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ABSTRACT Feedforward neural network (FNN) is one of the most widely used and fastest-developed
artificial neural networks. Much evolutionary computation (EC) methods have been used to optimize the
weights of FNN. However, as the dimension of datasets increases, the number of weights also increases
dramatically. On high-dimensional datasets, if EC methods are used directly to optimize the weights of
FNN, it is impossible to obtain the optimal weights of the FNN by EC methods in an acceptable time. Feature
selection is a method that can effectively reduce the computational complexity of FNN by reducing irrelevant
and redundant features. It may be practical to optimize the FNN by EC methods if we first employ the feature
selection for the large-scale datasets. In this paper, we present a self-adaptive parameter and strategy-based
particle swarm optimization (SPS-PSO) algorithm to optimize FNN with feature selection. First, we propose
an optimization model for FNN by transforming the designing of FNN into a weights optimization problem.
Simultaneously, we present a feature selection optimization model. Second, we present an SPS-PSO
algorithm. In this algorithm, we use the parameter and strategy self-adaptive mechanism. In addition, five
candidate solution generating strategies (CSGS) are used. The experiments are divided into two groups. In the
first group, SPS-PSO and three other EC methods are used to directly optimize the weights of FNN on eight
datasets without any modification. In the second group, we first employ SPS-PSO-based feature selection on
the original datasets and obtain eight relatively smaller datasets with the k-nearest neighbor (KNN) which
is used as the evaluation function for saving time. Then, we use the new datasets as the inputs for FNN.
We optimize the weights of FNN again by SPS-PSO and three other EC methods to investigate whether we
can get similar or even better classification accuracy by comparing the results with that of the first group.
The experimental results show that SPS-PSO has the advantage in optimizing the weights of FNN compared
with the other EC methods. Meanwhile, the SPS-PSO-based feature selection can reduce the solution size
and computational complexity while ensuring the classification accuracy when it is used to preprocess the
datasets for FNN. In this method, a solution with an originally higher than 700 000 dimensions can be even
reduced to hundreds of dimensions.

INDEX TERMS Classification, evolutionary computation, feature selection, feedforward neural networks,
self-adaptive, parameter adaptation, particle swarm optimization.

I. INTRODUCTION
Artificial neural network (ANN) [1], [2] is a hot research
topic in the field of artificial intelligence [3] since the 1980s
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and it has been widely used as an effective classification
method. ANN is a nonlinear and adaptive information pro-
cessing system composed of a large number of interconnected
processing units. It abstracts the human brain neuron network
from the perspective of information processing, establishes
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a simple model, and forms different networks according
to different connection methods. ANN mainly contains the
feedforward neural network (FNN) [4] and the feedback
neural network (FeedbackNN) [5]. FNN has the character-
istics of simple network structure and easy implementa-
tion, hence it has been widely studied by researchers in the
past few decades and is one of the most widely used and
fastest-developing ANN. So far, FNN has been applied in
spectrum auction [6], medicine [7], direction prediction [8],
construction engineering [9], instruction detection [10], [11]
and etc.

Recently, many EC methods [12] have been used to
optimize the weights for FNN [13], [14]. Gudise and
Venayagamoorthy [15] employed particle swarm optimiza-
tion (PSO) to the FNN weights optimization and com-
pared the results with back propagation (BP) technique.
The results show that PSO has the advantage on searching
the optimal weights for FNN compared with BP technique.
Lam et al. [16] used an improved genetic algorithm (GA)
to optimize the weights of FNN and achieved good results.
Biogeography-based optimization [17] was introduced into
the FNN weights optimization by Zhang et al., and they
use the optimized FNN to solve fruit classification prob-
lems. In [18], Bohat and Arya studied the existing gravita-
tional search algorithm (GSA) and further proposed a novel
algorithm named gbest-guided gravitational search algorithm
(GG-GSA). This algorithm is used to optimize the weights of
FNN and also achieves a good performance on classification
accuracy compared with GSA and some other EC methods.
However, which is the same as the study of stochastic opti-
mization problems in most literatures, the datasets chosen
in [18] are all small-scale datasets, the biggest one of them
only has 41 features while the corresponding number of
weights (solution size of EC methods) is 3570. In other words,
the researcher did not use GG-GSA to solve large-scale
FNN weights optimization problems. In high-dimensional
datasets, oversized solutions produce extremely huge solution
space, it takes more time to search for the optimal solution,
and the sharply increasing irrelevant and redundant features
can bring more local optima to the FNN optimization prob-
lems. For a dataset containing n features, the solution size
of the FNN optimization problem can be greater than 2n?.
For example, if a dataset originally contains 5000 features,
the solution size of the FNN optimization problem is more
than 50,000,000. If the dimension of the dataset is extremely
high, due to hardware limitations, ordinary personal comput-
ers even can not run the EC methods with a extremely large
solution size or obtain results in an acceptable time. There-
fore, it becomes impossible to optimize the FNN optimization
problems by the EC methods if the datasets are extremely
large, so it is urgent to find a new technique to solve this
problem.

