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ABSTRACT This paper introduces the robust internal-loop compensator based sliding mode control
(SMRIC) scheme for multiple-input multiple-output (MIMO) nonlinear systems subjected to mismatched
uncertainties, which are time-varying and non-vanishing with non-constant steady-state values. The pro-
posed approach extends an application area of the robust internal-loop compensator (RIC), as well as a class
of mismatched uncertainties that could be imposed on the system. The developed SMRIC technique allows
substantial alleviation of the chattering phenomenon in the presence of disturbances while retaining the
nominal performance of the system in the absence of disturbances. The stability analysis of the closed-loop
system is performed using the Lyapunov-based approach. The proposed SMRIC method guarantees the
finite-time convergence of the system trajectories to the sliding surface and provides asymptotic stability
of the equilibrium. The simulation results of the numerical example and both simulation and experimental
results of the application example show that the proposed SMRIC technique exhibits, in comparison with the
concurrent algorithms, excellent tracking performance and robustness properties in the presence of modeling
uncertainties, parameter variations, external disturbances, and mismatched uncertainties.

INDEX TERMS Control design, control system synthesis, disturbance observer, Lyapunov methods, motion
control, nonlinear control systems, observers, sliding mode control, stability analysis, uncertain systems.

I. INTRODUCTION
Due to a conceptual simplicity and a good performance,
the sliding mode control (SMC) has been widely used
technique in industrial applications for a robust compen-
sation of matched disturbances using the concepts of slid-
ing modes (SMs) and the equivalent control [1]–[3]. Many
theoretical aspects of the variable structure systems (VSSs)
with SMs have been described in the survey papers [3]–[6],
such as a chattering phenomenon due to a discontinuous
control [7], a nominal performance recovery [8], and an
insensitivity to the matching disturbances, where the distur-
bance relative degree (DRD) is not less than the input relative
degree (IRD). It is noticed that most approaches to the slid-
ing surface design are focused to the matched disturbances
compensation [9]–[14]. However, mismatched (unmatched)
disturbances (uncertainties) exist in many practical applica-
tions, such as motion control systems [15], and flight con-
trol systems [16], in which the lumped disturbance torque,
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caused by wind gusts, parameter variations and model-
ing uncertainties, always affects the system states directly,
rather than through the control input channels. There-
fore, different authors [17]–[20] have focused to the sliding
surface design for nonlinear systems subjected to mis-
matched disturbances that are vanishing (H2 norm bounded)
or with constant-steady state values. In these approaches,
a chattering attenuation and recovery of a nominal con-
trol performance are still severe problems to be solved.
Indeed, baseline SMC techniques, such as integral SMC
(I-SMC) [20], [21], terminal SMC (T-SMC) [22] or higher
order SMC (HO-SMC) [23]), attenuate mismatched uncer-
tainties directly by increasing the magnitude of the switching
control term, which results in a enlarged chattering. Sig-
nificant chattering can cause loss of the system nominal
performance in the absence of disturbances. By exploiting
the disturbance observers (DOBs) with the SMC framework,
the switching magnitudes are significantly reduced to com-
pensate only the disturbance compensation error, instead
of the whole disturbance. To this end, many papers have
reported DOB based SMC schemes for linear systems sub-
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jected to a large class of unmatched disturbances [24], [25].
DOB based robust control techniques [8], [15], [26]–[28] are
extended to a class of nonlinear systems in the presence of
mismatched uncertainties. The widely used NDOB based
SMC [15] has been recognized in the academic commu-
nity as outstanding and particularly significant among others
(N)DOB based robust control techniques. Nevertheless, mis-
matched disturbances are assumed to have constant-steady
state values (or equivalently, the first order time derivative of
these disturbances is supposed to be zero in a steady-state),
and the first order time derivative of these uncertainties is sup-
posed to be bounded in the NDOB based SMC approach [15].
The relaxed assumptions imposed on mismatched distur-
bances have been reported in [29], in which the authors
assumed that disturbances have to be continuous. However,
these assumptions imposed on unmatched uncertainties are
strong and do not represent reasonable assumptions for many
practical engineering systems. For example, wind gusts in
flight (motion) control systems are bounded disturbances that
do not have to be continuous, or with constant steady-state
values.

On the other hand, the linear robust internal-loop compen-
sator (RIC) [30]–[36] has been introduced as a generalized
framework for uncertainties attenuation of linear systems,
in order to ensure the unified disturbance compensation anal-
ysis of different control strategies, such as the DOB based
control (DOBC) and the adaptive robust control (ARC).
It also provides a quantified trade-off between two major
requirements in a robust control design: (a) robustness prop-
erties to various uncertainties, and (b) desired performance
of the closed-loop system. However, the RIC stability analy-
sis is originally presented only for linear systems [30]–[36].
By synthesizing the RIC framework with Lyapunov based
redesign, the RIC based I-SMC method is introduced for
single-input, single-output (SISO) [37] andMIMO [38] elec-
tromechanical systems, ensuring the finite-time convergence
of the system trajectories to the particular sliding surface,
as well as the uniformly ultimate boundedness of the system
solutions.

