0, (22)[

−α1−kPi,k−1 ATimPi,k
Pi,kAim −Pi,k

]
< 0, (23)

Pi,0 − βPj,f ≤ 0, f ∈ [1, ..., k], (24)

then the switched T-S fuzzy system (3) is GES for any switch-
ing signal with BMADT satisfies

τk,k < −
lnβ
lnα

. (25)

Proof 2: Constructing a piecewise multiple Lyapunov
function for discrete-time switched T-S fuzzy system (3) as
follows:

Vi(k) = xT (k)Pi(k)x(k),∀i ∈ S, (26)

where

Pi(k) =

{
Pi,f , f = k − kp, k ∈ [kp, kp + k],

Pi,k , k ∈ [kp + k + 1, kp+1 − 1].
(27)

When k ∈ [kp, kp + k − 1], with lemma (10), we can obtain

Vi(x(k + 1))− αVi(x(k))

≤ x(k + 1)TPi,f+1x(k + 1)− αx(k)TPi,f x(k)

≤ x(k)T {
r∑

m=1

r∑
n=1

himhin[ATimPi,f+1Ain − αPi,f ]}x(k)

≤ x(k)T {
r∑

m=1

h2im[A
T
imPi,f+1Aim − αPi,f ]

+

r∑
m=1

r∑
n>m

himhin[ATimPi,f+1Ain + A
T
inPi,f+1Aim

−2αPi,f ]}x(k)

≤ x(k)T {
r∑

m=1

h2im[A
T
imPi,f+1Aim − αPi,f ]

+

r∑
m=1

r∑
n>m

himhin[ATimPi,f+1Aim + A
T
inPi,f+1Ain

−2αPi,f ]}x(k). (28)

By using Schur complement lemma, with (20) we have

ATimPi,f+1Aim − αPi,f ≤ 0, f ∈ [0, ..., k − 2]. (29)

With (28) and (29), we can conclude that Vi(x(k + 1)) −
αVi(x(k)) ≤ 0 hold, which satisfied the condition (12).
Similar to above proof process, we can proof the conditions
(12), (13), (14) and (15) of Lemma 2 hold.
By using (24), let σ (kp) = i, σ (kp−1) = j we can proof

Vσ (kp)(x(kp))− βVσ (kp−1)(x(kp))

= x(kp)T [Pi,0 − βPj,f ]x(kp)

≤ 0. (30)

Therefore, the switched T-S fuzzy system (3) is GES for any
switching signal with BMADT satisfies (25) according to
Lemma 2. This completes the proof.
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FIGURE 1. States of subsystem �1.

FIGURE 2. States of subsystem �2.

IV. NUMERICAL EXAMPLE
In this section, an example is given to illustrate the main
results. Consider the following switched nonlinear systems
consisting of two subsystems

�1 =


x1(k + 1) = −0.48x1(k)− 0.08 sin2(x1(k))x2(k)

+ 0.56x2(k)+ 0.1 sin2(x1(k))x1(k)

x2(k + 1) = −0.84x1(k)− 0.14 sin2(x1(k))x2(k)

+ 1.48x2(k)+ 0.12 sin2(x1(k))x1(k)

�2 =


x1(k + 1) = −1.58x1(k)− 0.04 sin2(x2(k))x2(k)

+ 0.56x2(k)+ 0.12 sin2(x2(k))x1(k)

x2(k + 1) = −0.84x1(k)− 0.02 sin2(x2(k))x2(k)

+ 0.38x2(k)+ 0.06 sin2(x2(k))x1(k).

The state trajectories of subsystems�1 shown in Fig. 1 and
subsystems�2 shown in Fig. 2 with the initial state condition
x(0) = [1,−1.5]T , and from the figures it can be seen that
both the subsystems are unstable.