As an effective data preprocessing technique, feature
selection [19], [20] can effectively reduce the irrelevant or
redundant features in datasets [21]. Thus, by introducing the
feature selection method, it may be possible to optimize the
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weights of the FNN by EC methods on extremely large-scale
datasets. When feature selection is employed as the prepro-
cessing of the datasets, we can obtain smaller datasets from
the original datasets. Then the modified datasets are used
as the inputs of the FNN. In this way, we can optimize
the weights of FNN on small datasets obtained by feature
selection instead of high-dimensional original datasets. This
will make it possible to optimize the weights for FNN.

In this paper, FNN optimization problems and feature
selection problems are transformed into stochastic optimiza-
tion problems. We propose two optimization models to solve
FNN optimization problems and feature selection optimiza-
tion problems, respectively. Our idea is to optimize the
weights of the neural network by combining feature selection
instead of optimizing the weights only by an evolutionary
algorithm. In order to effectively optimize the two mod-
els, we present a self-adaptive parameter and strategy based
particle swarm optimization (SPS-PSO) algorithm. In the
SPS-PSO algorithm, the parameter self-adaptive mechanism
and strategy self-adaptive [22], [23] mechanism are simul-
taneously introduced to make it more flexible to adapt to
different problems. Moreover, five candidate solution gen-
erating strategies (CSGSs) are used in SPS-PSO. Finally,
by using feature selection as the preprocessing method for
the datasets of FNN, we can solve the FNN optimization
problems easily by EC methods, and we investigate whether
similar or even better classification accuracy can be obtained.
Figure 1 briefly describes the core idea in this paper.
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FIGURE 1. The core idea for solving large-scale FNN optimization
problems.

The experiments are performed on 8§ datasets which include
3 low-dimensional datasets and 5 high-dimensional datasets.
On DS 8, the dimensions of the optimization problem corre-
sponding to the dataset reaches 845,250, which makes this
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a rather challenging issue. According to the proposed two
optimization models, we divide the experiments into two
groups as follows:

1) We use SPS-PSO to optimize the weights for FNN, and
the results are compared with three other EC methods: genetic
algorithm (GA) [24], particle swarm optimization (PSO) [25]
and biogeography-based optimization (BBO) [26]. In this
way, all the datasets without any modifications are input to the
FNN weights optimization directly, including the large-scale
FNN optimization models.

2) We firstly use the SPS-PSO based feature selection to
generate smaller datasets from the original datasets. Then,
the obtained datasets are used as the inputs of the FNN,
and we use SPS-PSO and three other EC methods GA, PSO
and BBO to optimize the weights of FNN again. In [27],
k-nearest neighbor (KNN) [28] has been found to be effective
in solving the feature selection problem when used as an
evaluation function for feature selection. For saving time,
KNN is used as the evaluation function in the feature selection
method in this paper instead of using FNN.

At last, we compare the experimental results which include
the classification accuracy and solution size of the first
group and the second group, and analyze the effect of
SPS-PSO based feature selection method on reducing the
computational complexity of FNN optimization problems.

The rest of this paper is organized as follows:
Section 2 introduces the optimization models for FNN and
feature selection. Section 3 introduces the strategy and
parameter self-adaptive mechanism of the SPS-PSO method.
Section 4 introduces the design of the experimental groups,
detailed parameter settings, and finally analyzes the results
of the two experimental groups. Finally, Section 5 concludes
the paper and describes the future research directions.

Il. OPTIMIZATION MODELS FOR FNN AND FEATURE
SELECTION

A. FNN OPTIMIZATION MODEL

In this paper, we use a simple three-layer structure for
FNN [29] which contains an input layer, a hidden layer, and
an output layer. The input layer gets the input values, the out-
put layer outputs final results, and all layers between them are
called hidden layers. In FNN, the nodes from different layers
are connected with many weights (w).

Fig.2 shows the three-layer FNN structure. As we can see
from the figure, there are weights (w) between the nodes from
the different layers. In this FNN framework, the input layer
has m nodes, the hidden layer has n nodes, and the output
layer has k nodes, where m is the dimension of the datasets,
i.e., the number of features, k is the number of class labels.
Therefore, the total number of w is:

Ny=mxn+nxk (1)

where N,, is the total number of w, m*n represents the number
of weights between the input layer z; and the hidden layer a;,
and nxk represents the number of weights between the hidden
layer a; and the output layer #,,.
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FIGURE 2. The structure of FNN.