This paper proposes the novel SMRIC method for a
class of MIMO electromechanical systems in the presence
of mismatched disturbances, which are time-varying and
non-vanishing with non-constant steady state values. The
contributions of the proposed SMRIC method are:

1) It alleviates the chattering phenomenon of MIMO elec-
tromechanical systems subjected to a large class of
mismatched disturbances, by requiring the magnitudes
of the switching control term to be larger only than
the bound of the disturbance compensation error, rather
than that of the lumped disturbance,

2) It retains a nominal control performance of MIMO
electromechanical systems, since the RIC serves like
a patch to the baseline controller that does not operate
in the absence of disturbances,

3) It extends an application area of the RIC scheme for
stability analysis of MIMO electromechanical systems

subjected to mismatched disturbances, since the RIC
stability analysis is originally introduced only for a
class of linear systems [30]–[36],

4) It is proposed for a class of MIMO nonlinear systems,
unlike the concurrent NDOB based SMC [15] that is
introduced for a class of SISO nonlinear systems,

5) It expands a class of mismatched uncertainties that
could be imposed on MIMO electromechanical sys-
tems, requiring only the knowledge about the bound-
edness of disturbances. Therefore,
a) Unlike the NDOB based SMC [15], it does not

require constant steady-state values of the mis-
matched uncertainties for stabilization of the
DOB (for example, wind gusts in flight control
systems are bounded disturbances that do not
have constant steady-state values), and

b) Unlike the extended DOB based SMC [29],
it does not require mismatched disturbances to
be continuous (for example, wind gusts in motion
control systems are bounded disturbances that do
not have to be continuous),

6) It exhibits significant tracking performance of the
application example in comparison with the NDOB
based SMC [15], as well as improved robustness to the
modeling uncertainties, parameter variations, external
disturbances and mismatched uncertainties, even in the
scenario with the same values of the switching control
term.

Furthermore, the following extensions of our previous
work [37]–[40] are presented:

1) The proposed SMRIC method aims to solve the distur-
bance compensation problem for nonlinear MIMO sys-
tems with arbitrary DRDs (matched and mismatched
disturbances),

2) The generalized sliding surface (not particular one,
as in [37]–[40]) is utilized in the SMRIC framework,

3) Stronger results in stability analysis are proved, ensur-
ing the finite-time convergence of the system trajecto-
ries to the generalized sliding manifold, as well as the
asymptotic stability of the equilibrium, and

4) The RIC based phase-lead compensator is utilized,
through the SMRIC framework, for attenuation of addi-
tional disturbances in the application example, thus
increasing the stability margins and decreasing settling
times of the closed loop system.

The paper is structured as follows. Section II introduces the
typical MIMO numerical example in order to illustrate sus-
ceptibility of the baseline I-SMC (without DOB) and baseline
NDOBC (without SMC) [8] methods, as well as insensi-
tivity of the NDOB based I-SMC [15] and the RIC based
I-SMC [38] techniques to time-varying and non-vanishing
mismatched disturbances. In Section III the unified SMRIC
method is proposed for a class of MIMO nonlinear elec-
tromechanical systems using Lyapunov based redesign. The
summary model of the application example and the control
design are reported in Section IV. The effectiveness of the
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proposed SMRIC technique is demonstrated through both the
simulation studies and the experimental tests in Section V,
using the small-scale helicopter CE 150 in the presence of
modeling uncertainties, parameter variations, wind gusts and
dynamical changes in the center of gravity (CoG). Finally,
the last section concludes the paper.

II. A MOTIVATIONAL EXAMPLE
This section describes the typical MIMO numerical
example [8] subjected to mismatched disturbances, in order
to show superior tracking performance of the RIC based
I-SMC method [38] in compensation of mismatched dis-
turbances, which are time-varying and non-vanishing with
non-constant steady-state values. Furthermore, comparison
analysis with the concurrent control methods for mismatched
uncertainties compensation is presented.

Consider the MIMO nonlinear system with mismatched
disturbances w1(t) and w2(t) [8]

ẋ1 = −x1 + x1x2 + x3 + w1,

ẋ2 = sin x1 + x22 + x4 + w2,

ẋ3 = x4 + u1,
ẋ4 = u2,
y1 = x1,
y2 = x2,

(1)

where x1, x2, x3 and x4 are system states, u1 and u2 denote
control inputs, while y1 and y2 represent system outputs. The
IRDs (%1, %2) = (2, 2) for the system (1) are greater than
the DRDs (ϑ1, ϑ2) = (1, 1). Thus the disturbances w1 and
w2 do not satisfy the matching condition, or in other words,
the disturbances w1 and w2 act on the system (1) via different
channels than the control inputs u1 and u2.

Consider the time-varying and non-vanishing mismatched
uncertainties w1(t) and w2(t) with non-constant steady state
values

w1(t) =


0, t ∈ [0, 4)
2, t ∈ [4, 8)
3
5
sin
(π
2
t
)
+ 2, t ∈ [8,+∞)

(2)

and

w2(t) =


0, t ∈ [0, 4)
−3, t ∈ [4, 8)

−
4
5
sin
(
π t +

π

2

)
− 3, t ∈ [8,+∞).

(3)

to be imposed on the system (1) in order to com-
pare disturbance attenuation characteristics of the follow-
ing control algorithms: the baseline NDOBC (without
SMC) technique [8], the NDOB based I-SMC scheme [15],
the baseline I-SMC (without DOB) [15], [38] and the RIC
based I-SMC method [38].