Setting z1(k) = sin2(x1(k)), z2(k) = sin2(x2(k)), and
through the T-S fuzzy modeling method, we can obtain the

fuzzy model as follow:
Subsystem 1:
Rule 1: If z1(k) is 0, then x(k + 1) = A11x(k),
Rule 2: If z1(k) is 1, then x(k + 1) = A12x(k).
Subsystem 2:
Rule 1: If z2(k) is 0, then x(k + 1) = A21x(k),
Rule 2: If z2(k) is 1, then x(k + 1) = A22x(k).
The normalized membership functions are calculated as

follows:

h11(k) = 1− sin2(x1(k)), h12(k) = sin2(x1(k)),

h21(k) = 1− sin2(x2(k)), h22(k) = sin2(x2(k)).

and

A11 =
[
−0.48 0.56
−0.84 1.48

]
, A12 =

[
−0.38 0.48
−0.72 1.34

]
,

A21 =
[
−1.58 0.56
−0.84 0.38

]
, A22 =

[
−1.46 0.52
−0.78 0.36

]
.

Through Theorem 1 we choose α = 1.69, β = 0.75,
k = 3, k = 6. By uisng the Matlab LMI toolbox, we can
get feasible solution as follows:

P1,0 =
[
3.42 −6.08
−6.08 11.91

]
, P1,1 =

[
22.09 −12.85
−12.85 15.31

]
,

P1,2 =
[
27.33 −13.18
−13.18 16.07

]
, P1,3 =

[
23.17 −8.79
−8.79 5.63

]
,

P1,4 =
[
22.98 −8.16
−8.16 4.42

]
, P1,5 =

[
22.88 −7.90
−7.90 3.70

]
,

P1,6 =
[
21.30 −7.29
−7.29 3.08

]
, P2,0 =

[
14.20 −4.92
−4.92 2.01

]
,

P2,1 =
[
18.42 −13.57
−13.57 19.64

]
, P2,2 =

[
19.25 −15.24
−15.24 22.93

]
,

P2,3 =
[

7.72 −10.64
−10.64 19.72

]
, P2,4 =

[
6.55 −10.27
−10.27 19.62

]
,

P2,5 =
[

5.86 −10.04
−10.04 19.53

]
, P2,6 =

[
5.23 −9.47
−9.47 18.61

]
.

The divergence time Tk,k (k) and state responses of the
switched nonlinear system are shown in Fig. 3. It can be seen
from Fig. 3 that the total divergence time only increases when
the corresponding dwell time is less than k or larger than k .
There is also no boundary limit or minimum dwell time limit
of dwell time for each switching. The system state can finally
converge to zero under the BMADT switching signal which
satisfies τ3,6 = 0.4286 < − lnβ

lnα = 0.5482. These verify the
results in Theorem 1.

For the traditional MADT switching in paper [25], [26],
which without the compensation bounds, the MADT of
discrete-time switched systems can be regarded as τ1,1.
According to Remark 2, if we choose k = 1, the correspond-
ing MADT is τMADT = τ1,k + k . Through Theorem (1),
we can get the largest τ1,k and τMADT under different k .
The result is shown in Table 1 with fixed α = 0.69. From
the Table 1 it can be seen that τMADT increases with the
increasing of upper compensation bound k , i.e. larger MADT
is obtained, thus less conservative results can be achieved.
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FIGURE 3. Divergence time and state trajectories.

TABLE 1. The largest MADT under different k (α = 0.69).

V. CONCLUSION
The stability problems of discrete-time switched nonlinear
systems with all subsystems unstable are studied in this
paper. The BMADT switching method is first time extent in
switched nonlinear systems for stability analysis. Combining
with a novel PMLF and T-S fuzzymodeling approach, the less
conservative exponential stability results are derived in terms
of linear matrix inequalities. Finally, an example is provided
to verify the effectiveness of the results. Since the mode-
dependent switching rule is more general and flexible than the
mode-independent. We will consider to extend the BMADT
to a mode-dependent one to further reduce conservatism. The
stabilization conditions andH∞ control problems will also be
investigated in our future works.
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