We use z; to represent the value of the i node of the input
layer, a; to represent the value of the 7™ node of the hidden
layer, and &, to represent the value of the ™ node of the
output layer. Besides, w; j represents the connection weight
between z; and g;, and w]f’ , represents the connection weight
between a; and hy,. After inputting the values, the calculation
method of a; and £, is shown as the following two equations:

aj=f (Z Wij*z; + bj) 2)
i=1

hy = f (Z Wi,k a; + b},) 3)
i=1

where b; and b; represent offset values, and the total number
of themis N, = n+k, f (u) represents the activation function.
The activation function is used to add nonlinear factors to
solve the problems that cannot be solved by linear models.
In this paper, we use sigmoid function as the activation func-
tion for FNN which is described as follows:

f@ = @)

The main purpose of FNN weights optimization is to
reduce the error between the output values and the target val-
ues of the output layers, so as to achieve higher classification
accuracy. We use the mean square error (MSE) to evaluate
the error between the output values and the target values. The
calculation method of MSE is described as follows:

k
_ target __ pouty2
MSE =) " (¥ o) ©)
p=1
where /1, represents the target value and h¢"' represents

the output value of the node p in the output layer. A smaller
value of MSE means the smaller difference between the
output value and the target value, which indicates that the
used weights are better.

For a dataset with s samples, the total classification error
can be expressed by the average MSE of all the samples,
the calculation method is described as follows:

MSE,
s

fitness = MSE = Z (6)

r=1

wherer =1,2,...,5.
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MSE is used as an objective function for the EC methods.
In the FNN optimization process, the EC methods are used
to find the optimal weights with the goal of reducing MSE.
In the other words, the FNN optimization process is to search
the optimal solution which can make the MSE as smaller as
possible.

The solution representation of the EC methods is described
as follows:

x = [Wij, W, bj, byl (N
SolutionSize = N,, + Np (8

wherei = 1,2,...,m,j = 1,2,....,n,p = 1,2,...,k, x
represents an individual in the population of the EC methods.

The FNN optimization problem is to find the most suitable
x to make fitness reach a minimum. So all kinds of EC
methods can be employed to solve this problem.

B. FEATURE SELECTION OPTIMIZATION MODEL

For each feature in the feature selection problem, there
are two conditions: selected and unselected. To conve-
niently represent feature subsets, we transform the feature
selection problem into a combination optimization problem.
A D-dimensional vector B is used to represent a solution, and
the value of each dimension in B belongs to {0, 1}. The value
in B means different status of feature selection: 1 represents
the corresponding feature is selected and O is unselected.

In the initial population of SPS-PSO, we generate a
D-dimensional vector BI with continuous values for each par-
ticle. Then a threshold 6 € (0, 1) is used to map BI to B. If the
values in BI is bigger than 6, the corresponding dimensions
in B will be set to 1, and O otherwise. To make the evolution
process more efficient, we employ the mixed initialization
as in [30]. In this initialization method, most particles are
initialized with a small number of features, and the remain-
ing particles are initialized with a large number of features.
In [30], a method has been proven to be more efficient than
the others in [30] when used as the update method of parti-
cles. During this particle update method, pbest/gbest will be
updated in the following two cases:

1) The classification performance of the particle’s new posi-
tion is better than pbest/gbest;

2) The classification performance is the same as pbest/gbest
but the number of features is smaller.

In the existing research [27], KNN has been proved to have
advantages as the classifier for feature selection problems.
Therefore, we use KNN as the classifier of the feature selec-
tion method in this paper for saving time instead of using
FNN.

Ill. SELF-ADAPTIVE PARAMETER AND STRATEGY BASED
PARTICLE SWARM OPTIMIZATION

We present a self-adaptive parameter and strategy based par-
ticle swarm optimization algorithm [31]. In this algorithm,
strategy self-adaptive [32] and parameter self-adaptive [33]
mechanism are simultaneously introduced into the traditional
PSO algorithm to make it more flexible and adaptive to select
the most suitable CSGS and parameter values according to
different problems.

A. CANDIDATE SOLUTION GENERATION
STRATEGIES (CSGSS)
The SPS-PSO algorithm uses the following five CSGSs.
These CSGSs have been proved to be effective
by [30], [34]-[36].

1) The CSGS in [30], as described below:

t+1 _ 141

xtd _xld+v1a' (9)
t+1 t
vl'; =W * vl 4C1L*r* (p, d— x )+cz * Ik (pg,d _xi,d) s

(10)

where ¢ represents the 1" iteration in the evolutionary process.
D is the dimensionality of the search space and d € D
represents the 4 dimension. w is an inertia weight. On this
basis, x! , represents the d™ dimension of current particle’s
positioni vi 4 € [=Vmax, vmax] represents the velocity of the
th particle in the current iteration ¢. ¢y and ¢, are acceleration
constants. r; and r, are random values uniformly distributed
in [0, 1]. p; ¢ and pg 4 respectively represent the d ™ elements
of personal best solution and global best solution.

