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ABSTRACT Aiming at the problem of time delay estimation for orthogonal frequency division multiplex-
ing (OFDM) signals with small samples, a new compressed sensing time delay estimation method based on
atomic evolution and elimination is proposed. This method introduces the idea of evolution and elimination
fromDarwin’s evolutionism, abandons the fixed and invariable way of grid points in the traditional algorithm,
takes grid points as adjustable parameters, and updates grid points in each iteration process to promote the
evolution of atoms. In order to deal with the off-grid effect, the exponential function is directly modified
instead of linear approximation, which effectively eliminates the modeling error caused by the original
off-grid algorithm. In the process of calculation, the atomic eliminationmechanism is adopted, which reduces
the amount of calculation and improves the speed of it. The simulation results show that the proposed
algorithm can significantly improve the performance of time delay estimation, especially when using coarse
grids. Based on the universal software radio peripheral (USRP), the validity of the proposed algorithm is
verified by the actual signal.

INDEX TERMS Time delay estimation, orthogonal frequency division multiplexing, compressed sensing,
atomic evolution and elimination.

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM)
technology is gaining attention and application because of
its high rate transmission capability and ability to effectively
resist frequency selective fading [1]. It has been widely
used in various digital transmission and communication
systems, such as high-definition digital broadcast television
(HDBT), wireless local area network (WLAN) and LTE
(long term evolution) etc. Chinese Huawei company also
proposes two new basic technologies for 5G air interface,
sparse code multiple access (SCMA) and filtering orthogonal
frequency division multiplexing (F-OFDM). A large number
of applications of OFDM technology have also spawned
positioning requirements based on it. Therefore, numerous
scholars have studied the positioning techniques based on
OFDM signals [2], [3]. The time-delay-based positioning
technology has been widely used for its high precision
and good stability. The correlation method [4] is a simpler
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type of delay estimation algorithm. It correlates the backup
of the transmitted signal stored locally with the received
signal, and determines the delay estimation value accord-
ing to the peak value of the cross-correlation. However,
under the conditions of low signal-to-noise ratio (SNR) and
low sampling rate, spectral peak aliasing and even false
peaks will occur, which will lead to the decrease of esti-
mation accuracy. High-order cumulant method [5] utilizes
the zero characteristic of the high-order cumulant of Gaus-
sian noise to improve the time delay estimation accuracy
of non-Gaussian signals effectively, but the algorithm is
complex. Maximum likelihood algorithm [6], as a theoretical
optimal algorithm, can approach Cramer-Rao Bound (CRB),
but its complexity increases exponentially with the dimension
of parameters. To solve the problem of high complexity
of multi-dimensional search, many optimization algorithms
have been proposed, such as importance sampling (IS) [7],
Markov chain Monte Carlo (MCMC) [8], and good estima-
tion results have been achieved. Subspace algorithm [9] has
been widely used because of its super-resolution property.
Its main idea is to get the signal or noise subspace, and
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then estimate the time delay based on orthogonality or rota-
tion invariance, but it needs full rank of sample covariance
matrix for eigen decomposition and multipath number. When
the number of samples is small, the covariance matrix is
not full rank. Although it can be smoothed in frequency
domain, it loses the effective bandwidth [10], which limits
the estimation accuracy.

Compressed sensing (CS) is a theory which attracts much
attention in recent years. It can recover the sparse sig-
nal with a high probability through a small number of
observations [11]. CS includes two processes: compression
representation and sparse reconstruction. Sparse reconstruc-
tion is the core of CS. In [12], the orthogonal matching pur-
suit (OMP) algorithm is applied to the time delay estimation
of impulse radio-ultra wide band (IR-UWB) system, and
achieves the estimation of single-path and multi-path delay
under the condition of known transmitting signals. Because
the greedy algorithm is too greedy, it cannot avoid the influ-
ence of the projection of the atoms with smaller energy
in the residual error when choosing the atoms with larger
energy, and it is based on grid matching, so the estimation
accuracy is limited. In [13], to deal with the sparse channel
estimation problem of underwater acoustic OFDM, a l2 − l1
norm-based basis pursuit denoising (BPDN) method is used
to obtain better estimation performance than least square (LS)
and OMP algorithms. However, the algorithm needs to select
regularization parameters.

The estimation of path delay in the above algorithms is
based on quantized delay grids, so there will be grid mis-
match problem, that is, off-grid effect. Sparse reconstructed
delay estimation algorithms are mostly grid-based. Although
dense mesh partitioning can compensate for the off-grid
effect to a certain extent, it is accompanied by an increase
in the dimension of the over-complete dictionary and column
correlation. In order to balance the off-grid effect and the
complexity of the algorithm, relevant scholars have also stud-
ied it. In [14], a sparse reconstruction time delay estimation
method using two-stage redundant dictionary is proposed and
applied to the time delay estimation of the cumulative pulse
contour of pulsars. In [15], a super-resolution compressed
sensing algorithm for grid mismatch in line spectrum esti-
mation is proposed, which is based on iterative reweighted
approach. Experiments in this paper show that the algorithm
achieves super resolution in practical application and is supe-
rior to other state-of-the-art algorithms. However, under the
condition of low SNR, the strategy of adaptively updating
regularization parameter easily leads to the sparse coefficient
vectors being too sparse.

