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ABSTRACT Heart rate variability (HRV), systolic period variability (SPV), and diastolic period variability
(DPV) have shown potential for assessing cardiac function. It is unknown whether the time delay between
the myocardial electrical and mechanical activities (i.e., electromechanical delay, EMD) also possesses
variability, and if it does, whether this EMD variability (EMDV) could render additional value for cardiac
function assessment. In this paper, we extracted the beat-to-beat EMD from 5-min simultaneously recorded
electrocardiogram and phonocardiogram signals in 30 patients with coronary artery disease (CAD) and
30 healthy control subjects, and studied its variability using the same methods as applied for HRV including
time-domain measures [mean and standard deviation (SD)], frequency-domain measures [normalized low-
and high-frequency (LFn, HFn) and LF/HF)], and nonlinear measures [sample entropy (SampEn), permu-
tation entropy (PE), and dynamical patterns]. In addition, we examined whether the addition of EMDV
could offer improved performance for distinguishing between the two groups compared to using the HRV,
SPV, and DPV features. Support vector machine with 10-fold cross-validation was used for classification.
Results showed increased SD of SPV, increased mean, SD and decreased SampEn of EMDV in CAD
patients. Besides, the dynamical pattern analysis showed that CAD patients had significantly increased
fluctuated patterns and decreasedmonotonous patterns in EMDV. In particular, the addition of EMDV indices
dramatically increased the classification accuracy from 0.729 based onHRV, SPV, andDPV features to 0.958.
Our results suggest promising of the EMDV analysis that could potentially be helpful for detecting CAD
noninvasively.

INDEX TERMS Electromechanical delay (EMD), heart rate variability (HRV), systolic period
variability (SPV), diastolic period variability (DPV), dynamical patterns, noninvasive detection, coronary
artery disease (CAD).

I. INTRODUCTION
Electrocardiogram (ECG) and phonocardiogram (PCG)
measurements are two commonly-used non-invasive and
non-intrusive methods for diagnosing cardiac diseases.
ECG reflects the cardiac electrical activity while PCG
records heart sounds produced by myocardial mechanical
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activities (i.e., contraction and relaxation). One cardiac cycle
is composed of two mechanical intervals, namely, systolic
period (SP) and diastolic period (DP). Previous studies have
found reduced mean cardiac cycle (i.e., mean RR intervals
in ECG) in diabetes [1] and patients with chronic congestive
heart failure [2]. Besides, researchers also found that abnor-
mal SP and DP could indicate mechanical abnormalities of
ventricular function [3]. Prolonged SP and shortenedDPwere
found in childrenwith heart failure [4], [5], and the shortening
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of DP was also found in spontaneous angina [6], dilated
cardiomyopathy [7], and exercise-induced increased pul-
monary artery pressure [8]. In addition to these well-
studied cardiac electrical and mechanical time intervals,
there is yet another time interval characterizing the delay
between the onset of the electrical activation of the ventri-
cle and the onset of its contraction—the electro-mechanical
delay (EMD) [9], [10]. Previous studies have observed
increased EMD in patients with heart failure [10] and in
athletes after road races [11].

Besides the mean levels of RR, DP, and SP, researchers
have also well documented their variations from one car-
diac cycle to another, namely heart rate variability (HRV),
diastolic period variability (DPV), and systolic period vari-
ability (SPV) [12], [13]. It is generally accepted that HRV
originates from the spontaneous activity of the sinoatrial
node and the regulation of autonomic nervous system [14].
Decreased HRV has been found in patients with various
cardiovascular diseases (e.g. myocardial infarction [15], con-
gestive heart failure [16], and idiopathic dilated cardiomy-
opathy [17]). Altered physiological states could also lead to
HRV changes [18]–[21]. The existing of DPV and SPV is
presumably as a result of HRV [13] but a recent study has also
showed that they might possess intrinsic variations [22]. Both
SPV and DPV increased significantly after exercise [13].
Decreased DPV was significantly associated with aging in
healthy subjects [23] and was found in patients with conges-
tive heart failure [22]. However, to the best of our knowledge,
little is known whether there are also beat-to-beat variations
in the EMD time-series, and whether this EMD variabil-
ity (EMDV), if there is, render valuable information about
disease or physiological changes.