2) The position update strategy proposed in [34] is used in
SPS-PSO. It is described as follows:

xl’Jdrl =ri*X{ g+ r2kpga+r3x(xhy—x,4). (D
where xa’ 4 and xb’ 4 are position vectors of two random par-
ticles. The velocity update method and other variables have
the same meaning as described earlier.

3) Estimation-based velocity update strategy from [35]
is used in SPS-PSO. It is described as in (12) and (13),
as shown at the bottom of this page. where N (0, 1) and
C (0, 1) represent two numbers randomly generated by the
Gaussian distribution and Cauchy distribution, respectively.
mean’ id is set to be the same as in Ref. [37]. The position
update method and other variables have the same meaning as
described earlier.

4) The CLPSO velocity update strategy from [36] is used
in SPS-PSO. It is described as follows:

vle =wx vl g tcixr * (pbestfi(d) — xl-”d) , (14)

C(O 1)

_(D- l)N(O 1)

12)
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2 2
\/ Pz d — mean, ) + (x,-‘d - mean;d> + (xa,d — meanf’d) , (13)
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where f; = [f;i (1),fi (2),...... ,fi (d)] defines which per-
sonal best should be used by the current particle. pbesty, 4) can
be the corresponding dimensionality of any particle’s pbest
including its own pbest. The position update method and
other variables have the same meaning as described earlier.

5) An improved CLPSO velocity update strategy called the
PSO-CL-pbest strategy from [35] is used in SPS-PSO. It is
described as follows:

1+1 15 t t
viji =w v, ;+0.5xc1 % ry *(pbestia) =X} 4 + Pg.a—x ) -

15)

where the position update method and other variables have
the same meaning as described earlier.

B. SELF-ADAPTIVE MECHANISM OF SPS-PSO

The strategy self-adaptive mechanism [38] and parameter
self-adaptive mechanism of SPS-PSO are described as fol-
lows:

1) STRATEGY SELF-ADAPTIVE

In the strategy self-adaptive approach [37], [39], an update
cycle is set for all CSGSs, the selection probability for each
CSGS is fixed in each cycle. If the new solution generated
by this CSGS is better than the old one, the selection prob-
ability of this CSGS will be increased, otherwise it will be
reduced. First, an same initial probability 1/N, is set for each
CSGS, where N, is the number of CSGSs in the strategy
pool. p, is used to represent the selection probability of the
q’h (q =1,2,3... ,Nq) CSGS. Then a CSGS is selected by
Roulette wheel method [40] based on the selection prob-
ability. It is used to generate a new solution and will be
evaluated for whether to update pbest and gbest. Subse-
quently, the results is recorded by the elements nsFlag; ,
and nfFlag; 4 (i =1,2,...,ps,q=1,2,... ,Nq), where N,
is the number of particle and N, is the number of CSGSs,
in the two matrices nsFlagn,, xn, and nfFlagn, xn,-

o o0 --- 0
o o0 --- 0
nsFlag = .
0 0 - 0] Nps5cH,
[0 0 0]
o 0 -.- 0
nfFlag = | . . ) . (16)
[0 0 - 0] NpsxNg

After finishing a generation of evolution, we cal-
culate the sum of every column from nsFlag;, and
nfFlag; 4, and record the results in two elements Si , and
Fiq (k =1,2,...,Ng,qg= 122, - ,Nq), where N, repre-
sents the number of generations in an update cycle. Si 4
means the number of successful evolution that the ¢
CSGS has in the k™ generation. Meanwhile, the matri-
ces nsFlagn, «n, and nfFlagpsxn, are reset according to
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equation (17).

00 ---0 00 ---0
00 ---0 00 ---0

S=1|. . . F=|. . . . (7
00 -0 NgxNy 00 0 NgxNy

After N, generations, we calculate the total number of
successes and failures of all CSGSs during the N, genera-
tions, and update the selection probability of each CSGS. The
calculation method is described as equation (18) and (19).

Ng
Sy = Skq (18)
k=1
s2=1% 5= (19)
4 Sq, otherwise

Then, Sg is divided by their total number of times that a
CSGS was selected in the last cycle as described in equation
(20) and (21) to obtain the probability that each CSGS suc-
ceeds in the last N, generations. This new probability will be
used in the next evolution cycle.

Ng
3 2 2
3 =82 / S;+ Y Frg (20)
k=1
Nf]
Py = sg/z s3 (1)
g=1

2) PARAMETER SELF-ADAPTIVE

In SPS-PSO, we use the values from existing literature [30],
[34]-[36] for each parameter as the initial values PVMy, =
[P1 Py .- PNp ] where N,, is the total number of parameters
(cp(n = 1,2,3...) in section 3.1) of all the CSGSs, P, is
the n'* parameter in PVMy,. At the beginning of evolving a
population, all parameter values are set as equation (22).