Let x = [x1, x2, x3, x4]T , u = [u1, u2]T , w = [w1,w2]T

and y = [y1, y2]T then the system (1) can be expressed in the

matrix form as{
ẋ = f (x)+ g(x)u+ p(x)w,
y = h(x),

(4)

where the matrix fields f (x), g(x), p(x) and h(x) are

f (x) =


f1(x)
f2(x)
f3(x)
f4(x)

 =

−x1 + x1x2 + x3
sin x1 + x22 + x4

x4
0

 , (5)

g(x) =
[
g1(x)
g2(x)

]T
=

[
0 0 1 0
0 0 0 1

]T
, (6)

h(x) =
[
h1(x)
h2(x)

]
=

[
x1
x2

]
, (7)

p(x) =
[
p1(x)
p2(x)

]T
=

[
1 0 0 0
0 1 0 0

]T
. (8)

A. BASELINE NDOB CONTROL
The nonlinear disturbance observer (NDOB) is defined as [8]{

ŵ = zw + λ(x),
żw = −l(x) [p(x) (λ(x)+ zw)+ f (x)+ g(x)u] ,

(9)

where ŵ = [ŵ1, ŵ2]T is the estimation vector of the distur-
bance vector w, zw = [zw1, zw2]T represents the internal state
vector of the NDOB, λ = [λ1, λ2]T is a vector of the observer
functions selected as in [8], i.e. λ = [50x1, 50x2]T , and the
NDOB gain vector l ∈ R2×4 is

l(x) =
∂λ(x)
∂x
=

[
50 0 0 0
0 50 0 0

]
. (10)

The dynamics of the observer state vector zw is derived
using (9) and (10)

żw =
[
żw1
żw2

]
=

[
−50(50x1 + zw1 + f1)
−50(50x2 + zw2 + f2)

]
. (11)

The NDOB based control law for the system (1) is defined
as [8]

u(x) = A−1(x)
[
−b(x)+ v(x)+ 0(x)ŵ

]
. (12)

Appropriate vector or matrix fields in (12) are derived using
Lie derivatives as

A(x) =
[
Lg1Lf h1 Lg2Lf h1
Lg1Lf h2 Lg2Lf h2

]
=

[
1 0
0 1

]
, (13)

b(x) =

[
L2f h1
L2f h2

]
=

[
(x2 − 1)f1 + x1f2 + x4

f1cos x1 + 2x2f2

]
, (14)

v(x) =
[
−c10h1 − c

1
1Lf h1

−c20h2 − c
2
1Lf h2

]
=

[
c10(r1 − x1)− c

1
1f1

c20(r2 − x2)− c
2
1f2

]
,

(15)

0(x) =
[
−c11Lp1h1 − Lp1Lf h1 −c11Lp2h1 − Lp2Lf h1
−c11Lp1h2 − Lp1Lf h2 −c11Lp2h2 − Lp2Lf h2

]
=

[
1− x2 − c11 −x1
−cos x1 −c21 − 2x2

]
, (16)

where c10, c
1
1, c

2
0 and c21 represent positive constants, while

r1(t) and r2(t) stand for the reference signals.
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B. NDOB BASED I-SMC
Define the integral sliding surface vector as [15]

σ =

[
σ1
σ2

]
=

[
ė1 + c11e1 + c

1
0

∫
e1 + ŵ1

ė2 + c21e2 + c
2
0

∫
e2 + ŵ2

]
, (17)

where e1 = y1 − r1 and e2 = y2 − r2 are output tracking
errors. The NDOB based I-SMC law is now defined as [15]

u(x) = A−1(x)
[
−b(x)+ v(x)+ 0(x)ŵ+ vcon(x)

]
, (18)

where the corresponding control terms in (18) are the same
with those in (12), and vcon = [vcon1, vcon2]T represents the
convergence control vector

vcon(x) =
[
−β1sgn σ1
−β2sgn σ2

]
(19)

with positive coefficients β1 and β2.

C. BASELINE I-SMC
Define the integral sliding surface as [38]

σ =

[
σ1
σ2

]
=

[
ė1 + c1e1 + c2

∫
e1

ė2 + c3e2 + c4
∫
e2

]
, (20)

where c1, c2, c3, and c4 are positive constants. The I-SMC
vector is formulated as

u(x) = ueq(x)+ ucon(x), (21)

where the equivalent control vector ueq = [ueq1, ueq2]T is
derived using (20) and σ̇ = 0 in the absence of disturbances,
i.e. w = 0,

ueq(x) =
[
(1− x2 − c1)f1 − x1f2 − x4 − c2x1
−(c3 + cos x1)f1 − 2x2f2 − c4x2

]
+

[
r̈1 + c1ṙ1 + c2r1
r̈2 + c3ṙ2 + c4r2

]
. (22)

The convergence control term ucon in (21) is designed as

ucon(x) =
[
−β1sgn σ1
−β2sgn σ2

]
. (23)

D. RIC BASED I-SMC
The RIC based I-SMC law [38] for the system (1) is designed
as

u(x) = ueq(x)+ ucon(x)+ uest (x), (24)

where the control vectors ueq(x) and ucon(x) are defined the
same as in the I-SMC algorithm (21). The estimation con-
trol term uest (x) is designed such that the RIC emulates the
first-order low-pass filter in the DOB framework [34], [38]

uest (x) =
[
−(η11σ1 + η12σ2)
−(η21σ1 + η22σ2)

]
, (25)

where the observer parameters η11, η12, η21 and η22 are
positive coefficients representing the cut-off frequencies of
the first-order filters, and the integral sliding surface σ is
selected as in (20).