Sparse Bayesian Learning (SBL) or Relevant Vector
Machines (RVM) [16], has attracted much attention because
it can achieve concise representation in machine learning
regression and classification. This method uses parameter-
ized automatic relevance determination (ARD) prior [17],
which can effectively promote the sparsity of coefficient
vectors in the process of solving. Because of its simplic-
ity, flexibility and high reconstruction accuracy, it has been

widely used. Its flexibility is mainly embodied in that it
can easily incorporate additional parameters into the whole
Bayesian inference framework. In [18], to handle the prob-
lem of sparse signal reconstruction under multiple measure-
ment vectors (MMV) model, a multiple sparse Bayesian
learning (MSBL) algorithm is proposed. The simulation
results show that the reconstruction performance of this algo-
rithm is better than that of many new algorithms. In [19],
to deal with grid mismatch in direction of arrival (DOA)
estimate, a sparse reconstruction method named off-grid
sparse Bayesian learning (OGSBL) is proposed. This method
reduces the model error by linear approximation of the first
order Taylor expansion. However, it cannot bring significant
improvement, because the distance between the real value
and the nearest grid point remains unchanged in each iter-
ation. Therefore, the estimation accuracy is limited. For the
downlink channel estimation problem of frequency-division
duplexing (FDD) massive multi-input multi-output (MIMO)
systems, a SBL method is proposed in [20] to achieve sparse
channel recovery and off-grid refinement. The in-exact block
majorize-minimization (MM) algorithm is used to iteratively
refine the grid points. And the fixed step size method is used
to modify the grid parameters to minimize the off-grid inter-
val, thereby improving the channel recovery performance.

Aiming at the problem of time delay estimation for OFDM
systems with small sample size, a novel algorithm based on
atomic evolution and elimination (AEE) is proposed. This
method introduces the idea of evolution and elimination from
Darwin’s evolutionism. It can effectively reduce the off-grid
effect and eliminate the modeling error caused by the original
off-grid algorithm. The simulation results show that the pro-
posed algorithm can significantly improve the performance
of time delay estimation, especially when using coarse grids.
The main contribution of this paper are exhibited as follows:

1) We provide a novel off-grid model for OFDM time
delay estimation. It is a dynamic grid methodwhich abandons
the fixed and invariable way of grid points in the original
algorithm, takes grid points as adjustable parameters, and
updates the grid points in each iteration process to promote
the evolution of atoms.

2) We adopt the atomic elimination mechanism, which
reduces the amount of calculation and improves the recon-
struction speed to achieve real-time processing.

The remainder of this paper is arranged as follows.
Section II lists the notations used in the paper. Section III
introduces the signal model. Section IV describes the design
of the proposed algorithm. Section V is the analysis of com-
plexity and global and local minima. Section VI is the simula-
tion experiments and the actual signal test, which proves the
effectiveness of the proposed algorithm. And the conclusion
of this paper is in Section VII.

II. NOTATIONS
In this section, some mathematical notations that will be used
through this paper are listed in Table 1.
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TABLE 1. Mathematical notations.

FIGURE 1. The delay estimation block diagram of OFDM signal.

III. SIGNAL MODEL
A. OFDM SYSTEM MODEL
We consider the OFDM system shown in Fig. 1. P/S refers
to parallel-to-serial conversion and S/P refers to serial-to-
parallel conversion. The system adds cyclic prefix (CP) to
eliminate inter-symbol interference (ISI) and inter-channel
interference (ICI). An OFDM symbol period is T and the
length of CP is longer than the maximum delay spread of the
channel i.e.Tcp > τmax. The carrier frequency is fc and there
are Nsc subcarriers, then the system bandwidth is B = Nsc/T .
In wireless location scenarios, the radio propagation chan-

nel under multipath conditions is usuallymodeled as the com-
plex baseband impulse response (CIR) given by the following
formula.

h (t, τ ) =
L∑
i=1

αi(t)δ (t − τi(t)) , (1)

where L is the number of multipath, τi(t) is the propagation
delay corresponding to the ith path at time t and all paths
are not correlated with each other. αi(t) = |ai(t)| ejθi(t) is
the complex fading coefficient of the ith path at time t , it is
a wide stationary narrowband complex Gauss process with
Jake’s power spectrum [21]. δ(•) is a Dirichlet function.

During each OFDM symbol transmission, the chan-
nel is assumed to be static. Then after channel transmis-
sion, removal of CP and discrete Fourier transform (DFT),
the received signal r = [r(1), r(2), . . . , r(Nsc)]T ∈ CNsc×1

can be denoted by

r = Xh+ w = XFα + w, (2)

where X = diag (x(1), x(2), . . . , x(Nsc)) denotes the trans-
mitted symbols in frequency domain. h ∈ CNsc×1 is the
channel frequency response (CFR) vector. w ∈ CNsc×1 is
typically assumed to be a complex white Gaussian random
vector with zero mean and covariance matrix σ 2

wI. F is a
partial Fourier matrix satisfying the following form.

F =
1
√
N sc

×


1 cdots 1

e−j2π1f τ1 · · · e−j2π1f τL
...

. . .
...

e−j2π(Nsc−1)1f τ1 · · · e−j2π(Nsc−1)1f τL

 ∈ CNsc×L

(3)

And the vector of complex fading coefficient is α =

[α(1), α(2), . . . , α(L)]T ∈ CL×1.
In OFDM systems, channel estimation can be achieved by

transmitting pilot sequences over subcarriers. The subcarriers
for transmitting pilot may be specified according to the cir-
cumstances. For convenience, we define the following set of
subscripts to represent the serial number of subcarriers which
are used to transmit pilot sequences.