In the current study, we sought to elucidate this EMDV
in both healthy subjects and patients with coronary artery
disease (CAD) in comparison with HRV, DPV, and SPV.
To study the EMDV, we applied the same approaches includ-
ing time- and frequency-domain features as well as nonlinear
measures as used for HRV analysis in previous literatures.
To validate the value of EMDV for CAD detection, we
fitted separately two support vector machine (SVM) clas-
sifiers without and with EMDV features and evaluated the
performance in terms of accuracy, sensitivity, specificity,
F-1 score, and the area under the receiver operating character-
istic curve (AUC). Details on the study design and subjects,
data collection, constructions of time-series, analyzing meth-
ods, and statistical methods were illustrated in Section II.
Results were presented in Section III followed by discussions
in Section IV. A short conclusion was provided in Section V.

II. METHOD
A. SUBJECTS AND DATA COLLECTION
Thirty CAD patients and 30 age- and gender-matched
healthy volunteers participated in this study. Health sta-
tus for the healthy volunteers were confirmed by rou-
tine ECG, echocardiography, arterial function, and routine
biochemical examinations. Inclusion criterion for CAD

TABLE 1. Baseline characteristics of subjects.

patients was = 50% stenosis in at least one branch of left
anterior descending (LAD), left circumflex (LCX), and right
coronary artery (RCA) according to the coronary angiog-
raphy. Patients who had undergone coronary artery bypass
surgery or percutaneous coronary intervention (PCI) were
excluded before participation. Baseline characteristics of all
subjects were summarized in Table 1. The study has obtained
approval from the Institutional Review Board of Shandong
Provincial Qianfoshan Hospital. All subjects were instructed
carefully about this study and gave their informed consents
before participation.

A Cardiovascular Function Detection device (CV FD–II,
Jinan Huiyironggong Tech. Co. Ltd., P. R. China) was used
for data collection. Prior to formal recording, all subjects
were required to lie in supine position on a measurement bed
for at least 15 min in a quiet and temperature-controlled room
(25 ± 3 ◦C). The standard lead-II configuration was used
for ECG recording. In the meantime, a piezoelectric sensor
placed on the left sternal border in the third intercostal space
was used to simultaneously collect heart sound (i.e., PCG).
Both recordings were simultaneously recorded for 5 min at
a sampling rate of 1,000 Hz.

B. CONSTRUCTION OF CARDIAC ELECTROMECHANICAL
TIME-SERIES
The diagnostic useful frequency ranges of ECG and PCG
are usually accepted as 0.05-75Hz [24] and 25-250Hz [25],
respectively. Therefore, all raw signals were first bandpass
filtered with second-order Butterworth filters with the
passband of 0.05-75 Hz for ECG and 25-250 Hz for PCG
followed by band-stop filtering to remove the power inter-
ference (50 Hz) [26], [27]. Quality of ECG and PCG
was inspected visually side-by-side and episodes with
poor quality were marked. If the combined percentage of
episodes identified with poor quality for each subject went
beyond 10%, the recordings would be considered invalid and
the subject would be excluded. Then a template-matching
algorithm was used to automatically extract R-wave peaks
of ECGs [28]. The fore-and-aft R-wave positions formed the
raw RR interval time-series. Anomalous RR intervals due to
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ectopic beats (such as premature supraventricular or ventric-
ular contractions) were eliminated from the raw RR interval
time series [29]. QRS onset (i.e., Q-onset) corresponding to
each R-wave peak was identified manually. Besides, in each
cardiac cycle, the mitral component (M1) of the first heart
sound (i.e., S1) and the aortic component (A2) of the sec-
ond heart sound (i.e., S2) were identified manually with the
R-wave peak as a reference. SP time series were constructed
by intervals between M1 and A2 in the same cardiac cycle
while DP time series were constructed by intervals between
A2 and M1 of the following cardiac cycle. Finally, the inter-
val between Q-onset of ECG and M1 of PCG in the same
cardiac cycle was defined as EMD. All the corresponding
intervals in SP, DP, and EMD time-series were also removed
if the RR interval was considered anomalous. If the combined
percentage of anomalous intervals identified for each subject
was>10%, the subject would be excluded from further analy-
sis, too. The construction of RR, SP, DP, and EMD time-series
was illustrated in Fig. 1. Figure 2 showed examples of the four
time-series for a healthy subject and a patient with CAD.