E. SIMULATION RESULTS
The control parameter values of the designed control laws for
the system (1) are listed in Tab. 1. The same parameter values
of the baseline I-SMC and the baseline NDOBC laws are used
as in [8]. The authors in [8] used reference signals r1 = 10
and r2 = 20, but the magnitudes of these references are
significant in comparison with the magnitudes of the tracking
errors, so the disturbance compensation properties could not
be easily noticed in the diagrams presented in [8]. Therefore,
we present tracking performance of the control algorithms
for the reference signals r1 = r2 = 0, in order to ensure
better insight into the disturbance attenuation characteristics
of the designed control schemes. It can be observed from
Fig. 1a and Fig. 1b that the baseline I-SMC and NDOBC
methods exhibit poor tracking performance in the presence
of mismatched disturbances, revealing higher overshoots and
settling times of the output variables. The baseline I-SMC
and NDOBC techniques are capable to eliminate only the
offset in the mismatched disturbances after the time instant
t = 8[s] at which the disturbances (2) and (3) start to vary
in time. On the other hand, the simulation results confirmed
that the RIC based I-SMC and the NDOB based I-SMC
methods are able to handle mismatched disturbances in a
robust way, retaining the nominal control performance, even
within the time interval t ∈ (4, 8), when the mismatched
disturbances (2) and (3) reach the step changes, or within the
time interval t ∈ (4, 8) where w1 and w2 are time-varying and
non-vanishing. Zoom areas in Fig. 1a and Fig. 1b show that
the RIC based I-SMC law, in comparison with NDOB based
I-SMC algorithm, slightly improved rise and settling times,
as well as overshoots and undershoots after the time instant
t = 4[s] at which step changes of the disturbances occurred.

III. SMRIC FRAMEWORK FOR A CLASS OF MIMO
ELECTROMECHANICAL SYSTEMS
This section presents the synthesis of the SMC and the RIC
schemes, through Lyapunov redesign method, into the novel
SMRIC framework for electromechanical MIMO systems.
In comparison with the concurrent algorithms [15], [29],
the proposed SMRIC method expands the class of mis-
matched disturbances that might be imposed on the sys-
tem. Additionally, the stability analysis is derived for MIMO
systems, unlike the NDOB based SMC [15], with stronger
results in stability analysis as compared with the extended
DOB based SMC [29].
The dynamics of the MIMO nonlinear electromechanical

system can be described with [3], [41]

a(q)q̈+ b(q, q̇)+ g(q)+ τd (t, q, q̇) = τ, (26)

where q(t) ∈ Rn and q̇(t) ∈ Rn represent a state vec-
tors, position and velocity, respectively, a(q) ∈ Rn×n is a
non-singular positive definite matrix denoting an inertia of
the system, b(q, q̇) ∈ Rn represents a friction, centrifugal
and Coriolis torques, g(q) ∈ Rn is a vector of gravitational
torques, a disturbance vector τd (t, q, q̇) ∈ Rn may include
various terms, such as interaction torques τint ∈ Rn and
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TABLE 1. Control parameters for the numerical example.

external disturbances τext ∈ Rn, while τ ∈ Rn denotes a
control input vector. The term torque will be used within the
text, although the model (26) is valid for both rotational and
translation motion. A perturbation of the system (26) yields

anq̈+ τdis (t, q, q̇) = τ, (27)

where an ∈ Rn×n is a non-singular positive definite matrix
denoting a nominal inertia of the system, τdis represents a
generalized (lumped) disturbance vector that may include
different uncertain terms due to the model simplifications
and parameter variations, as well as vectors b(q, q̇), g(q), and
τd (t, q, q̇) from (26). We suppose that the vector functions b,
g, τd and τdis are sufficiently smooth, and defined for (q, q̇,
τ ) ∈ D × D × Rn, where D ⊂ Rn is a domain that contains
the origin.
Remark 1: The model (26) or (27) allows a unified repre-

sentation of various motion control tasks [3], such as position
or velocity control, interaction torque control, etc. It is also
suitable for description of nonlinear systemswithmismatched
disturbances. For example, the system (1) or (4) can be
described with (27) by introducing the following substitu-
tions: an = diag(1, 1, 1, 1), q̇ = x, τdis = −f (x) − p(x)w
and τ = g(x)u, i.e.

an =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , q̇ =


x1
x2
x3
x4

 , (28)

FIGURE 1. Output responses of the system (1) acquired by the control
laws (12), (18), (21), and (24) in the presence of mismatched
disturbances. (a) Comparison of the output y1 responses. (b) Comparison
of the output y2 responses.

τdis =


x1 − x1x2 − x3 − w1
−sin x1 − x22 − x4 − w2

−x4
0

 , τ =


0
0
u1
u2

 . (29)

Let define the vector of tracking errors e (t, q) ∈ Rm for the
positioning control tasks as the difference between the output
vector y (q) ∈ Rm and the vector of references yref (t) ∈ Rm

e(t, q) = y(q)− yref (t). (30)

The control objective is to force the system outputs to the
integral sliding manifold

S =
{
s, q, q̇

∣∣ σ (s, e, ė) = 0
}
, s =

∫ t

0
e dt, (31)

where σ ∈ Rn is the sliding surface that provides relative
degree one with respect to (w.r.t.) the control input τ for
position control tasks. The vector functions y and yref in (30),
and σ in (31) are supposed to be sufficiently smooth.
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Notation 1: The Jacobian matrix Jyq ∈ Rm×n of vector y
w.r.t. vector q is

Jyq = ∇y =

∇y1...
∇ym

 =

∂y1
∂q1

. . .
∂y1
∂qn

...
. . .