P = {p(1), p(2), . . . , p(M )} ⊂ {1, 2, . . . ,Nsc} (4)

We select M subcarriers from Nsc subcarriers to transmit
pilot sequences. And then based on (2), we can get the CFR
coefficients of the subcarriers transmitting pilot sequences as
follows:

h̄(m) =
r(p(m))
x(p(m))

, m = 1, 2, . . . ,M (5)

Then CFR estimation can be expressed as

h̄ = (XP )
−1rP = h+ (XP )

−1wP = Fα + e, (6)

where h̄ = [h̄(1), h̄(2), . . . , h̄(M )]T ∈ CM×1. We assume that
all pilot sequences are unit power, so the statistical character-
istics of the noise term e = (XP )−1wP remain unchanged.

B. CS THEORETICAL MODEL
The goal of CS sparse reconstruction is to reconstruct the
sparse coefficient vector based on the observation vector and
the determined sensing matrix. The model is as follows

y = 8x+ n, (7)

where y ∈ CM×1 is the observation vector and n ∈ CM×1 is
the additive complex Gauss white noise. Matrix 8 ∈ CM×N

is a sensing matrix, and the number of its columns is much
larger than the number of rows i.e. N � M . x ∈ CN×1 is an
unknown sparse coefficient vector, and only a few non-zero
values are distributed in unknown locations.

Generally, the solution of sparse coefficient vector can be
transformed into a quadratic constrained optimization prob-
lem based on l1 norm.

x̂ = argmin
x
{‖y−8x‖22 + κ‖x‖1}, (8)
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where κ > 0 is called regularization parameter to control
the sparsity of sparse vectors. ‖•‖p denotes the lp norm of a
vector. This optimization problem is also known as the basis
pursuit denoising (BPDN) [22] or the least absolute shrinkage
and selection operator (LASSO) [23] algorithm.

Another method is sparse Bayesian learning (SBL) algo-
rithm. The idea is to find a maximum posteriori (MAP)
estimate of sparse coefficient vector x.

x̂ = argmin
x
{‖y−8x‖22 + λ

−1Q(x)}, (9)

where λ is the inverse of noise variance. By assuming that
the sparse coefficient vector satisfies the prior probability
distribution p(x), the penalty term Q(x)∝e − log p(x) (Here
x∝ey denotes exp(x) = exp(v) exp(y), so for any constant v,
there is x = v+y) is used to generate the sparse estimate of x.
In the actual signal space, most channel coefficients are

zero or close to zero, and only a few multipath are included,
so the distribution of the delay values of multipath signals in
a certain time domain is sparse.

In order to apply the theory of CS sparse reconstruction
to time delay estimation, the model of (6) needs to be pro-
cessed and the corresponding sparse representation model is
constructed. In solving the problem of (7), the columns of
matrices8 are known, while the columns of matrices F in (6)
depend on unknown delays τ = {τ1, τ2, . . . , τL}. To avoid
this difference, we introduce a uniformly distributed grid set
over a time-delay interval [0,T ].

τ̄ = {τ̄1, τ̄2, . . . , τ̄N } = {0,
Ts
ς
, 2Ts
ς
, . . . ,T }, (10)

where ς > 0 is a normal number. Assuming that the delay
interval [0,T ] covers all possible multipath signal delay val-
ues in this scenario and the interval between two adjacent
delay values is defined as resolution r = |τ̄i+1 − τ̄i|. Next,
we generate atoms according to the partitioned grid to form
an over-complete DFT dictionary V.

V = [v (τ̄1) , v (τ̄2) , . . . , v (τ̄N )] ∈ CM×N (11)

v (τ̄i) =
1
√
M


1

e−j2π1f τ̄i
...

e−j2π(M−1)1f τ̄i

 ∈ CM×1 (12)

Each column ofDFT dictionaryV is called atom and the num-
ber of columns isN = ςT/Ts+1. In order tomeet the sparsity
requirement, there should be N � M > L. Then the sparse
coefficient vector ᾱ = [ᾱ(1), ᾱ(2), . . . , ᾱ(N )]T ∈ CN×1 is
defined, and its element value satisfies the requirement.

ᾱm(t) =

{
αk (t), τ̄m = τk ∈ τ

0, otherwise
(13)

The above formula also shows that there is a one-to-one
relationship between the position of non-zero elements in
sparse coefficient vector ᾱ and the delay value of multipath
component of the signal. Only by obtaining the index value

of L nonzero elements in ᾱ, the delay estimation value of
multipath signal can be obtained.

Then the CS sparse reconstruction model of (6) can be
expressed as

h̄ = Vᾱ + e (14)

C. OFF-GRID MODEL
We have observed that there are natural quantization errors
in the grid-based method of time delay, and the final per-
formance is acceptable when the quantization delay value
(i.e. resolution) is relatively small. But the performance will
be greatly affected when the quantization delay value is
relatively large.

