
Received March 14, 2019, accepted April 11, 2019, date of publication April 17, 2019, date of current version May 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2911723

Discriminant Affinity Matrix for Deterministic
Motion Trajectory Segmentation
GUOBAO XIAO 1, KUN ZENG1, LEYI WEI 2, TAO WANG1, AND TAOTAO LAI1
1Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University,
Fuzhou 350108 , China
2College of Intelligence and Computing, Tianjin University, Tianjin 300072, China

Corresponding author: Leyi Wei (weileyi@tju.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702431, Grant 61791340, and Grant
61703195, 61702101, and in part by the Fuzhou Technology Planning Project under Grant 2018-G-96.

ABSTRACT We present a novel algorithm (DAM) for deterministic motion trajectory segmentation by
using epipolar geometry and adaptive kernel-scale voting. DAM is based on geometric models and exploits
the information derived from superpixels to deterministically construct a set of initial correlation matrices.
Then DAM introduces a novel adaptive kernel-scale voting scheme to measure each initial correlation
matrix. After that, based on the voting scores, the set of initial correlation matrices is accumulated to
generate a discriminant affinity matrix, which is utilized for final grouping. The key characteristic of the
DAM is its deterministic nature, i.e., DAM is able to achieve reliable and consistent performance for
motion trajectory segmentationwithout randomness. Experimental results on both several traditional datasets
(i.e., Hopkins155, Hopkins12, and MTPV62 datasets) and a more realistic and challenging dataset (i.e.,
KT3DMoSeg) show the significant superiority of the proposed DAM over several state-of-the-art motion
trajectory segmentation algorithms with respect to segmentation accuracy.

INDEX TERMS Motion trajectory segmentation, deterministic fitting, computer vision.

I. INTRODUCTION
Motion trajectory segmentation is a fundamental and critical
task in computer vision. Given a video sequence with feature
point trajectories, the task of motion trajectory segmentation
is to segment the feature point trajectories that belong to dif-
ferent moving objects. Thus, motion trajectory segmentation
is usually formulated as the problem of clustering feature
point trajectories for a video sequence with respect to their
motions in, e.g., [7], [11], [12], [14], [28], [30], [31].

Motion trajectory segmentation has attracted much
attention within academic and industrial communities, and
a number of motion trajectory segmentation methods [6],
[7], [9]–[11], [14]–[16] have been proposed in recent years.
Conventional motion trajectory segmentation methods can
be classified into two categories according to the number
of frames considered during motion trajectory segmentation,
i.e., two-frame based methods and multi-frame based meth-
ods. Two-frame based methods (e.g., [9], [16]) and multi-
frame based methods (e.g., [7], [10], [15]) are usually based
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on the epipolar geometry and the feature point trajectories,
respectively. The former usually shows better computational
efficiency than the latter due to less frames used. However,
the latter usually achieves more accurate segmentation results
than the former since more information between frames is
considered. Some other methods (e.g., [6], [11], [14]) take
into account both the epipolar geometry and the feature point
trajectories, and these methods can achieve better segmenta-
tion results within reasonable time.

Note that, the recent homography-based method [11] is
able to achieve excellent performance with a mean error
of 0.83% in the popular benchmark, i.e., the Hopkins155
dataset [19]. The success of [11] is based on the condition that
the scene only contains compact objects or piecewise smooth
structures, which can be fitted with a valid homography.
However, this condition is not always satisfied in real-world
scenes. For that, [28] proposed to combinemultiple geometric
models (i.e., homography and fundamental matrices) together
to deal with real-world effects.

Although [28] is able to improve the performance of
motion segmentation in that way, it requires to generate
a large number of model hypotheses for multiple models,
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FIGURE 1. Overview of the proposed method for motion trajectory segmentation. (a) A video sequence with feature point trajectories
belonging to three different motions. (b) The procedure of the proposed method. (c) The obtained segmentation result (the feature point
trajectories with the same color belong to the same motions).

which is very time-consuming. We also find that [28] does
not improve the quality of affinity matrices (that are used
to the spectral clustering framework) derived from different
geometric models. Thus, the subset constraint used by [28]
may not be adequate in the sequence where the scene
cannot be fitted with both homography and fundamental
matrices.