...
∂ym
∂q1

. . .
∂ym
∂qn

 . (32)

The first step in the control design is to derive a stabi-
lizing control for the nominal model of the system (27),
usually called the equivalent control [3]. It describes the sys-
tem motion in the sliding mode and ensures that the system
trajectories will be confined to the sliding manifold (31) once
it has been reached. The time derivative of the sliding surface
is derived using (27), (30), (31) and (32)

σ̇ = Jσs · ṡ+ Jσe · ė+ Jσė · ë (33)

= Jσs · e+ Jσe · ė+ Jσė ·
(
Jyq · q̈− ÿref

)
(34)

= Jσs · e+ Jσe · ė+ Jσė ·
[
Jyq · a

−1
n (τ − τdis)− ÿref

]
. (35)

For the sake of simplicity, it is assumed in (35) that the second
order derivatives ∂2 yi/∂q2j are equal to zero, for all i =
1, . . . ,m and j = 1, . . . , n, since the outputs of the position
control tasks, in general, are linear functions of the state
variables. Let us introduce a non-singular matrix function
α = an ·

(
Jσė · J

y
q
)−1, such that Jσė · J

y
q is a non-singular n× n

matrix. The equivalent control vector is derived to cancel the
RHS of (35) in the absence of disturbances

τeq = α ·
(
Jσė · ÿref − Jσs · e− Jσe · ė

)
. (36)

For the actual system (27) affected with disturbances τdis, two
additional control terms τ̂dis and τv are included in the overall
control τ

τ = τeq + τ̂dis + τv, (37)

where τ̂dis is the RIC based control term for a lumped dis-
turbance estimation. It aims to alleviate the chattering phe-
nomenon by reducing the magnitudes of the sliding control
vector τv. The main objective of the switching control term τv
is to force the sliding mode motion toward the manifold (31)
and to counteract the disturbance compensation error

δ
(
τdis, τ̂dis

)
= τdis − τ̂dis, (38)

rather than the lumped disturbance τdis. Thus, the overall
control (37) should be able to stabilize the closed-loop system

anq̈ = τeq + τv + τ̂dis − τdis (39)

in the presence of modeling uncertainties, parameter varia-
tions and external disturbances.
Assumption 1: Assume that the lumped disturbance τdis is

bounded such that∣∣∣σ Tα−1τdis∣∣∣ ≤ ρ ‖σ‖22 + k1 ∣∣∣σ Tα−1τ̂dis∣∣∣+ k2 ∣∣∣σ Tα−1τv∣∣∣
(40)

holds, where ρ(t, q, q̇) : [0,∞) × D × D → R+0 is a
non-negative continuous function representing a disturbance
magnitude, α is a non-singular matrix function, and k1, k2 ∈
[0, 1] are constant parameters.
Remark 2: The only information one should know about

the lumped disturbance τdis is the estimation (40), which
does not require the function ρ to be small, but only to
be known.
Assumption 2: The disturbance compensation error (38)

is bounded by a non-negative constant δ0, such that

‖δ‖1 ≤ δ0 (41)

holds.
Notation 2: Let define a diagonal matrix η1(t, q, q̇) =

diag (η11(t, q, q̇), . . . , η1n(t, q, q̇)) of non-negative functions
η1i(t, q, q̇), ∀i = 1, . . . , n, and a non-negative scalar function
η2(t, q, q̇), i.e. η1i, η2 : [0,∞)× D× D→ R+.
Notation 3: Let define the vector (η1 ∗ σ) ∈ Rn of the

convolutions η1i ∗ σi, for all i = 1, . . . , n and the vec-
tor sgn σ ∈ Rn of signs of the sliding surfaces σi as
follows

η1 ∗ σ = [η11 ∗ σ1, . . . , η1n ∗ σn]T (42)

sgn σ = [sgn σ1, . . . , sgn σn]T . (43)
Theorem 1: Consider the system (27) satisfying Assump-

tions 1-2. Assume that the corresponding internal dynamics
of the system (27) is input to state (ISS) stable. If the control
parameters η1 and η2 are defined such that∣∣∣σ T (η1 ∗ σ )∣∣∣ ≥ ρ ‖σ‖22 (44)

η2 ≥ β
√
n, β ≥ 0 (45)

hold, then the trajectories of the closed loop system will
converge to the integral sliding manifold (31) in finite time
by means of the control law

τ = τeq + τ̂dis + τv, (46)

τeq = α ·
(
Jσė · ÿref − J

σ
s · e− J

σ
e · ė

)
, (47)

τ̂dis = −
α

1− k1
(η1 ∗ σ) , (48)

τv = −
α

1− k2
η2 sgn σ. (49)

Remark 3: A non-negative constant β in (45) represents a
converging rate to the sliding manifold (31).