FIGURE 1. Construction of RR, SP, DP, and EMD time-series from
simultaneously recorded ECG and PCG signals. The detected peaks of
R-wave and the onset of QRS are marked by ‘‘ • ’’ and ‘‘H ’’, respectively.
The M1 and A2 of PCG are marked by ‘‘J’’ and ‘‘I ’’, respectively.

C. ANALYSIS OF CARDIAC ELECTROMECHANICAL
VARIABILITIES
1) TIME-DOMAIN AND FREQUENCY-DOMAIN MEASURES
In the time-domain analysis, the mean value (Mean) and
standard deviation (SD) of RR, SP, DP, and EMD time-series

FIGURE 2. Examples of (a) RR, (b) SP, (c) DP, and (d) EMD time-series from a healthy subject (left panels) and
a CAD patient (right panels). No considerable differences can be identified visually between the two subjects
except that the mean level of EMD of the CAD patient is higher than that that of the healthy subject. It is not
possible to draw any conclusions visually on the dynamical properties.
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were calculated. Frequency-domain parameters were obtai-
ned from a 16th autoregressive model fitted using the Burg
method based on previous studies [30], [31]. These param-
eters included normalized low- and high-frequency power
(LFn, 0.04-0.15 Hz; HFn, 0.15-0.4 Hz), and LF/HF (the ratio
of absolute LF power to HF power).

2) NON-LINEAR INDICES
Sample entropy (SampEn), permutation entropy (PE), and the
dynamical pattern analysis were performed. Given a time-
series {ui = u (i) , 1 ≤ i ≤ N }, the SampEn could be calcu-
lated as follows.

a) Construct N − m vectors {Xm
i = u(i), u(i+ 1), . . . ,

u(i+ m− 1), 1 ≤ i ≤ N − m}.
b) The distance between Xm

i and Xm
j (j 6= i) is define by

dm
i,j
= max {|u (i+ k)− u (j+ k)| , 0 ≤ k ≤ m− 1}.
c) For a given r , Bmi (r) is defined by

Bmi (r) =

N−m∑
j=1,j 6=i

2(r − dm
i,j
)

N − m− 1
, (1)

wherein 2(−) is the Heaviside function.
d) Extend dimension m to m+ 1 and calculate Bm+1i (r) by

repeating step a) to step c).
e) SampEn can be calculated by:

SampEn (m, r,N )=− ln

(
N−m∑
i=1

Bm+1i (r)

/
N−m∑
i=1

Bmi (r)

)
(2)

We chose m = 2 and r = 0.2× SD to keep in accordance
with the previous studies [32], [33]. More detailed algorithms
of SampEn could be found in [34]–[36].

The PE could be calculated as follows.
a) Construct N − m+ 1 vectors
{Xm

i = u(i), u(i+ 1), . . . , u(i+ m− 1), 1 ≤ i ≤ N−
m+ 1}.
b) Construct symbolic vectors{
ϕmi = (ϕ (i) , ϕ (i+ 1) , . . . , ϕ (i+ m− 1))

}
by coarse-

graining Xm
i with a given 1, that is

ϕ (i) = floor
(
u(i)−min(Xm

i )

1

)
(3)

c) Sort ϕmi in ascending order to obtain ordinal patterns and
then define dynamical patterns by dividing ordinal patterns
into five classes, i.e., constant pattern (-P), non-increasing
pattern (↘P), non-decreasing pattern (↗P), convex pattern
(↘↗ P) and concave pattern (↗↘ P). The dynamical pat-
terns in case m = 3 was illustrated in Fig. 3.

d) Let {p(Di), 1 ≤ i ≤ 5} be the probability of five dynam-
ical patterns and PE can be calculated by:

PE (m,1) = −
∑
i

p(Di ) lnp(Di ) (4)

Here the combination m and 1 which demonstrated best
distinguishing ability was chosen. For more information on
detailed algorithms, readers can refer to [37], [38].