In this paper, we propose a novel Discriminant Affinity
Matrix based motion trajectory segmentation method (called
DAM) by using epipolar geometry and adaptive kernel-scale
voting. Note that the final affinity matrix (used for final
grouping) is accumulated by a set of initial correlation matri-
ces between two frames in [28]. Instead of combing different
models in [28], we propose to directly improve the qual-
ity of an affinity matrix by two strategies, i.e., generating
high-quality model hypotheses for each initial correlation
matrix, and introducing a voting scheme for the final affinity
matrix. More specifically, we firstly introduce superpixels
to generate model hypotheses on every pair of consecutive
frames in a video sequence. Then, we construct an initial
correlation matrix based on residual values (derived from
the generated model hypotheses and feature point matches)
for every pair of consecutive frames in the video sequence.
After that, we vote each initial correlation matrix according
to the generated model hypotheses. Then, based on the voting
scores, we accumulate all the initial correlation matrices to
exploit the motion information from all frames of the video
sequence. The main steps of the proposed method are shown
in Fig. 1.

Key contributions of this work are described as follows:
• We propose an adaptive kernel-scale voting scheme
to construct a discriminant affinity matrix for motion
trajectory segmentation. The voting scheme is able to
emphasize the initial correlation matrices where the
scene can be generated high-quality model hypotheses
while weakening the others where the scene cannot be
fitted with a geometric model.

• We exploit the information derived from superpixels
to deterministically construct a set of initial correla-
tion matrices. Benefiting from the deterministic nature,
the proposed DAM method is able to achieve reliable

and consistent performance for motion trajectory seg-
mentation without randomness.

• Experimental results demonstrate that the proposed
DAM method is able to achieve highly accurate
results on both several traditional datasets (i.e.,
Hopkins155 [19], Hopkins12 [17] and MTPV62 [14]
datasets) and a more realistic and challenging dataset
(i.e., KT3DMoSeg [28]) within reasonable time.
Compared with several other state-of-the-art motion
trajectory segmentation methods, DAM shows signif-
icant superiority on the accuracy of motion trajectory
segmentation.

The rest of the paper is organized as follows: In Sec. II,
we firstly review some related work. Then, we present
the details of the proposed motion trajectory segmentation
method in Sec. III. After that, we present the experimental
results to verify the effectiveness of the proposed method in
Sec. IV. Finally, we draw conclusions in Sec. V.

II. RELATED WORK
In this subsection, we further review the existing multi-frame
based motion trajectory segmentation methods (since these
methods have attracted more attention than the two-frame
based methods), which can be classified into subspace-based
and affinity-based methods.

The subspace-based methods assign the feature points
belonging to different motions to different subspaces of a
measurement matrix. Usually, these methods (e.g., [7], [17],
[20]) are mathematically elegant and can achieve promising
results on popular benchmarks. This is because that feature
points belonging to different motions lie in different subspace
of the measurement matrix. SSC [7] is a popular and effective
subspace-basedmethod. It can provide a subspace-preserving
solution, i.e., there are no connections between points from
different subspaces, if the input data satisfy some conditions,
e.g., the subspaces are independent to each other [29]. These
subspace-based methods are usually effective but they cannot
well handle an input video sequence containing missing data
(e.g., due to object occlusions).

The affinity-based methods analyze the pairwise or
higher-order relationship between feature point trajectories
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to alleviate the above problem. Therefore, these methods
(e.g., [6], [11], [14], [28]) are more robust and can achieve
more stable results. These affinity-based methods are robust
to object occlusions, however, they also have some other
problems: [6] requires the scales of the inlier noise to be
known in advance; [11] assumes that all scenes can be fitted
with a valid homography, which is not adequate in real-world
scenes; [14], [28] have expensive computational cost.