In order to compensate for the mesh errors, [24] proposes
to use the first-order Taylor expansion to calibrate the mis-
match of the mesh. The actual multipath delay values in (14)
are respectively τi ∈ τ . Assuming that the quantization delay
value is τ̄ni ∈ τ̄ , the Fourier vector v (τi) corresponding to
the actual multipath delay value are expanded to the nearest
quantization delay value τ̄ni , and the following expressions
are obtained

v(τi) ≈ v(τ̄ni )+ d(τ̄ni )(τi − τ̄ni ), (15)

where d(τ̄ni ) =
dv(τ )
dτ

∣∣∣
τ=τ̄ni

is the first derivative vector of v(τ )

to τ in the following form

d(τi) =
dv (τi)
dτi

= [0 − j2π1f e−j2π1f τi · · ·

−j2π1f (M − 1) e−j2π1f (M−1)τi ]T (16)

The over-complete matrix consisting of the derivative vectors
of Fourier vectors v (τ̄i) corresponding to each delay value in
set τ̄ is

9 = [d(τ̄1),d(τ̄2), . . . ,d(τ̄N )] ∈ CM×N (17)

Then the modified over-complete dictionary with time-delay
domain sparse expansion and contains off-grid parameters is

8(ϕ) = V+9diag(ϕ), (18)

where matrix ϕ = [ϕ1, ϕ2, . . . , ϕN ]T ∈ [− r
2 ,

r
2 ]
N is an

off-grid parameter vector and ϕi = τi − τ̄ni , i = 1, . . . ,N .
Then the single measurement vector (SMV) model of (14)

can be expressed as

h̄ = 8(ϕ)ᾱ + e (19)

Correspondingly, when we can obtain more than one CFR
sample, the received signal matrix under the multiple mea-
surement vectors (MMV) model is as follows:

H = 8(ϕ)A+ E (20)

where H = [h̄1, h̄2, . . . , h̄K ] ∈ CM×K is a matrix consist-
ing of K CFR samples. A = [ᾱ1, ᾱ2, . . . , ᾱK ] ∈ CN×K

is the channel complex fading sparse coefficient matrix,
which is joint sparse (or row sparse), that is, all columns
in the matrix are sparse vectors, and have the same support
set (i.e., the positions of non-zero elements are the same).
E = [e1, e2, . . . , eK ] ∈ CM×K is the noise matrix.
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IV. CS DELAY ESTIMATION ALGORITHM BASED ON AEE
In the traditional dictionary-based CS sparse reconstruction
model, once atoms are generated according to the partitioned
grid, the atoms will not change. But the generated atoms are
not exactly the optimal component of the observation vector,
that is, the actual delay value is not necessarily just on the
grid point. Therefore, the off-grid algorithm is proposed [19].
From the off-grid model in Section III.C, it can be seen
that the main idea is to use the first-order Taylor expansion
to correct the over-complete dictionary, and then the final
estimate is to add the off-grid correction value on the basis
of the grid estimation value. However, it should be noted
that the distance between the actual delay value and the grid
estimation value is constant throughout the iteration process,
that is, the model error generated by equation (15) always
exists, which limits its estimation accuracy. And in the pro-
cess of iteration, the irrelevant atoms always participate in the
calculation, resulting in too long operation time and too much
computation.

The idea of evolution and elimination comes from
Darwin’s theory of evolution. In nature, through the fierce
competition for survival, organisms survive and the unsuit-
able are eliminated, which is natural selection [25]. This
paper is based on the idea of evolution and elimination. In the
iterative process of SBL algorithm, atoms evolve continu-
ously to fit in with the components of observation vectors (i.e.
adapting to the ’environment’). Andwhen theminimumvalue
of sparse coefficient is less than the elimination threshold
(i.e. species that are not suitable for the environment), the
elimination mechanism is initiated.

A. THE SPARSE BAYESIAN LEARNING
Thanks to the automatic relevance determination (ARD)
method adopted by SBL, the hyperparameters can be adap-
tively learned from the observed data to realize the evolution
of atoms. ARD results in a sparse solution at each itera-
tion, which results in efficient global competition among all
possible values of sparse coefficients. It was first applied
to determine the selection of input variables of neural
networks [26]. When many input variables are added to the
neural network on the basis of the principle of equality,
the limited number of training samples will lead to the occa-
sional occurrence of irrelevant input, and ultimately the pre-
diction performance will be poor. Therefore, if it does contain
a large number of potentially unrelated inputs, asymmetric
priori must be used and the degree of correlation of unknown
inputs can be automatically determined in training.

1) A PRIORI HYPOTHESIS
From (20), the MMV model of CFR matrix with off-grid
parameters can be obtained.

H = 8A+ E (21)

We use a prior distribution to make probability assumptions
about the unknown variables in the signal model.

Assuming that the potential arrival paths represented by
each row of sparse coefficient matrix A in (21) are indepen-
dent, and that each row of data satisfies a complex Gaussian
distribution with zeromean 01×K and covariancematrix γiIK.

p(Ai•; γi) = CN(01×K , γiIK), i = 1, . . . ,N (22)

The non-negative hyperparameters in vector γ =

[γ1, γ2, . . . , γN ]T controls the row sparsity of sparse coef-
ficient matrix A, i.e. if γi→ 0, then Ai•→ 01×K .

For the noise matrix E ∈ CM×K , assuming that it satisfies
the complex Gaussian distribution, the probability density
function is

p(E|λ) =
K∏
t=1

CN(0M×1, λ−1IM ), (23)

where λ = σ−2 is the inverse of noise variance.
In the sparse extension of time-delay domain, the time-

delay interval is evenly divided into a set of discrete points.
Similar to uniformly partitioned grid points, we also assume
that the off-grid parameters are uniformly distributed, and the
probability distribution is as follows

p(ϕ) =
N∏
n=1

U(ϕn|[− r
2 ,

r
2 ]) (24)

2) BAYESIAN INFERENCE
The maximum posteriori probability density of each column
of sparse coefficient A is

p(A•j|H•j,3) = CN(µj,6A), j = 1, . . . ,K (25)

Then the maximum posterior mean matrix5 and covariance
matrix 6A of matrix A are expressed as

5 = 38H(λIM +838H)−1H (26)

6A = (3−1 + λ−18H8)−1 (27)

where 3 = diag[γ ] is a diagonal matrix composed of vector
γ = [γ1, γ2, . . . , γN ]T and5 = [µ1, . . . ,µK ] is a maximum
posterior mean matrix.