Py Py -+ Py

p

PVMemory = | Py P, --- Py (22)

P
NpsXNp

If a CSGS is selected, the parameters which need to be used
in this CSGS will be taken out from corresponding row and
column in PVMemorprS XN, - Then, a new parameter value is
generated by Gaussian transformation, and we use the initial
value of parameter as mean and the standard deviation is
0.3. These new parameter values will be used to generate
a new particle. If the new particle performs better than the
old one, these new parameter values will replace the cor-
responding old ones in PVMemoryn, xn,. After a genera-
tion of evolution, we count the means of every column in
PVMemoryNPs>< N, and record it in TempPVMNgX Np-

TPy TP, .-+ TPy,
TempPVM = | TPy TP, --- TPy, (23)
Ly,
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Algorithm 1 Pseudo Code of the Self-Adaptive Mecha-

nism of SPS-PSO

Input: number of fitness evaluations (NFE), current

fitness evaluations (cFE), population size (Npy),
number of strategies (V,), parameter pool
PVMNP = [P1 Py --- PNp ], selection
probability p, = ]%q (q =1,2,3,... ,Nq),

Ng = 10, cur_iter = 0, flag_iter = 0;

Output: gbest
1 while cFE < NFE do

2 Set PV My, to
Py Py --- Py,
PVMemory = | Py Py --- Py, ;
e o,
3 for i < Ny do
4 Select a CSGS by using py;
5 Take out PVMemory;; from PVMemorprSX Ny
and generate a new p;;
6 Generate a new particle by the CSGS and p;;
7 Get the fitness of x;"";
8 if x'" is better than x; then
9 nsklag; 4 = 1,
10 PVMemory;; = pi;
11 if x['*" is better than pbest then
12 pbest = x['";
13 if x'" is better than gbest then
14 ghbest = x;
15 end
16 end
17 end
18 else
19 | nfFlagiq = 1;
20 end
21 cFE = cFE + 1;
22 x; =x'";
23 i=i+1;
24 end
25 cur_iter = cur_iter + 1;
26 SNg XN, = the sum of each column in nsFlag; 4;
27 F NxN, = the sum of each column in nfFlag; 4;
28 Restore nsFlag; , and nfFlag; , to zero matrices;
29 TempPVMn,xn, = the mean of the rows of
PVMemoryn, xn,;
30 PVMy, = TempPVMl,Np(l = curjter — flagiter);
31 if cur_iter — flag_iter = N, then
k) Update py (¢ =1,2,3,..., Ny) by Sn,xn, and
FNg XNy
33 Restore SNgX N, and F N, xN, 10 zero matrices;
34 PV m; = the mean of the rows of
TempPVM Npsx Ny’
35 Restore TempPVMemoryn,, xN, to zero matrix;
36 flag_iter=cur_iter;
37 end
38 end
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After every N, generations, the parameter values will be
updated. The method is to get the means of every column from
TempPV My, xn,. These new parameter values then replace
the old ones in PVMNP = [P1 Py --- PNp ] and will be used
in the next evolution cycle.

IV. EXPERIMENTS AND ANALYSIS

A. DATASETS AND BENCHMARK ALGORITHMS

In order to verify the effect of our proposed methods
for optimizing the large-scale FNN, in the experiment,
we have selected three low-dimensional datasets and five
high-dimensional datasets. Although the datasets are not very
high in dimension, when it is used to validate the large-scale
FNN problems, the solution to its corresponding optimization
problem is very large. Therefore, we think it is enough to
describe our new idea with the employed datasets in the
manuscript. The datasets used in the experiments are cho-
sen from the University of California Irvine (UCI) Machine
Learning Repository [41] and Causality Workbench [42].
Among them, 7 datasets are derived from UCI, except DS
4 from Causality Workbench.

TABLE 1. Information of datasets.

ID Datasets NoE NoF NoC
DS1 diabetes 768 8 2
DS2 wdbc 569 30 2
DS3 ConnectionistBench 208 60 2
DS4 musk 476 166 2
DS5 LVST 126 310 2
DS6 madelon 2000 500 2
DS7 isolet5S 120 617 2
DS8  MultipleFeaturesDigit 400 649 2

In Table 1, “DS n” represents the n™ dataset, NoE means
the number of examples, NoF means the number of features
(dimensions), and NoC is the number of classes. Besides,
we divide all the datasets into training sets and test sets.
Among them, the training sets account for 70% while the
remaining 30% are used as test sets.

In the experiments, we select some EC methods such
as genetic algorithm (GA) [24], particle swarm opti-
mization (PSO) [25] and biogeography-based optimization
(BBO) [26] as the comparison algorithms. The experiments
are divided into two groups:

1) We use SPS-PSO and three comparison algorithms to
optimize the weights of FNN on the original datasets without
any modification. Then compare the results of them.