The proposed motion trajectory segmentation method in
this paper is an affinity-based method, but it does not
require prior information about the scales of inlier noises,
and it can achieve good results for real-world scenes within
reasonable time. It is worth pointing out the differences
between the proposed DAM method and MSSC [11] and
Subset [28]. Although they use the robust model fitting the-
ory to motion trajectory segmentation, they are significantly
different: 1) MSSC and Subset use random sampling to gen-
erate model hypotheses, while DAM introduces superpixels
to deterministically generate model hypotheses. Thus, DAM
can achieve more stable results than MSSC and Subset due
to the deterministic nature of DAM. 2) DAM can construct
more accurate affinity matrices than MSSC and Subset. This
is due to the fact that DAM can generate more consistent
and reliable model hypotheses based on superpixels, which
are used to compute the correlation values between feature
point trajectories. Moreover, DAM is able to adaptively select
the initial correlation matrices for the final affinity matrix by
the proposed voting scheme. 3) DAM is much more efficient
than Subset since DAM does not require estimate multiple
geometric models. In contrast, Subset generates amuch larger
number of model hypotheses to estimate multiple geometric
models, which is very time-consuming.

As the experimental results shown, the proposed DAM
method can achieve stable and accurate results on popular and
challenging benchmarks.

III. THE METHODOLOGY
In this section, we describe the details of the proposed
discriminant affinity matrix based motion segmentation
method. Specifically, we firstly introduce superpixels to
deterministically construct a set of initial correlation matrices
in Sec. III-A. Then we propose an adaptive kernel-scale
voting scheme to construct a discriminant affinity matrix
for motion trajectory segmentation in Sec. III-B. Finally,
we summarize the complete method in Sec. III-C.

A. INTRODUCING SUPERPIXELS TO DETERMINISTIC
MOTION SEGMENTATION
Superpixels can capture powerful prior information of fea-
ture appearances, and some works have proposed employing
superpixels in motion trajectory segmentation (e.g., [2]–[4]).
However, few deterministic motion segmentation methods
fully take advantage of the prior information. Inspired by
[26], [27], which take advantage of prior information derived
from superpixels for deterministicmodel fitting, we introduce

FIGURE 2. An example of the obtained superpixels and feature point
matches based on two consecutive frames in the ‘‘cars2B’’ video
sequence.

epipolar geometry constraint derived from superpixels for
deterministic motion trajectory segmentation.

Specifically, for two consecutive frames in a video
sequence, feature points from the two frames have a high
possibility of belonging to the same motion if the corre-
sponding feature points in each frame come from the same
superpixel. We show an example of superpixels (obtained
by superpixel segmentation [1]) and feature point matches
(derived from two consecutive frames in the ‘‘cars2B’’ video
sequence of the Hopkins155 dataset) in Fig. 2. We can see
that, all the feature point matches belong to the same motion
if the corresponding feature points in each frame come from
the same superpixel. Based on this observation, we use the
feature point matches, whose feature points belong to the
same superpixel in each frame, as sampling subsets to gen-
erate model hypotheses for estimating a homography. Note
that, a homography is a 3× 3 matrix, which is defined as:

θ =

 θ00 θ01 θ02
θ10 θ11 θ12
θ20 θ21 θ22

 . (1)

Consider one feature point match xi = {x
z
i , x

z+1
i } of the

sampling subsets, a homography θ maps xi in the following
way: xzixxziy

1

 = θ
 x

z+1
ix
xz+1iy
1

 =
 θ00 θ01 θ02
θ10 θ11 θ12
θ20 θ21 θ22


 x

z+1
ix
xz+1iy
1

 ,
(2)

where {xzix , x
z
iy} and {x

z+1
ix , xz+1iy } are the coordinate values of

two feature points {xzi , x
z+1
i } respectively.