FIGURE 3. The dynamical patterns in case m = 3.

D. STATISTICAL ANALYSIS
All indices were first subjected to Kolmogorov–Smirnov
test to examine the normality. Statistical difference between
healthy and CAD groups was compared using the Student’s
t-test if a metric was normally distributed and using Mann–
Whitney U test otherwise. Statistical significance was set
a priori at p < 0.05. These statistical analyses were per-
formed using the SPSS software (Version 20.0, IBM, USA).

TABLE 2. Original feature sets of two SVM models.

E. CLASSIFICATION
In this section, support vector machine (SVM) [39] was
adopted for the automatic classification of CAD patients and
healthy control subjects. The radial basis function (RBF) was
used as the kernel function, and the penalty parameter C and
the kernel coefficient γ were optimized using a grid search
method. As our purpose in this study was to examine whether
the addition of EMDV features could improve the classifi-
cation performance, we separately trained two models with
36 HRV, SPV, and DPV features included as inputs in the first
model and all 48 features (36 HRV, SPV, DPV features plus
12 EMDV features) included as inputs in the second model,
as specified in Table 2.

53118 VOLUME 7, 2019



Y. Li et al.: Variability of Cardiac EMD With Application to the Noninvasive Detection of CAD

Considering potential redundancy, feature selection was
implemented [40] by the following steps (assuming S as the
original feature set containing all features):

a) The analysis of variance (ANOVA) F-values were cal-
culated for each specific feature (i.e., using the Python
function sklearn.feature_selection.f_classif), and the features
were then ranked in descending order based on F values. The
sorted feature set was denoted as S’.

b) Select the first feature si in S’ and test the classification
accuracy, which is denoted by Ai.

c) Choose the next feature si+1 from S’, and repeat the
classification to get accuracy Ai+1. If Ai+1 < Ai, delete si+1.
Otherwise, maintain the feature subset.

d) Repeat step c) until exhausting all the features in S’. The
final selected feature set was optimal feature subset.

The 10-fold cross-validation was used to test the general-
ization capability. The dataset in each group was randomly
divided into 10 subsets (without overlap) with nine as training
sets and one as testing set for the SVM classifier. The process
was iterated 10 times so that each of the 10 subsets was used
once for testing. Then the data was randomly shuffled, and
the above cross validation process was repeated 10 times.
The final results were obtained by averaging the performance
of the 10 iterations. Sensitivity, specificity, accuracy and
F1-score, as defined below were used to evaluate the model
performance. The area under the receiver operating charac-
teristic curve (AUC) was also calculated. All classification
tasks were performed using Python 3.6 which was available
at https://www.python.org/downloads/release/python-360/.

Accuracy (%) =
TP+ TN

TP+ FP+ FN + TN
, (5)

Sensitivity (%) =
TP

TP+ FN
, (6)

Specificity (%) =
TN

FP+ TN
, (7)

F1− score (%) =
2TP

2TP+ FP+ FN
, (8)

wherein TP, TN, FP and FN are the numbers of true positive,
true negative, false positive, and false negative, respectively.

III. RESULTS
Eight healthy subjects and six CAD patients were excluded
because of poor ECG or PCG quality. The exclusion
of the 14 subjects did not introduce statistically signifi-
cant differences in the basic and clinical characteristics as
shown in Table 1. All results below were obtained from
the remaining 46 subjects (i.e., 22 healthy subjects and
24 CAD patients).

Normal distributions of all measures were confirmed by
theKolmogorov–Smirnov test. In healthy control group, there
were significant, positive correlations between SP and RR,
DP and RR, as well as between SP and DP time-series (Pear-
son R = 0.67, 0.98, and 0.50 respectively, all p < 0.01)
In CAD group, there were also significant, positive correla-
tions in SP-RR, DP-RR, as well as SP-DP (Pearson R = 0.73,

0.98, and 0.59 respectively, all p < 0.01). No significant
correlations were found in EMD with any one of the other
three time-series in either group.