In order to solve the hyperparameters, we use expectation
maximization (EM) algorithm. In E step, the posterior param-
eters need to be solved by using (26) and (27); In M step,
the hyperparameters need to be updated, and their iteration
formulas are as follows [18].

γi ←
1
K
5i•5

H
i• + (6A)ii, i = 1, . . . ,N (28)

λ ←
‖H−85‖2F + λK tr[838H(λIM +838H)

−1
]

MK
(29)

For off-grid parameters, their values can be obtained by solv-
ing the following optimization problems

ϕ← arg min
ϕ∈[− r2 ,

r
2 ]

N
{ϕT�ϕ − 2υϕ} (30)
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where the expressions of matrix � and vector υ are respec-
tively as follows [19].

� = Re
{
9T9∗ � (

1
K
55H

+6A)
}

(31)

υ = Re

{
1
K

K∑
t=1

diag(5∗•t )9
H(H•t − V5•t )

}
−Re

{
diag(9HV6A)

}
(32)

Equation (30) derives ϕ, and we can get the solution of it,
ϕ = �−1υ. But if � is not invertible, i.e. singular, it cannot
be solved in this way. Instead, it should be solved by iteration
step by step. As the iterative algorithm for singular linear
equations in [27]. And the formula is as follows:

ϕ̂i =
υ i − (�•i)T−iϕ−i

�ii
, (33)

where u−i denotes the vector formed after removing the ith
element of the vector u.
Similar to the original SBL algorithm, EM algorithm is still

used to solve the above-mentioned hyperparameters. Because
of the characteristics of EM algorithm [28], AEESBL algo-
rithm can guarantee convergence.

B. ATOMIC EVOLUTION AND ELIMINATION
A column in an over-complete dictionary is called an atom.
For signals that can be sparsely represented, it consists of the
weighted sum of only a few atoms in an over-complete dictio-
nary whose column numbers are called support sets. Accord-
ing to the CS theoretical model in Section III.B, we divide a
time-delay interval evenly to generate atoms, and then form
an over-complete dictionary. In fact, there aremodeling errors
in this step, because there is no guarantee that the generated
atoms contain the optimal constituent atoms of the observed
data. For an atom that does not constitute observation data, its
weight coefficient is zero. However, under noisy conditions,
after sparse reconstruction, the weight coefficients of unre-
lated atoms are not zero, but tend to be smaller values. And
during the reconstruction process, the existence of extraneous
atoms increases the amount of computation.

This paper is based on the fact that the generated atom
is not necessarily the optimal atom and the increase of the
computational quantity because of the unrelated atoms, thus
introducing the idea of evolution and elimination. In the itera-
tive process of SBL algorithm, let atoms evolve and eliminate.

1) ATOMIC EVOLUTION
In the Bayesian inference of Section IV.A, from the expres-
sions (26), (27), (29), (31) and (32), it can be seen that
the revised over-complete dictionary 8, DFT over-complete
dictionary V and its derivative dictionary 9 are all involved
in the solving process of the algorithm. In the traditional
off-grid SBL algorithm, the dictionary V and 9 are fixed.
Atomic estimation schematic diagram of traditional off-grid
SBL algorithm is shown in Fig. 2, in which the dotted line

FIGURE 2. Atomic estimation process diagram of traditional off-grid SBL
algorithm.

FIGURE 3. Atomic evolution diagram.

passing through the black circle represents the optimum atom
composition of the observed data. The primary atoms repre-
sent column vectors in the DFT dictionary. In this line with
the word ’grid estimated atoms’, the black circle represents
the atom that best matches the observed data obtained in the
primary atoms. In the line with the word ’off-grid correction
value’, the black triangle represents the off-grid correction
based on the most matched atom of the grid estimation, and
thewhite triangle represents the correction value is zero. Then
the final atom is the grid estimate atom plus the off-grid
correction.

The primary atom is an exponential function form with a
high degree of nonlinearity. From the linear approximation
of the optimal atom by the first-order Taylor expansion in
equation (15), it can be seen that there is an approximation
error, which is bound to limit the final delay estimation
accuracy. In order to reduce the error caused by this linear
approximation and further improve the accuracy of the delay
estimation. This paper breaks the idea of fixed atoms and
introduces the idea of atomic evolution. Instead of using
a linear approximation, the exponential function is directly
corrected.

A schematic diagram of atomic evolution is shown
in Fig. 3, where the grey circles represent the atoms of evolu-
tion. The specific evolution is as follows:

1. In an iterative process, after the off-grid parameter ϕ is
obtained, a new grid τ̄ new is obtained according to the current
grid τ̄ old .

τ̄ new − τ̄ old + ϕ (34)

2. Then, based on the new delay grid, new atoms are gen-
erated and new over-complete dictionaries are constructed.

Vnew
=
[
v
(
τ̄ new1

)
, v
(
τ̄ new2

)
, . . . , v

(
τ̄ newN

)]
∈ CM×N

(35)
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9new
=
[
d
(
τ̄ new1

)
,d
(
τ̄ new2

)
, . . . ,d

(
τ̄ newN

)]
∈ CM×N

(36)

8new
= Vnew

+9newdiag(ϕ) (37)

3. In EM algorithm, the new over-complete dictionaries are
used to solve the problem.

By comparing the formulas (11) and (17) with (35) and
(36), we can see that the over-complete dictionary atoms in
this algorithm are not fixed, but evolve in the process of
iteration, which is the advantage of this algorithm.