Proof: For the system (39), let define a positive definite
Lyapunov function

V =
σ Tσ

2
, V (0) = 0. (50)

The first order time derivative of (50) along the trajectories
of the system (39) is expressed using (35) and (46)

V̇ = σ T σ̇ = σ Tα−1
(
τv + τ̂dis − τdis

)
(51)

≤ σ Tα−1(τv + τ̂dis)+
∣∣∣σ Tα−1τdis∣∣∣ . (52)
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Applying (44)-(49) and the estimation (40) to (52) yields

V̇ ≤ −
σ T (η1 ∗ σ )
1− k1

− η2
σ T sgn σ
1− k2

+ ρ ‖σ‖22

+
k1
∣∣σ T (η1 ∗ σ )∣∣
1− k1

+ η2
k2
∣∣σ T sgn σ ∣∣
1− k2

(53)

≤ −

∣∣∣σ T (η1 ∗ σ )∣∣∣+ ρ ‖σ‖22 − η2
√
n
‖σ‖2 (54)

≤ −ρ ‖σ‖22 + ρ ‖σ‖
2
2 − β ‖σ‖2 = −β

√
2V , (55)

since the following∣∣∣σ T sgn σ ∣∣∣ = ‖σ‖1 ≥ ‖σ‖2√n (56)

σ T (η1 ∗ σ) =

∣∣∣σ T (η1 ∗ σ)∣∣∣ (57)

hold. The scalar function σ T (η1 ∗ σ) on the LHS of (57) is
non-negative, i.e.

σ T (η1 ∗ σ) = [σ1, . . . , σn] [η11 ∗ σ1, . . . , η1n ∗ σn]T

=

n∑
i=1

σi (η1i ∗ σi) =

n∑
i=1

|σi (η1i ∗ σi)|

=

∣∣∣∣∣
n∑
i=1

σi (η1i ∗ σi)

∣∣∣∣∣ = ∣∣∣σ T (η1 ∗ σ)∣∣∣ , (58)

since the functions σi (η1i ∗ σi) are non-negative for all
i = 1, . . . , n.
It can be observed from (55) that the function V̇ is negative

definite along the trajectories of the closed loop system (39).
Applying the comparison lemma [42] to (55) yields

‖σ (t, q, q̇)‖2 ≤ ‖σ (t0, q0, q̇0)‖2 − β t, (59)

which guarantees that the trajectories starting off the sliding
manifold (31), i.e. σ (t0, q0, q̇0) 6= 0, will reach it in finite
time. Otherwise, the system trajectories starting on the inte-
gral sliding manifold (31), i.e. σ (t0, q0, q̇0) = 0, will be
confined to it for all future time, because leaving the manifold
requires the function V̇ to be positive, which is impossible
regarding (55). Therefore, the system trajectories reach the
positively invariant set (31) in finite time and remain inside
thereafter. �
Corollary 1: The trajectories of the closed-loop sys-

tem (39) converge asymptotically to the equilibrium if the
lumped disturbance τdis is vanishing.

Proof: Combining the Cauchy-Schwarz and Young’s
inequalities∣∣∣σ T (η1 ∗ σ)∣∣∣ ≤ ‖σ‖2 ‖η1 ∗ σ‖2 ≤ ‖η1‖1 ‖σ‖22 (60)

with the lower bound (44) yields

ρ ‖σ‖22 ≤ ‖η1‖1 ‖σ‖
2
2 , (61)

or

‖η1‖1 ≥ ρ. (62)

FIGURE 2. Laboratory helicopter system CE 150.

It follows from the results of Theorem 1 and (62) that
the equilibrium point of the system (39) is asymptotically
stable. �
Remark 4: The ultimate boundedness of the system trajec-

tories is the best result that could be guaranteed if the gener-
alized disturbance τdis is supposed to be non-vanishing [38].
Remark 5: If the control parameter η1 of the RIC based

control (48) is designed w.r.t. to (44), so the maximum value of
the disturbance compensation error is δ0, then the magnitude
η2 of the switching term (49) could be defined using (45) to
dominate only over δ0, instead of the whole disturbance τdis.
Thus, the proposed SMRIC framework allows significantly
lower magnitudes of the switching control vector and attenu-
ation of the chattering effect.
Remark 6: The SMRIC scheme retains the nominal perfor-

mance of the system, since the RIC based control term (48)
behaves like a patch to the overall control, which does not
operate in the absence of disturbances [36].
Remark 7: The estimation (40) does not require the

lumped disturbance τdis to have constant steady-state values,
or even to be continuous, but only to be bounded. Thus,
the SMRIC approach has significantly relaxed constraints
imposed on the mismatched uncertainties in comparison
with the NDOB based SMC [15] and extended DOB based
SMC [29].

IV. APPLICATION TO THE HELICOPTER SYSTEM CE 150
The laboratory helicopter CE 150 represents a highly non-
linear MIMO system with significant cross-couplings, thus
imposing a challenge to a robust control design. Fig. 2 shows
the main components of the helicopter system: the massive
support, the rigid body with the ballast, two propellers driven
by two DC motors, the power unit and the multifunctional
card for data acquisition and implementation of the control
algorithms. The small-scale helicopter CE 150 has 3 inputs:
the main servomotor voltage u1, the tail servomotor volt-
age u2 and the additional servomotor voltage u3 for moving
the ballast along the longitudinal bar; and 2 outputs: the
pitch (elevation) θ and the yaw (azimuth) ψ . The opera-
tional range of the helicopter inputs and outputs are listed
in Tab. 2.
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TABLE 2. Constraints for the helicopter input and output variables.