We introduce superpixels to deterministic motion trajec-
tory segmentation in an effective manner, which can provide
important information for constructing the affinity matrix in
Sec. III-B. However, we cannot avoid degeneracies (it may
occur when a model hypothesis is estimated from a sampling
subset only containing local feature point matches), during
the subset sampling step, due to the over-segmentation caused
by superpixels. Therefore, we propose to combine the feature
point matches derived from any two superpixels as sampling
subsets to generate more model hypotheses, which will effec-
tively enlarge the sampling spans to alleviate degeneracies.
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As mentioned above, [26], [27] also use superpixels to
deterministically generate model hypotheses, but the pro-
posed DAM method are significantly different with them:
1) DAM selects all feature point matches, whose fea-
ture points in each frame come from the same super-
pixel, as a sampling subset, while [26], [27] only select
a small number of matches as a sampling subset. More
matches belonging to the same structure will provide more
reliable information for estimating the motion parameters.
2) DAM combines the feature point matches derived from
any two superpixels in each frame as sampling subsets, while
[26], [27] only combine the feature point matches derived
from two neighbouring superpixels. Generally, the larger
sampling spans will help to better alleviate degeneracies.
3) DAM generates model hypotheses to provide residual
information in each frame, and the final affinity matrix
is constructed by accumulating the residual information
from all frames of a video sequence (see Sec. III-B).
Therefore, the performance of DAM does not totally depend
on the quality of superpixels in a frame. In contrast, [26], [27]
select model instances from the model hypotheses, which
are directly derived from superpixels. In other words,
the performance of [26], [27] is sensitive to the quality of
superpixels.

B. CONSTRUCTING DISCRIMINANT AFFINITY MATRICES
As aforementioned, multi-frame based motion trajectory seg-
mentation methods can usually achieve more accurate results
than two-frame based methods, as has been shown in some
works [10], [11], [28]. Therefore, we first construct initial
correlationmatrices based on each pair of consecutive frames,
and then accumulate all the initial correlation matrices by
a novel voting scheme to yield the final affinity matrix,
which includes motion information of all frames in a video
sequence.

We firstly describe the details of constructing initial cor-
relation matrices as follows: For each pair of consecutive
frames (there are (t−1) pairs of consecutive frames in a video
sequence with t frames), we
1) Introduce superpixels to generate a set of model

hypotheses 2 = {θ1, θ2, · · · , θm}, where m is the total num-
ber of the generated model hypotheses, as described above.

2) Capture the preference of each feature point match xi
for the generated model hypotheses by sorting its absolute

residuals [r1i , r
2
i , . . . , r

m
i ], such that r

λ1i
i ≤ · · · ≤ r

λmi
i . The

feature point match preference is encapsulated in the permu-
tation bi = {λ1i , λ

2
i , . . . , λ

m
i }, i.e., xi has a higher probability

of being considered as an inlier of a model hypothesis when
the index of the model hypothesis is closer to the top in the
permutation.

3) Compute the ‘‘intersection’’ between two feature point
matches xi and xj as their correlation score [5]:

f (xi, xj) :=
1
h

∣∣b1:hi ∩ b1:hj ∣∣, (3)

FIGURE 3. An example showing the affinity matrices by using different
methods on the ‘‘1R2RC’’ video sequence of the Hopkins155 dataset.
(a) and (b) show the affinity matrices accumulated by [11] and the
proposed method, respectively.

where |b1:hi ∩ b1:hj | denotes the number of the common ele-
ments shared by b1:hi and b1:hj , and h (=d0.1me) is the number
of the generated model hypotheses to be taken into account.

These three steps are repeated (t − 1) times for a video
sequence with t frames. In each time, for two consecutive
frames (labelled the z-th and (z+1)-th frames), we con-
struct an initial correlation matrix Az+1

z , i.e., Az+1
z =

{f (xi, xj)}xi∈Xz+1z ,xj∈Xz+1z
, where Xz+1

z is the feature point
matches for the two consecutive frames.

Then we measure the quality of a generated model hypoth-
esis θj based on adaptive kernel scales as following [24], [25]

v(θj) =
1
n

n∑
i=1

EK
(
r ji/d(θj)

)
s̃(θi)d(θj)

, (4)

where n, s̃(θj) and d(θi) are the number of feature point
matches, the inlier noise scale adaptively estimated by
IKOSE [23] and the bandwidth [22], respectively. EK(·) rep-
resents the popular Epanechnikov kernel [23].