2) ATOMIC ELIMINATION
In the traditional SBL algorithm, the entire over-complete
dictionary will participate in the operation, and the existence
of unrelated atoms will not only cause interference to the final
result, but also cause a larger data dimension and more com-
putation. In order to reduce the amount of computation and
speed up the reconstruction to achieve real-time processing,
we introduce a mechanism for atomic elimination.

In the process of Bayesian learning, the value of the
non-negative hyperparameters γi corresponds to the row spar-
sity degree of sparse coefficient matrix A. When γi → 0,
there should be Ai• → 01×K , and the corresponding atom
in the over-complete dictionary should be eliminated. How-
ever, since the observation data is noisy, the hyperparameters
corresponding to the unrelated atoms are not zero. Therefore,
in the actual processing, a relatively small threshold ε is set in
advance, and once the minimum γi is less than ε, the elimina-
tion process will be started. The specific elimination process
is as follows:

First define the complete set S = {1, 2, . . . ,N }.
1. Before each iteration, a decision is made as to whether

the elimination process needs to be initiated. If the elimina-
tion condition is met, find the index value of the value in γ
that is greater than the elimination threshold (i.e. the sequence
number of the element in vector γ );

if min(γ ) < ε

inde = arg
i
{γi > ε} (38)

2. Update each variable γ = γ inde, V = V•(inde), 9 =
9•(inde), ϕ = ϕinde and S = Sinde.

C. ALGORITHM STEPS
Through the above analysis, the algorithm steps can be
summarized as follows in Algorithm 1.

V. ANALYSIS
A. COMPLEXITY ANALYSIS
Since the algorithm in this paper is an iterative class algorithm
and has an atomic elimination (i.e. data dimensionality reduc-
tion) process, we analyze the amount of computation during
each iteration before atomic elimination. As shown in Table 2,
where M is the number of subcarriers transmitting pilots, N
is the number of over-complete dictionary columns, and K is
the number of samples. In the E step of the EM algorithm,

Algorithm 1 CS Time Delay Estimation Based on AEE
Input:The observation data H, initial time delay grid τ̄ ,
the over-complete DFT dictionary V and its derivative
dictionary 9, the elimination threshold ε, the termination
threshold tol and maximum number of iterations imax;
Steps:
1.Initialize the parameters: γ (0)

= 1N×1, λ(0) =
1
K

K∑
j=1

var(H•j), ϕ(0) = 0N×1 and set i = 0;

2.Atomic elimination determination: If the conditions
for atomic elimination are met, proceed to the steps in
Section IV.B.2). If not, continue execution;
3.Atomic evolution process: Construct a diagonal matrix
3 using hyperparameters γ (i), construct new delay grids
τ̄ (i+1), over-complete DFT dictionary V(i+1), derivative
dictionary9(i+1) and over-complete dictionary8(i+1) with
off-grid parameters according to equations (34), (35), (36)
and (37) using ϕ(i) and τ̄ (i);
4.Calculate5 and6A according to equations (26) and (27)
respectively;
5.Via (28) to update the hyperparameters γ (i), via (29) to
update λ(i), via (33) to update ϕ(i);
6.If

∥∥γ (i+1)
− γ (i)

∥∥
2/
∥∥γ (i)

∥∥
2< tol or i = imax, the itera-

tion stops; If not, set i = i+ 1, jump to step 2;
7.Obtain the estimated value of delay according to the
following formulas.

index = arg nonzero
i
{γi} (39)

τ̂ = τ̄ index (40)

Output: The estimated value of the delay τ̂ .

TABLE 2. Computational complexity.

the maximum a posteriori mean matrix 5 and the covari-
ance matrix 6A need to be solved, and the main formula is
(λIM +838H)−1; In the M step, the hyperparameters need
to be updated, and the main formula is to invert the matrix�.

B. ANALYSIS OF GLOBAL AND LOCAL MINIMA
In Bayesian inference of SBL, we can get its cost function as
follows:

L(η) = K log |6H| +

K∑
j=1

HH
•j6
−1
H H•j (41)

where 6H = λIM +838H.
The analysis of the local minima and global minima of the

cost function of SBL is given in [29]. The original mathemat-
ical model of the proposed algorithm and the method used in
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the hyperparameters’ solving process are similar to [29]. The
difference is that the algorithm in this paper considers that
the over-complete dictionary is not fixed, but dynamically
revised in the iteration process of the algorithm to compensate
for the model error. Therefore, the analysis of the global and
local minima of the proposed algorithm can be referred to
in [29].

VI. EXPERIMENTS
A. SIMULATION ANALYSIS
In this paper, the time delay estimation algorithm of OFDM
signal in wireless positioning system model is studied.
The proposed algorithm–AEESBL is compared with the
MSBL algorithm in [18], the OGMSBL algorithm in [19],
the OGBULA algorithm in [20], the SOMP algorithm in [30]
and the SS-MUSIC algorithm in [9] (using frequency-domain
smoothing to make the sample covariance matrix full rank).
According to the IEEE 802.11a protocol [31], the parameters
of the OFDM system are set in the simulation as shown
in Table 3.

TABLE 3. System parameters for the experiments.

To measure the performance of the algorithm, we define
the root mean square error (RMSE) for all paths of the delay.