A. RESULTS OF TIME- AND FREQUENCY-
DOMAIN MEASURES
Results for time- and frequency-domain measures of HRV,
SPV, DPV, and EMDV were summarized in Fig. 4. Com-
pared to healthy control group, the SD of SPV and the mean
and SD of EMDV increased significantly in CAD group
(all p < 0.01). No significant differences were observed
in any HRV or DPV time-domain indices (all p > 0.05).
Frequency-domain analysis did not suggest statistically sig-
nificant differences between the two groups in any time-series
(all p > 0.05).

B. RESULTS OF NON-LINEAR MEASURES
Figure 5 summarizes the results of non-linear measures. For
the HRV, SPV, and DPV indices, no differences between
healthy control group and CAD group were observed in
SampEn, PE, or dynamical patterns (all p > 0.05). How-
ever, EMDV showed significantly decreased SampEn (p <
0.05) in CAD group compared with healthy control group.
In addition, EMDV demonstrated decreased percentage of
dynamical pattern −P (p < 0.05) and increased percentages
of pattern↘↗P (p < 0.01) and pattern↗↘P (p < 0.01) in
CAD group compared with healthy control group.

C. SVM RESULTS
Table 3 summarized the average performance of optimal
SVM models using 10-fold cross-validation for classifying
CAD patients from healthy controls. For the first SVMmodel
(i.e., with 36 HRV, SPV and DPV indices as inputs), the opti-
mal feature subset included mean and SD of SPV as well as
SD and PE of HRV which resulted in an accuracy of 0.729,
sensitivity of 0.923, specificity of 0.500, F1-score of 0.787,
and AUC of 0.632. It is obvious that after including the
12 EMDV indices into the input eigenvectors (i.e., the sec-
ond SVM model), the performance was improved dramati-
cally with sensitivity increased to 0.961, specificity increased
to 0.954, accuracy improved to 0.958, F1-score improved
to 0.961, and AUC improved to 0.979. For this model,
the optimal feature subset came out to include only EMDV
indices, specifically, mean, SD and pattern↘↗P and↗↘P
of EMDV.

IV. DISCUSSION
Physiological variabilities are gaining increasing attentions
as they are quite intrinsic and useful for assessing the func-
tioning status of the underlying control mechanisms [41].
HRV, SPV, and DPV have been intensively examined in
previous studies [12],[13]. However, the variability of the
time delay between the myocardial electrical and mechanical
activities (i.e., EMDV) is yet to be investigated. In this study,
we systematically analyzed the four cardiac electromechan-
ical variabilities (HRV, SPV, DPV, and EMDV) in CAD
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FIGURE 4. Results of time- and frequency-domain indices from (a) RR, (b) SP, (c) DP, and (d) EMD time series. Bar represents the mean and error bar the
standard deviation.

patients and healthy control subjects using time-domain,
frequency-domain, and nonlinear measures, aiming to test
whether EMDV could provide additional information for
detecting CAD.

Our results did not suggest statistical differences between
CAD and healthy control groups in any of the studied HRV
indices. This apparently is not consistent to some previ-
ous studies where HRV indices were shown to be able to
predict CAD risk [42], and their changes were associated
with the pathogenesis of coronary insufficiency and myocar-
dial infarction [43]. Shannon entropy of HRV significantly
decreased in CAD patients while no difference in SD of HRV
was observed in [44]. Besides, no differences were found in
mean and SD of HRV while approximate entropy decreased

significantly in CAD group in [45]. We note that 24-hour
HRV data have been analyzed in all the above-mentioned
four studies which may lead to this discrepancy. However,
results based on short-term ECG in previous studies var-
ied. ECG recordings from 2 min to 10 min were analyzed
in [42], [46]–[49]. In [46], SD and approximate entropy of
HRV decreased in CAD patients whereas no difference was
found in mean and LF. In [47], Shannon entropy of HRV
increased significantly in CADgroupwhile both approximate
entropy and SampEn decreased significantly. In [48], [49],
there were no statistical differences between CAD patients
and healthy controls in any of the time-domain, frequency-
domain, and entropy measures. The different study popu-
lations (i.e., the disease stages, inclusion/exclusion criteria,
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FIGURE 5. Results of sampEn, PE, and dynamical patterns distribution from (a) RR, (b) SP, (c) DP, and (d) EMD time series. Bar represents the mean
levels and error bar represents the standard deviation.

age range etc.) might be one of the possible reasons that cause
the discrepancies. Other possible influential factors including
for example the effects of data length and measurement time
etc. are to be explored.