According to Eq. (4), if θj includes much larger number of
inliers and smaller residuals, it will be assigned to a larger
value; and vice versa. Thus, we use Eq. (4) to vote the
corresponding initial correlation matrix Az+1

z :

Sz =
mz∑
j=1

v(θj), (5)

where mz is the number of the generated model hypotheses
for two consecutive frames.

We can see that, the initial correlation matrix will obtain a
higher voting score if it is based on more high-quality model
hypotheses. This will help emphasize the matrices where the
scene can be generated high-quality model hypotheses while
weakening the others where the scene cannot be fitted with a
model.

After that, according to the property that feature points
on the same moving rigid object have the same matrix [10],
we accumulate all the initial correlation matrices from all of
the (t − 1) pairs of consecutive frames in the video sequence:

Â :=
t−1∑
z=1

SzAz+1
z , (6)
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We show an example of the affinity matrices by using dif-
ferent methods on the ‘‘1R2RC’’ video sequence of the
Hopkins155 dataset in Fig. 3. We can see that, we can obtain
a more accurate affinity matrix by the proposed method.
In an accurate correlation matrix, the entries derived from
the same motions will be assigned nonzero values, while the
ones derived from the different motions will be assigned zero
values. The affinity matrix Âwill be used to segment motions
in the video sequence.

Algorithm 1 The discriminant affinity matrix based motion
trajectory segmentation method
Input: A video sequence with feature point trajectories.
1: Perform the superpixel segmentation algorithm [1] on

every frame of the video sequence.
2: Generate model hypotheses based on the superpixels for

every pair of consecutive frames (see Sec. III-A).
3: Construct an initial correlation matrix for every pair of

consecutive frames in the video sequence.
4: Vote all the initial correlation matrices by Eq. (5).
5: Accumulate all the initial correlationmatrices to generate

the final affinity matrix by Eq. (6).
6: Use sparsity constraint on the affinity matrix.
7: Perform spectral clustering based on the affinity matrix

to label all feature point trajectories.
Output: The labels of feature point trajectories in the video

sequence.

C. THE COMPLETE METHOD
With all the ingredients developed in the previous sections,
we summarize the proposed Discriminant Affinity Matrix
based motion trajectory segmentation (DAM) method in
Algorithm 1. DAM contains two key elements, i.e., con-
structing the initial correlation matrix and the final affinity
matrix. For constructing the initial correlation matrix, DAM
introduces superpixels to deterministically generate model
hypotheses on every pair of consecutive frames in a video
sequence, and then computes the residual values (from the
feature point matches to the generated model hypotheses)
to construct initial correlation matrices. For constructing the
final affinity matrix, DAM involves a simple and effective
voting scheme to emphasize the matrices where the scene can
be generated high-qualitymodel hypotheseswhile weakening
the others where the scene cannot be fitted with a model.
For Step 6 in Algorithm 1, we follow [11], [28] to use ε-
neighborhood scheme for improving the final performance
(see the details on [11]). For Step 7 in Algorithm 1, we use the
common spectral clustering method to obtain the final results
as the popular segmentation method, i.e., SSC [7]. It is worth
pointing that, compared with most other motion trajectory
segmentation methods, DAM is able to achieve reliable and
consistent motion trajectory segmentation results due to its
deterministic nature.

FIGURE 4. The clustering errors obtained by DAM1/DAM2 with different
numbers of superpixels on the Hopkins155 dataset.

The computational complexity of DAM ismainly governed
by Step 3 in Algorithm 1 for constructing the correlation
matrices for every pair of consecutive frames. The other steps
in Algorithm 1 take much less time than Step 3. Therefore,
the total complexity approximately amounts toO(tn2), where
t and n are the number of frames and feature point trajectories
in a video sequence, respectively. The computational effi-
ciency can be further improved by employing parallel com-
putations, since constructing each of the initial correlation
matrices is an independent step.