RMSE =

√√√√√ 1
LP

 P∑
p=1

L∑
i=1

∣∣τ̂pi − τpi∣∣2
 (42)

where L is the number of multipath, P is the number ofMonte
Carlo simulations, τ̂pi is the estimated delay value of the ith
path in the pth Monte Carlo experiment. And τpi is the actual
delay value of the ith path in the pth Monte Carlo experi-
ment. The equipment used in all simulation experiments is a
Win7 system and Intel XeonCPU (4-core 3.3GHz) computer.
Simulation 1 (Verifying algorithm validity): In order to

verify the performance of the algorithm, set the delay values
of the three paths to τ1 = 94.31 ns, τ2 = 346.29 ns
and τ3 = 626.99 ns. The mesh is evenly divided on the
delay interval [0, 800] ns and the grid interval is 4 ns, so the
actual delay values are not on the grid points. And the sub-
carriers all transmit pilot sequences. The distribution of the
delay estimation results is obtained under the conditions of
SNR = 20 dB and 0 dB, respectively. As shown in Fig. 4,
it can be seen from the figure that the proposed algorithm can
effectively estimate the delay.

FIGURE 4. Time delay estimation result. (a) SNR=20 dB. (b) SNR=0 dB.

Simulation 2 (Analysis of atomic evolution and elimination
process):

In this simulation, we analyze the process of atomic evolu-
tion and elimination. The system parameters are the same as
Simulation 1. In order to show the process of atomic evolution
and elimination in this algorithm, under the condition of
SNR = 20 dB, different elimination thresholds are set and
a Monte Carlo experiment is carried out respectively. The
changes of the grid are output, and then the process dia-
gram of atomic evolution and elimination is drawn as shown
in Fig. VI-A. From the six sub-graphs in Fig. VI-A, we can
see that the sub-optimal atoms evolve to the optimal atoms,
and the irrelevant atoms will be eliminated in the iteration.
Comparing the six sub-graphs, we can find that when the
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FIGURE 5. Atomic evolution and elimination course. (a) ε = 0.3. (b) ε = 0.1. (c) ε = 0.01. (d) ε = 0.001. (e) ε = 0.0001. (f) ε = 0.00001.

elimination threshold is relatively large, the process of atomic
evolution and elimination is faster. While when the threshold
is relatively small, the process of evolution and elimination
is slower. And the smaller the threshold is, the slower the
elimination process and the less complete the elimination will
be. Of course, the choice of threshold should not be too big.
If too big, it is too likely that the optimal atoms with smaller
energy will also be eliminated. As shown in Fig. VI-A(a),
the elimination threshold is 0.3 and we find that the third
path is also eliminated because of its small energy. Therefore,
the selection of elimination threshold needs to be balanced
between estimation accuracy and operation time.
Simulation 3 (Comparison of estimated error cumulative

distribution functions of different algorithms):
Furthermore, all the subcarriers are set to transmit pilot

sequences and the number of Monte Carlo experiment is
200. In each Monte Carlo experiment, the delay values of
three paths are randomly generated from the delay intervals
[95, 105] ns, [345, 355] ns and [625, 635] ns respectively.
The grid interval is 4 ns. Under SNR = 20 dB and 0 dB con-
ditions, the cumulative distribution function (CDF) of each
algorithm are plotted, as shown in Fig. 6. As can be seen from
the figure, the proposed algorithm, OGBULA algorithm and
OGMSBL algorithm have smaller estimation error because
of the grid modification, which is better than the grid-based
algorithm.
Simulation 4 (Estimated performance comparison of dif-

ferent algorithms):

In order to verify the performance of different algorithms
for time delay estimation under different SNR conditions,
simulation parameters are the same as Simulation 3. SNR
ranges from −5 dB to 25 dB, and grid interval are set to
4 ns and 6 ns, respectively. The RMSE curves of different
algorithms versus SNR are drawn, as shown in Fig. 7. From
the graph, we can see that the grid-based algorithm has a
flat-bottomed effect at high SNR, that is, RMSE decreases
slightly with the increase of SNR. The RMSE of the proposed
algorithm, OGBULA algorithm and OGMSBL algorithm
decrease significantly with the increase of SNR due to the
modification of grid. Under different SNR, the performance
of the proposed algorithm is better than that of OGMSBL
algorithm. This is because the model error of OGMSBL algo-
rithm is effectively compensated by the evolution of atoms,
and the interference of irrelevant atoms is further reduced by
using the atomic elimination mechanism, thus the estimation
accuracy is effectively improved. Although both the proposed
algorithm and OGBULA algorithm adjust the grid parame-
ters, the fixed step size is adopted in OGBULA algorithm,
which limits the estimation accuracy.
Simulation 5 (Verify the impact of training pilot number on

estimation performance):
The position and number of training pilots can be set in

OFDM system. Here, in order to highlight that the sparse
reconstruction method of CS can recover the original signal
from the dimension-reduced data, the pilot number is changed
from 20 to 60, and the position is generated randomly.
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FIGURE 6. Estimation error cumulative distribution function of different
algorithms. (a) SNR=20 dB. (b) SNR=0 dB.

TheRMSE curve of sparse reconstruction algorithm is plotted
under the condition of 4 ns grid interval and 20 dB SNR.
However, SS-MUSIC(subspace algorithm) cannot estimate
the delay in the case of compressed data and small samples.
This is because the partial Fourier matrix do not satisfy the
form of Vandermonde matrix after random selection of pilot
positions, and the smoothing algorithm is invalid. As shown
in Fig. 8, it can be seen from the figure that RMSE of each
algorithm decreases with the increase of training pilots, indi-
cating that the estimation accuracy increases with the increase
of training pilots. This is because the increase of pilot number
is equivalent to the increase of information, so the estimation
accuracy will also be improved.
Simulation 6 (Verify the impact of grid interval on esti-

mated performance and computation time):

FIGURE 7. The RMSE of different algorithms versus SNR. (a) r=4 ns.
(b) r=6 ns.