A. MATHEMATICAL MODEL OF THE HELICOPTER
DYNAMICS
This subsection presents a summary model of the heli-
copter CE 150, since the detailed dynamic model is already
described in [37], [39], [40].

Fig. 3 shows the torques acting on the helicopter body.
Considering the torques balance in the helicopter vertical
plane, the elevation dynamics can be described as

aθ θ̈ = τ1 + τψ̇ − τf1 − τm − τG, (63)

τψ̇ = mlψ̇2 sin θ cos θ, (64)

τf1 = Cθ sgn θ̇ + Bθ θ̇ , (65)

τm = mgl sin θ, (66)

τG = KGψ̇ω1 cos θ, for ψ̇ � ω1, (67)

where aθ is the moment of inertia around the horizontal
axis Eθ , τ1 represents the moment of the main rotor, τψ̇ is the
centrifugal torque, m is the helicopter mass, l defines the dis-
tance between the horizontal axis Eθ and the main servomotor
axis Eω1, τf1 denotes Coulomb and viscous friction torques,
Bθ and Cθ denote Coulomb and viscose friction coefficients
for the elevation dynamics, respectively, τm is the gravi-
tational torque, g stands for the gravitational acceleration,
τG represents the gyroscopic torque, KG is the gyroscopic
coefficient and ω1 represents the angular velocity of the main
rotor.

The azimuth dynamics can be described using the torques
balance in the horizontal plane of the helicopter

aψ ψ̈ = τ2 − τf2 − τr , (68)

τf2 = Cψ sgn ψ̇ + Bψ ψ̇, (69)

aψ = aθ sin θ, (70)

where aψ is the moment of inertia around the vertical
axis Eψ , τ2 denotes the moment of the tail rotor, τf2 represents
Coulomb and viscose friction torques, Bψ and Cψ denote
Coulomb and viscose friction coefficients for the azimuth
dynamics, and τr determines the helicopter cross-coupling
dynamics, that is the reaction torque of the main servomotor
w.r.t. the azimuth dynamics.

There is an unmodeled dynamics in (63)−(70), such as the
main DC motor stabilizing torque, coupling effects between
the tail rotor speed and the azimuth friction torque, variations
in the air resistance, etc. Since the helicopter CE 150 con-
struction does not allow measurement of the appropriate
internal signals, the servomotors dynamics is approximated
with the second order transfer function, the rotors torque is

FIGURE 3. Torques acting on the helicopter body.

represented as the quadratic function of the angular veloc-
ity, and the empirical model of the cross-coupling dynamics
is described with the first order transfer function [38]. The
effects caused by unmodeled dynamics, as well as approxi-
mated dynamics of the helicopter are managed by the RIC
structure in the control design. Unknown parameters of the
helicopter model are identified using a genetic algorithm and
presented in [39].

B. CONTROL DESIGN FOR THE HELICOPTER SYSTEM CE
150
The overall dynamics (63)−(70) of the helicopter CE 150 can
be expressed using (27), introducing the substitutions

q =
[
θ

ψ

]
, an =

[
aθ 0
0 aψ

]
, (71)

τ =

[
τ1
τ2

]
, τdis =

[
τf 1 + τm + τG − τψ̇

τf 2 + τr

]
. (72)

In order to provide the relative degree one (r = 1) from the
control input τ to the helicopter output y(q) = q = [θ, ψ]T ,
the integral sliding surface is defined as

σ (t, q, q̇) = ė(t, q)+3 e(t, q)+ 0
∫ t

0
e(t, q) dt, (73)

where 3 ∈ R2×2 and 0 ∈ R2×2 are positive constant
matrices, and the tracking error vector e(t, q) ∈ R2 is defined
as e(t, q) = q(t)−qref (t). Comparing the Laplace transforms
of the disturbance attenuation control term (48) for k1 = 0
and the RIC based control term in [34] yields

η1 = L −1
{
K (s)
s

}
. (74)

The overall control for the helicopter CE 150 follows from
Theorem 1 (applying k2 = 0)

τ = an
(
q̈ref −3ė− 0e

)
− anL −1

{
s−1K (s)σ (s)

}
− anη2 sgnσ. (75)

Block diagram of the control law (75) is depicted in Fig. 4.
In order to increase stability margins and decrease rise and

settling times of the helicopter output responses, the phase-
lead compensator is employed

K (s) = diag
(
KL1

TL1s+ 1
κ1TL1s+ 1

, KL2
TL2s+ 1
κ2TL2s+ 1

)
(76)
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FIGURE 4. The proposed SMRIC scheme for output tracking of the laboratory helicopter CE 150. The ideal differentiator blocks
s and s2 are implemented using the real differentiator blocks.

where KL1, KL2, TL1 and TL2 are positive constants, κ1 =
(1−sinφ1)(1+sinφ1)−1 and κ2 = (1−sinφ2)(1+sinφ2)−1

denote positive coefficients such that κ1, κ2 ∈ (0, 1), while φ1
and φ2 represent positive phase contributions of the lead com-
pensator (76) over the frequency ranges [1/(κ1 TL1), 1/TL1]
and [1/(κ2 TL2), 1/TL2]. Introducing substitutions KL1 =
aθ/(3T1)2, KL2 = aψ/(3T2)2, TL1 = 3T1, TL2 = 3T2
and κ1 = κ2 = 1/3, the maximum phase contributions
φmax1 = φmax2 = 30◦ occur at the frequencies ωmax1 =
1/(T1