2) Firstly, SPS-PSO based feature selection method is
used to generate smaller datasets from the original datasets.
Secondly, these datasets are used as the inputs of FNN, and
we use the EC methods to optimize the weights of FNN again.
Finally, we compare the obtained results with that of the first
experimental group.

For convenience, we use “FS-EC” to indicate the results
with feature selection and “EC” to indicate the results with-
out feature selection.

VOLUME 7, 2019



Y. Xue et al.: Large-Scale FNN Optimization by a Self-Adaptive Strategy and Parameter Based PSO

IEEE Access

TABLE 2. Parameter settings of experiments.

Experimental Parameters

NFEpNN Ng Nps Re
300000 10 100 30

NFEpg
100000

B. PARAMETER SETTINGS

The detailed experimental parameter settings are given
in Table 2, where NFEFs represents the maximum number
of fitness evaluation in feature selection, NFEgryy represents
the maximum number of fitness evaluation in FNN, N, is
the number of the leaning period which is the number of
generations between two updated cycle. For SPS-PSO, we set
0.5 as the initial value for the parameters that need to be
involved in the adaptive mechanism in all CSGSs.

To compare the performance of different algorithms as fair
as possible, we use the same NFEpyy for different algo-
rithms. n order to get more reliable results, all the experiments
are repeated for Re times.

C. RESULTS AND ANALYSIS

The results of the two experimental groups are shown
in Tables 3-6. In these tables, “mean’’ represents the average
of the accuracy of the final solutions obtained by each algo-
rithm, “‘std” represents the standard deviations, ‘“‘size” is the
average solution size of inputted datasets in FNN. “+”,“—"
and “=" represent whether exist the significant difference
between an algorithm and others.

1) RESULTS OF DIFFERENT EC METHODS

FOR TRAINING FNN

Tables 3-4 show the results on training and test sets between
the SPS-PSO and the other three EC methods on optimizing
the weights for FNN. Fig.2 are the convergences of MSE
in the process of optimizing the FNN model by four EC
methods.

From the results, we can see that SPS-PSO gets the highest
accuracy on DS 1,2,5,7.8. BBO gets the best accuracy on DS
2,3,4,7,8. PSO performs best on DS 6 and GA performs the
same as BBO and SPS-PSO on DS 7, 8. Obviously, BBO

TABLE 3. Classification of EC methods on training sets.

GA PSO BBO SPS-PSO
Datasets
mean std mean std mean std mean std
DS1 8.47E-01 6.80E-03  8.34E-01 4.40E-03 8.59E-01 1.90E-03 8.76E-01 7.80E-03
+ + +
DS2 9.95E-01 4.10E-03  9.93E-01 3.10E-03 9.97E-01 3.90E-03 9.97E-01 3.50E-03
+ + =
DS3 9.74E-01 3.30E-02  8.79E-01 2.58E-02  1.00E+00 0.00E+00  9.98E-01 5.20E-03
+ + -
DS4 8.60E-01 5.35E-02  7.80E-01 2.04E-02 9.83E-01 9.70E-03 9.44E-01 1.77E-02
+ + -
DS5 8.17E-01 1.49E-01 8.63E-01 1.86E-02 9.68E-01 2.53E-02 9.69E-01 1.50E-03
+ + =
DS6 5.51E-01 1.09E-02  5.59E-01 0.00E+00  5.42E-01 1.33E-02 5.44E-01 0.00E+00
DS7 1.00E+00 0.00E+00  9.84E-01 1.46E-02  1.00E+00 0.00E+00 1.00E+00  0.00E+00
= + =
DS8 1.00E+00  0.00E+00  9.96E-01 5.30E-03  1.00E+00 0.00E+00  1.00E+00  0.00E+00
= + +
TABLE 4. Classification of EC methods on test sets.
GA PSO BBO SPS-PSO
Datasets
mean std mean std mean std mean std
DS1 8.50E-01 6.60E-03  8.31E-01 1.06E-02  8.48E-01 2.30E-03 8.50E-01 6.20E-03
= + +
DS2 9.86E-01 1.70E-03  9.86E-01 6.70E-03  9.93E-01 3.50E-03 9.94E-01 7.00E-04
+ + =
DS3 8.26E-01 5.44E-02  7.60E-01 3.29E-02  8.84E-01 1.38E-02  8.88E-01  3.70E-02
+ + =
DS4 7.80E-01 5.09E-02  7.30E-01 2.30E-02  9.19E-01 2.32E-02 8.54E-01 1.57E-02
+ + -
DS5 7.39E-01 9.64E-02  7.07E-01 6.11E-02  8.38E-01 4.08E-02 842E-01 841E-02
+ + =
DS6 5.09E-01 5.60E-03  5.19E-01 0.00E+00 5.41E-01 1.13E-02 5.02E-01  0.00E+00
DS7 1.00E+00 0.00E+00  9.34E-01  4.01E-02  9.73E-01 1.78E-02  9.88E-01 5.90E-03
- + +
DS8 9.85E-01 1.32E-02  9.86E-01 1.30E-02  9.93E-01 4.40E-03 9.97E-01 4.80E-03
+ + +
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TABLE 5. Classification of EC methods and FS-EC methods on training sets.