Given the strong correlation between DPV and HRV time-
series, it is not surprising that neither of the studied DPV
indices showed statistical difference between the two groups.
This is kind of consistent to previous concept that HRV is
preferentially expressed in DPV [13]. Directly based on this
concept, SPV is just the residue after taking DPV out of
the HRV. But our results showed that the SD of SPV increased
significantly in CAD group which indicates that SPV
should not be that trivial. There does exist valuable
information that is related to the cardiac function beyond
HRV.

Our results also showed an increased EMDV in CAD
group which is consistent with a previous study that
observed prolonged EMD in patients with heart failure [10].
The atherosclerotic lesions in CAD patients causes nar-
rowed or occlusive coronary arteries that leads to myocardial
ischemia [50]. Reduced blood flow and oxygen supply to
the myocardial cells result in damage to cardiac systolic
function. This might be the reason why it takes more time
for myocardium to start contracting after the action potential
arrives. Interestingly, we also observed significant changes in
the nonlinear indices of EMDV in CADpatients. Specifically,
SampEn of EMDV decreased significantly in CAD patients,
suggesting a loss of complexity which is in keeping with
the general concept that physiological complexity decreases
in diseases [51]. The impaired electromechanical conduction
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TABLE 3. The average performance of 10-fold cross-validation.

due to the occlusive coronary artery may explain the increase
instability and loss of complexity in EMDV series. Although
PE did not show a significant difference, the dynamical pat-
terns, the elements that PE algorithm takes into consideration,
demonstrated significantly different distributions between the
two groups with increased portions of concave (↗↘P) and
convex (↘↗P) patterns while decreased portion of con-
stant (−P) pattern in CAD patients compared to healthy
control subjects. The different proportions of the five patterns
signify that the dynamics of the EMD time-series may change
erratically in CAD patients which is also supported by the
observation that SD of EMDV increased in CAD patients.
As shown in Fig 5, there are no significant differences in
monotonously patterns (↗P and ↘P) between CAD and
healthy groups. Therefore, the decrease of−P should roughly
be equal to the increase of↗↘P and↘↗P, which leads to an
unchanged PE. The dynamical patterns analysis should thus
be necessary for further elucidating the intrinsic dynamics of
physiological time-series in addition to the lumped entropy
metrics.

Our results thus clearly point to the existing of EMDV
and its physiological relevance. The unique contribution of
the EMDV could further be understood from our subse-
quent classification analysis—the addition of EMDV features
significantly improved the performance of the classification
between CAD patients and healthy control subjects. The
results suggest that the EMDV alteration might be sen-
sitive and specific to CAD, which is a strong sign that
EMDV is not trivial; instead, it could provide valuable
additional information for evaluating the function of the
heart.

There are several limitations in the current study. First,
the feature points used to define the EMD time-series were
labeledmanually. It is time-consuming and not feasible in real
applications. Automatic algorithms with rigorous validation
in the context of large data sets are needed to make the
analysis feasible especially for ambulatory monitoring. Sec-
ond, frequency-domain features for SP, DP, and EMD time-
series were all defined based on the existing definitions for
HRV. Further elucidations are necessary to examine whether
those components are still relevant. Third, the sample size in
this study was relatively small. Further validation with larger
samples is warranted. Luckily, our new human study aiming
to collect a large number of CAD patients and healthy control
subjects are in progress and, hopefully, these new data will be
presented in future.

V. CONCLUSION
We examined for the first time the beat-to-beat variability in
the cardiac electromechanical delay (i.e., EMDV) and studied
its change in CAD patients compared with healthy control
subjects. We observed significant changes in both the time-
domain features and nonlinear metrics of EMDV in CAD
patients.We further proved the unique, additional value added
by the EMDV analysis in classifying CAD patients from
healthy control subjects, as shown by the distinct increase
of classification accuracy, sensitivity, specificity, F-1 score,
and AUC compared to the classification performance based
on the existing HRV, DPV, and SPV features. Our study
suggests that the EMDV analysis is potentially promising in
the assessment of cardiac functioning and may help with the
noninvasive detection of CAD.
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