√
3) and ωmax2 = 1/(T2

√
3), and the RIC (76) can be

represented by the third order low-pass filters within the DOB
framework [34]

Q(s) = diag
(

3(T1s)+ 1
3(T1s)3 + 3(T1s)2 + 3(T1s)2 + 1

,

3(T2s)+ 1
3(T2s)3 + 3(T2s)2 + 3(T2s)2 + 1

)
. (77)

V. SIMULATION AND EXPERIMENTAL RESULTS
The DOB based SMC [39], [40], as well as the RIC based
SMC using decentralized [37] and centralized [38] approach
have been applied to the helicopter CE 150 and reported
the most promising tracking performance and robustness
properties, in comparison with other control methods refer-
enced therein. Here, the control performance of three con-
trol methods are compared through both simulation stud-
ies and experimental tests of the helicopter CE 150: the
proposed integral SMRIC (I-SMRIC) with the phase-lead
compensator (75), the RIC based I-SMC with the first-order
low pass Q-filter [38] and the NDOB based I-SMC [15].
In order to implement the designed controllers, the real-time
control scheme has been developed [37], [39], [40] using
MATLAB (Simulink) toolkit software. The results are pre-
sented for the following values of the control parameters:
3 = diag(5, 7), 0 = diag(4, 6), T = diag(T1,T2) =
diag(2.5, 1.5), η2 = 6 and β = 10 for the RIC based
I-SMC law (75); c11 = 5, c10 = 4, c21 = 7, c20 = 6,
l1 = [50, 0], l2 = [0, 50] and β = 15 for the NDOB
based I-SMC; and the same values of the control parameters

for the centralized RIC based I-SMC scheme as in [38].
The controller parameters are not optimized for the best
control performance, but rather to illustrate the robustness
properties of the control methods to external disturbances and
parametric
uncertainties.

A. SIMULATION RESULTS
In the simulation tests we imposed 30% uncertainties on
the helicopter model parameters. We also simulated wind
gusts by the low-frequency (1[rad/s]) periodic signal with a
significantly strong magnitude (10[m/s]). It can be noticed
from Fig. 5 that all three control techniques stabilize the
helicopter outputs and maintain the reference attitudes over
the whole domain. However, in comparison with the RIC
based I-SMC and theNDOBbased I-SMC laws, the I-SMRIC
technique improved tracking performances of the helicopter
CE 150 by decreasing rise and settling times, as well as the
overshoots, especially in the pitch response (see the zoomed
area in Fig. 5a) proved to be more complex from the control
point of view. Since the imposed disturbances do not have
constant steady state values, the proposed I-SMRIC method
significantly reduced steady state errors in comparison with
NDOB based I-SMC, even with the 30% lower magnitude β
of the switching control term.

B. EXPERIMENTAL TESTBED RESULTS
The experimental results are conducted under the perturba-
tion test. It is performed by moving the ballast along the
longitudinal axis, thus introducing dynamical changes in the
helicopter CoG. During the test, the ballast motion started
from its default position, that is the middle of the longitudinal
axis, towards one end of the axes to the other one, and so on.
Fig. 6 depicts the tracking error responses of the helicopter
outputs. It can be observed that both RIC based techniques,
the RIC based I-SMC and the I-SMRIC, achieved lower
overshoots and settling times in comparison with the NDOB
based I-SMC, especially when the upper ultimate bound of
the elevation angle is approached (see Fig. 6a).
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FIGURE 5. Helicopter output responses in the simulation mode.
(a) Comparison of the elevation responses. (b) Comparison of the
azimuth responses.

VI. CONCLUSION
By proposing a novel SMRIC method for a class of MIMO
electromechanical systems, this paper has aimed to solve the
traditional SMC issues: alleviation of the chattering, sensi-
tivity to mismatched disturbances and nominal performance
recovery. The SMRIC approach has extended an application
area of the RIC scheme to a class of nonlinear systems,
since the RIC stability analysis is originally introduced only
for a class of linear systems [30]–[36]. It is proved that the
SMRIC technique guarantees the finite-time convergence of
the system trajectories to the generalized sliding manifold.
It ensures the asymptotic stability of the equilibrium in the
presence of vanishing mismatched disturbances, as well as
uniformly ultimately boundedness of the system solutions
in the presence of non-vanishing unmatched uncertainties.
The SMRIC method has significantly relaxed constraints that
are imposed on mismatched uncertainties, expanding a class
of disturbances that could be subjected on the MIMO non-
linear systems. It does not require unmatched disturbances
to be continuous as the DOB based SMC approach [29],
or with constant steady-state values as the NDOB based SMC

FIGURE 6. Tracking error responses of the helicopter outputs at the
experimental setup. (a) Comparison of the elevation tracking error
responses. (b) Comparison of the azimuth tracking error responses.

method [15], but only to be bounded. The excellent track-
ing performance and improved robustness of the I-SMRIC
technique have been demonstrated in comparison with the
outstanding NDOB based SMC algorithm [15] through both,
simulation tests and experimental studies in the presence of
additional parametric uncertainties and external disturbances
(wind gusts and dynamical changes in the helicopter CoG)
with non-constant steady-state values.
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