IV. EXPERIMENTS
In this section, we compare the proposed DAM method with
several state-of-the-art motion trajectory segmentation meth-
ods, including: SSC [7], LRR [15], GPCA [21], ALC [17],
MTPV [14], RSIM [8], S3C [13],MSSC [11] and Subset [28].
We adopt three popular datasets, i.e., Hopkins155 [19],
Hopkins12 [17] and MTPV62 [14], and a more realistic
and challenging dataset, i.e., KT3DMoSeg [28], for perfor-
mance evaluation. The Hopkins155 dataset is one of the most
popular benchmarks for evaluating different motion trajec-
tory segmentation methods. The Hopkins12 dataset includes
some video sequences with missing data. The MTPV62
dataset includes some video sequences with stronger perspec-
tive effects. The KT3DMoSeg dataset includes some video
sequences with both strong perspective effects and forward
translations. Moreover, to show the effectiveness of the pro-
posed voting scheme, we test two versions of DAM, i.e,
DAM1 (without the voting scheme) and DAM2 (with the
voting scheme). Here we manually specify the number of
motions in each video sequence of all datasets for all compet-
ing methods and all experiments are run on MS Windows 7
with Intel Xeon CPU 2.80GHz and 8GB RAM.
We use the clustering error (CE) to measure the segmenta-

tion accuracy as [7], [18]:

CE =
number of misclassified points

total number of points
∗ 100%. (7)

A. PARAMETER ANALYSIS
In this subsection, we first analyze the influence of the
number of superpixels on the performance of DAM1/DAM2.
We test different numbers of superpixels for DAM1/DAM2on
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FIGURE 5. Two examples showing different affinity matrices for the ‘‘1RT2RCRT_g23’’ ((a)-(f)) and ‘‘cars10’’ ((g)-(l)) video sequence of the
Hopkins155 dataset. (a)-(c) and (g)-(i) show the initial correlation matrix (with voting scores). (d) and (h) show the accumulate matrix.
(e) and (k) show the final affinity matrix with sparsity constraint. (f) and (l) show the final affinity matrix without the voting scheme.

FIGURE 6. Distributions of the clustering errors obtained by four methods (i.e., MSSC, Subset, DAM1 and DAM2) on
the Hopkins155 dataset. The vertical axis shows the percentage of the cases whose errors are smaller than the value
in horizontal axis. (a) Two motions. (b) Three motions. (c) All.

the Hopkins155 dataset, and show the mean clustering errors
in Fig. 4.
We can see that, DAM1/DAM2 are able to achieve low

clustering errors when the number of superpixels is 100−200.
This is consistent with the discussion in [26] and [27], which
also sets the number of superpixles as 100− 200.
We also analyze the influence of the proposed voting

scheme and the sparsity constraint on the effectiveness of
the affinity matrix. We show two examples of different
affinity matrices for the ‘‘1RT2RCRT_g23’’ and ‘‘cars10’’
video sequence of the Hopkins155 dataset in Fig. 5. From
Fig. 5(a)-(c) and (g)-(i), we can see that the more effec-
tive matrix will be assigned to a higher voting score. From
Fig. 5(d)-(e) and (j)-(k), we can see that some wrong infor-
mation can be removed by the sparsity constraint. From
Fig. 5(e)-(f) and (k)-(l), we also can see that the affinitymatrix
becomes more effective by the proposed voting scheme.

B. DISTRIBUTION ANALYSIS
In this subsection, we analyze the distribution of the cluster-
ing errors obtained by twomost relevant methods (i.e., MSSC
and Subset) and two versions of the proposed methods on
the popularHopkins155 dataset. We show the distribution for
different motions in Fig. 6.