GA FS-GA PSO FS-PSO
Datasets
mean std size mean std size mean std size mean std size
DS1 8.47E-01 6.80E-03 171 8.40E-01 5.00E-03 66 8.34E-01  4.40E-03 171 8.20E-01 2.23E-02 72
DS2 9.95E-01 4.10E-03 1953 9.96E-01 2.70E-03 351 9.93E-01 3.10E-03 1953 9.90E-01 3.20E-03 319
DS3 9.74E-01 3.30E-02 7503 9.84E-01 1.24E-02 780 8.79E-01 2.58E-02 7503 8.95E-01 3.25E-02 480
+ +
DS4 8.60E-01 5.35E-02 55945 9.47E-01 1.95E-02 5565 7.80E-01  2.04E-02 55945 8.21E-01 4.69E-02 5025
+ +
DS5 8.17E-01 1.49E-01 193753  9.47E-01 324E-02 10841  8.63E-01 1.86E-02 193753  8.74E-01 4.30E-02 9591
+ =
DS6 5.51E-01 1.09E-02 502503  6.74E-01 1.95E-02 14070 5.59E-01  0.00E+00 502503  5.82E-01 2.71E-02 12960
+ +
DS7 1.00E+00  0.00E+00 764466  1.00E+00  0.00E+00 190 9.84E-01 1.46E-02 764466 1.00E+00  0.00E+00 226
= +
DS8 1.00E+00 0.00E+00 845650  1.00E+00  0.00E+00 2129 9.96E-01  5.30E-03 845650  9.98E-01 2.30E-03 2380
TABLE 6. Classification of EC methods and FS-EC methods on training sets.
BBO FS-BBO SPS-PSO FS-SPS-PSO
Datasets
mean std size mean std size mean std size mean std size
DS1 8.59E-01 1.90E-03 171 8.37E-01 1.12E-02 72 8.76E-01 7.80E-03 171 8.46E-01 6.60E-03 78
DS2 9.97E-01 3.90E-03 1953 9.96E-01 2.00E-03 294 9.97E-01 3.50E-03 1953 9.92E-01 3.80E-03 385
= +
DS3 1.00E+00  0.00E+00 7503 9.88E-01 6.10E-03 612 9.98E-01 5.20E-03 7503 9.66E-01 1.24E-02 639
DS4 9.83E-01 9.70E-03 55945 9.67E-01 4.00E-03 5539 9.44E-01 1.77E-02 55945 9.69E-01 1.62E-02 4512
+ +
DS5 9.68E-01 2.53E-02 193753  9.73E-01 1.96E-02 9800 9.69E-01 1.50E-03 193753  9.79E-01 2.38E-02 11325
+ -
DS6 7.42E-01 1.33E-02 502503  7.83E-01 3.69E-02 13041 5.44E-01  0.00E+00 502503  5.94E-01 1.14E-02 12680
+ +
DS7 1.00E+00 0.00E+00 764466 1.00E+00  0.00E+00 171 1.00E+00 0.00E+00 764466  1.00E+00  0.00E+00 185
DS8 1.00E+00  0.00E+00 845650 1.00E+00 0.00E+00 2538 1.00E+00  0.00E+00 845650 1.00E+00 0.00E+00 2244

and SPS-PSO perform much better than GA and PSO. BBO
and SPS-PSO are better on 5 datasets, respectively. From the
significant difference, SPS-PSO is better than the GA and
PSO on 7 datasets. Compared to the method BBO, SPS-PSO
is not as good as BBO on DS 3,4 while is superior to BBO on
the other 6 datasets. For the test sets, SPS-PSO performs best
on DS 1,2,3,5,8. At the same time, GA is better on DS 1,7 and
BBO s better on DS 4,6. Consider the classification accuracy,
SPS-PSO has the highest accuracy on 5 datasets. Combined
with significant differences, we can find that the performance
of SPS-PSO is better than or equal to the other 3 EC methods
on the other 6 datasets except for slightly weaker on DS 4,6.

From the figure we can see that the convergence speed
and the final convergence result of GA are worse than the
other three methods. The PSO converges faster, but the final
result is not good enough while only better on the DS6. BBO
and SPS-PSO perform better, and SPS-PSO has advantages in
four datasets DS1, 2, 3, and 5. At the same time, the two per-
formed similarly on DS7 and 8, and the results are all good.
From the convergence curve, it can be found that SPS-PSO
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has some advantages over the other three methods in terms of
convergence speed and final result.