In order to verify the effect of grid interval on the esti-
mation performance of the algorithm, the grid interval is
set to r = [2, 4, 6, 8, 10] ns respectively, the number of
Monte Carlo is 200, and the SNR is 20 dB. In each Monte
Carlo experiment, the delay of three paths are randomly
generated from the intervals [95, 105] ns, [345, 355] ns and
[625, 635] ns respectively. The RMSE curve versus grid inter-
val is obtained as shown in Fig. 9. As can be seen from the
graph, the estimation accuracy of the proposed algorithm,
OGBULAalgorithm andOGMSBL algorithm are higher than
that of grid-based algorithms under different grid interval.
It also can be found that RMSE of OGMSBL algorithm
increases with the increase of grid interval, because the
influence of model error increases with the increase of grid
interval, which leads to the decrease of estimation accuracy.
While the RMSE of the proposed algorithm and OGBULA
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FIGURE 8. The RMSE of different algorithms versus the number of
training pilot symbols.

FIGURE 9. The RMSE of different algorithms versus the grid interval.

algorithm decrease with the increase of grid interval, this
is because these two algorithms can effectively reduce the
model error by adjusting the grid parameters. It can be found
that the RMSE of the proposed algorithm and OGBULA
algorithm are higher than that of OGMSBL algorithm when
the grid interval is small. This is mainly due to the large cor-
relation between atoms when the grid interval is small, which
easily makes the grid parameters adjust in the non-optimal
direction. When the grid interval is large, the correlation is
small. And the advantage of grid parameter adjustment is
prominent, so estimated RMSE will decline. It can also be
found that the RMSE curve of the proposed algorithm is
lower than that of OGBULA algorithm under different grid
interval conditions. This is still caused by the fixed step size
adjustment of grid parameters in OGBULA algorithm.

We also compare the average running time versus different
grid interval of three grid-correction algorithms–OGMSBL

algorithm, OGBULA algorithm and the proposed algorithm.
The simulation conditions are the same as those of the above
experiments. In the three algorithms, the termination thresh-
old is tol = 1 × 10−8 and the maximum number of itera-
tions is imax = 800. In the proposed algorithm, the atomic
elimination threshold is ε = 0.1. As shown in Table 4,
it can be seen from the table that the average running time
of the three algorithms decrease with the increase of the
grid interval, because the dimension of the over-complete
dictionary decreases. It can be found that the average running
time of the proposed algorithm under different grid interval
are lower than that of OGMSBL algorithm and OGBULA
algorithm, because the proposed algorithm uses atomic elim-
ination mechanism, which reduces the data dimension and
improves the operation speed.

TABLE 4. Average CPU time of different algorithms versus the grid
interval Time unit (sec).

B. ACTUAL SIGNAL TEST
We use the WLAN-OFDM signal receiving routine
(sdruwlanofdm80211BeaconRx.m) based on the universal
software radio peripheral (USRP) in MATLAB 2017 to
estimate the actual time delay of the OFDM signal. This
example in MATLAB 2017 can use USRP devices to imple-
ment WLAN receivers, and can give channel estimation
results for two MAC address communications. Based on
this, the proposed algorithm can be used to estimate the
signal propagation delay between the two communication
nodes, and then the distance can be estimated. The validity
of the proposed algorithm is verified by comparing the actual
distance with the estimated distance.

Fig. 10 is a scene diagram for actual signal acquisition.
On a standard track and field 100-meter runway, the receiving
end is located at the starting point of the runway, and the
transmitting end moves from 50m to 100m from the receiv-
ing end, with a stepping distance of 10 m. Each test point
collects 10 consecutive time channel estimation results, and
the delay estimation under small sample conditions is respec-
tively performed for each group of CFR. In the IEEE 802.11a

FIGURE 10. The photograph of actual test scene.
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FIGURE 11. Comparison of estimation errors in actual signal testing.

protocol [27], the number of subcarriers actually used is 52,
wherein subcarriers 1 ∼ 26 correspond to IFFT inputs of the
same label; Subcarriers−26 ∼ −1 correspond to IFFT inputs
of 38 ∼ 63; The next 27 ∼ 37 and port 0 are null. Then, in the
simulation, the occupied pilot position is set according to the
protocol.

Fig. 11 is a comparison of the estimated average error of
several algorithms for the direct path. The grid interval is set
to 4ns. It can be seen from the figure that the algorithm has
better performance in the actual signal delay estimation.

VII. CONCLUSIONS
This paper proposes a CS time delay estimation algorithm
based on atomic evolution and elimination. It introduces the
idea of evolution and elimination, and uses grid points as
tunable parameters. The grid points are updated during each
iteration to facilitate the evolution of the atom.And the atomic
elimination mechanism is adopted to remove the less relevant
atoms from the over-complete dictionary, thereby reducing
the calculation amount and improving the operation speed.
The simulation results show that the proposed algorithm
can significantly improve the performance of time delay
estimation, especially when using coarse mesh. It is worth
noting that the proposed algorithm can be applied not only to
OFDM systems, but also to any communication system with
multi-carrier characteristics.
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