We can see that, for two motions, all four methods are
able to achieve over 85% cases whose clustering errors are
smaller than 1%. However, for all cases of two motions,

only DAM2 obtains all the errors that are smaller than 8%.
For three motions, DAM1/DAM2 are able to achieve sta-
ble results for all cases, where the corresponding errors are
smaller than 4%, due to the deterministic nature. For all cases
of the Hopkins155 dataset, DAM2 obtains the best perfor-
mance, i.e., it is reliable and consistent with very small errors.
Note that, the Hopkins155 dataset does not include missing
data, but the voting scheme, which is used by DAM2, is still
important for the final grouping since it can help construct a
more effective affinity matrix.

C. RESULTS ON POPULAR DATASETS
In this subsection, we evaluate the performance of
the proposed DAM method on three popular datasets,
i.e., Hopkins155, Hopkins12 and MTPV62. Firstly, we carry
out the experiments of motion trajectory segmentation. Then
we show some examples obtained by DAM2 on the three
popular datasets in Fig. 7, from which we can see that,
DAM2 can successfully segment the feature points belonging
to different motions and label the feature points with a high
accuracy.

To provide the quantitative comparisons, we compare the
proposed DAM1/DAM2 method with nine state-of-the-art
motion trajectory segmentation methods: SSC [7], LRR [15],
GPCA [21], ALC [17], MTPV [14], RSIM [8], S3C [13],
MSSC [11] and Subset [28]. We report the clustering
errors (in percentage) obtained by all the eleven competing
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FIGURE 7. Some motion trajectory segmentation results obtained by the proposed DAM2 method on three popular datasets (namely Hopkins155,
Hopkins12 and MTPV 62 from 1st to 3rd rows, respectively) are shown. (a) 1RT2TC. (b) Truck2. (c) People2. (d) Three-cars. (e) oc1R2RC. (f) oc1R2RC_g23.
(g) oc1R2RCT. (h) oc2R3RCRT. (i) Boat. (j) Monk. (k) Bus. (l) Man.

TABLE 1. The clustering errors (in percentage) obtained by the eleven competing methods on the Hopkins155, Hopkins12, MTPV 62 and KT 3DMoSeg
dataset. ’-’ denotes that the corresponding value is not reported or no public code is available.

methods in Table 1. We can see that, four competing methods
(i.e., MSSC, Subset and DAM1/DAM2) that consider both
the epipolar geometry and the feature point trajectories are
able to achieve quite lower errors on the Hopkins155 dataset
than the other seven competing methods. Subset improves

the performance over MSSC by combing different models
while DAM1 does it by introducing superpixels. However,
DAM2 further improves the performance of Subset and
DAM1 by using a simple voting scheme. For the Hopkins12
dataset, which includes missing data, although DAM1 is able
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FIGURE 8. Some motion trajectory segmentation results on four video sequences (namely Seq011_clip01, Seq005_clip01, Seq028_clip03 and
Seq038_clip02 from 1st to4th rows, respectively) of the KT 3DMoSeg dataset are shown. (a) GroundTruth. (b) Subset. (c) DAM1. (d) DAM2.

to obtain lower errors than ALC and RSIM, Subset and
DAM2 achieve better performance than DAM1 since they
respectively use multiple models and a voting scheme to
replace a single model that DAM1 used. On the MTPV62
dataset, DAM2 achieves similar errors as Subset for the
clips with missing data, but it significantly improves the
performance over Subset for the clips without missing data.
DAM2 also achieves lower errors than DAM1 due to the
effectiveness of the proposed voting scheme.

Overall, after fusing an adaptive kernel-scale voting
scheme and superpixels, we can observe a boost in segmen-
tation accuracy compared to several state-of-the-art motion
trajectory segmentationmethods on all three popular datasets,
i.e., 0.28% on Hopkins155, 0.06% on Hopkins12 and 0.37%
on MTPV62.

D. RESULTS ON THE KT 3DMoSeg DATASET
In this subsection, we evaluate the performance of the pro-
posed DAM2 method on the KT3DMoSeg dataset, which
shows more challenges (including strong perspective effects
and forward translations). The KT3DMoSeg dataset is col-
lected by the authors in [28] and contains 22 video sequences.

We show some motion trajectory segmentation results
obtained by three methods (i.e., Subset and DAM1/DAM2)
that obtained the top three best performance in Fig. 8. The
four video sequences in Fig. 8 are very challenging for the
motion trajectory segmentation task. This is because that
they not only contain strong perspective effects and for-
ward translations, but also include other challenges, e.g.,
the unbalanced number of feature points and mutual interfer-
ence among different motions. From Fig. 8, we can see that all
three segmentation methods are able to successfully segment
all moving objects on the Seq011_clip01 video sequence.
However, on the Seq005_clip01 video sequence, Subset fails
to segment the car in same times due to the instability of
random sampling while DAM1/DAM2 have not this prob-
lem. On the Seq028_clip03 video sequence, only Subset and

FIGURE 9. The clustering errors obtained by Subset and DAM1/DAM2 on
all video sequences of the KT 3DMoSegdataset.

DAM2 successfully segment the background since they use
multiple models and the voting scheme respectively. In con-
trast, DAM1 only uses a single model, which is hard to deal
with unbalanced data. The Seq038_clip02 video sequence
almost includes all challenges. Both Subset and DAM1 fails
to segment all objects since they accumulate all information
of all frames, which may mislead the final grouping. The
adaptive kernel-scale voting scheme that DAM2 used plays
an important role on such video sequences, which also shows
its effectiveness.

We also provide some quantitative comparisons in Table 1
and show individual cluster errors obtained by Subset and
DAM1/DAM2 in Fig. 9. From Table 1 and Fig. 9, we also
saw the consistent boost in segmentation accuracy compared
to several state-of-the-art methods as well. Note that the
superpixels (which DAM1 used) are able to help yield very
competitive performance even not using the adaptive kernel-
scale voting scheme. Of course, the voting scheme can help
further improve the performance of motion trajectory seg-
mentation.

E. COMPUTATIONAL TIME ANALYSIS
In this subsection, we further analyze the computational time
used by the three segmentation methods (i.e., Subset and
DAM1/DAM2) that obtained the top three best performance
on segmentation accuracy. We show the total processing time

VOLUME 7, 2019 57207



G. Xiao et al.: Discriminant Affinity Matrix for Deterministic Motion Trajectory Segmentation

TABLE 2. The CPU time (in seconds) obtained by the three competing
methods on the Hopkins155, Hopkins12, MTPV 62 and KT 3DMoSeg
dataset.

of different datasets obtained by Subset and DAM1/DAM2 in
Table 2.

From Table 2, we can see that, the proposed DAM1/
DAM2methods significantly reduce the total processing time
of Subset for all datasets. This is because Subset combines
multiple models (that requires to generate a large number of
model hypotheses), which is very time-consuming. Although
DAM1 is a little fast than DAM2 on all four datasets since it
does not use the voting scheme, DAM2 improves the perfor-
mance of segmentation accuracy over DAM1.

V. CONCLUSIONS
This paper proposes a discriminant affinity matrix based
deterministicmotion trajectory segmentation (DAM)method,
which can provide reliable and consistent results on popular
datasets, i.e., Hopkins155, Hopkins12 and MTPV62, and a
more realistic and challenging dataset, i.e., KT3DMoSeg.
DAM firstly considers the epipolar constraint between each
pair of consecutive frames in a video sequence and utilizes
superpixels to construct a set of initial correlation matrices
for the first time. And then DAM is also the first to introduce
a simple and effective voting scheme to construct a discrimi-
nant affinity matrix for final grouping. The voting scheme is
able to help emphasize the matrices where the scene can be
generated high-quality model hypotheses while weakening
the others where the scene cannot be fitted with a model.

Compared with several state-of-the-art motion trajectory
segmentation methods, the most significant superiority of
DAM is its deterministic nature, by which it will yield the
same results for the same input data. A deterministic motion
trajectory segmentation method is much more trackable than
a method with randomized nature, which is important for
practical tasks in the real world. Furthermore, DAM can
achieve the best performance among all the competing meth-
ods on most of the test video sequences with respect to
segmentation accuracy.
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