Combined with Table 1, 2 and Fig. 2, we can conclude
that SPS-PSO has advantages over the other 3 EC methods
in optimizing the weights for FNN.

2) RESULTS OF FS-EC AND EC EXPERIMENTAL GROUPS
Tables 5-8 show the results of the second group of experi-
ments.

It can be seen from Tables 5,6, after the SPS-PSO based
feature selection method, the solution sizes of the EC methods
for FNN weights optimization are greatly reduced, espe-
cially on high-dimensional datasets. For example, on DS 7,
the size of the solution is reduced from the original 764,
466 to only 190. Compared with the original solution, such
a small solution can greatly reduce the difficulty of search-
ing the solution space and improve the computational effi-
ciency greatly. It becomes possible to perform FNN weights
optimization on high-dimensional datasets that were impos-
sible before. More important, it is gratifying that the greatly

VOLUME 7, 2019



Y. Xue et al.: Large-Scale FNN Optimization by a Self-Adaptive Strategy and Parameter Based PSO

IEEE Access

024 012 035
5 —-#-—SPS-PSO y —-#-—SPS-PSO 9 —#-—SPS-PSO
—-9-—GA —9-—GA 03l% —¥-—GA
022 —e—880 0.1 —a—B80 v —=—880
PSO PSO \ PSO
i :
i ! 0.25% g
02 0.08 ¥
w w 1 w | VVV
7] ] i a i
= = | = 02§ v
& o184 8006 i & i Yoy,
& & i s i v,
g g : Lol
< < <
0.04 % i o
i 0.1
i | oo
3 ! e ——
0.02 ‘}vn“ it oos
m *+
012 0 0 ek
o 05 1 15 2 25 3 ] 05 1 2 25 3 0 05 1 15 2 25 3
Number of Fitness Evaluation %10% Number of Fitness Evaluation x10° Number of Fitness Evaluation «10°
035 18
N —-%-—SPS-PSO v —#-—SPS-PSO
—v--cA T —--GA
D —=—BB0 i —=—B80
PSO 167 PSO

0.25 §

Average MSE
Average MSE

o 05 1 15 2 25 3 1 2 25 3 0 05 1 15 2 25 3
Number of Fitness Evaluation = 10% Number of Fitness Evaluation «10° Number of Fitness Evaluation «10%
025 0.15
9
—+-—SPS-PSO —+-—SPS-PSO
—7-—GA —7 —GA
—=—BBO b —e—BB0O
0.2 PSO PSO
i 0.1
i
% o015 f )
= : =
o 4 @
<) i <)
ol i<t
LI g
a 04 < i
3 0.05
N
. Ty
0.05 Yo,
¥ v
|
VTR, 3
¥ ¥ |
] o
0 05 1 15 2 25 3 ) 05 1 185 2 25 3
Number of Fitness Evaluation «10% Number of Fitness Evaluation *x10%

FIGURE 3. Convergence curves of MSE for different algorithms on training sets.

reduced solution does not decrease the final classification
accuracy, but makes the results even better. For example,
comparing the results of GA and FS-GA on training sets,
we can find that FS-GA is better than or equal to GA on
7 datasets except for DS 1. FS-PSO is better than PSO
on DS 3,4,5,6,7,8 except for DS 1,2. The performance of
FS-BBO and FS-SPS-PSO are similar, both worse than BBO
or SPS-PSO on DS 1,2,3, but better on the other 5 datasets.
The results on the test set are also similar to the results on the
training set. Except for the results on DS 1,2, and 3, FS-GA
and FS-PSO performed better on the other 5 datasets than GA
and PSO. For FS-BBO and FS-SPS-PSO, on DS1,2,3 and
5, it is slightly worse than BBO and SPS-PSO. On the
low-dimensional datasets DS 1,2,3, we can find that FS-EC
group performs worse than EC group. But as the dimension
of the datasets increase, the advantages of FS-EC group begin
to appear. On high-dimensional datasets DS 4-8, the solution

VOLUME 7, 2019

sizes increase fast as the datasets become bigger and bigger.
In this case, the SPS-PSO based feature selection method
effectively reduces the sharply increased features with the
increasing of the dimension of datasets. By feature selection,
it can avoid searching for the optimal solution in a huge
solution space, so as to reduce the possibility of falling into
local optima. The experimental results also illustrate this
point. Begin with DS 4, the dimensions of the datasets reach
to 166, and the solution size is 55945. The FS-EC group is
better than the EC group on the following 5 datasets DS 4-8.

In summary, by comparing the original EC group and
FS-EC group, we find that the SPS-PSO based feature selec-
tion method can reduce the computational complexity of the
classification by reducing the solution for the FNN weights
optimization problems. It also guarantees excellent classi-
fication accuracy especially on high-dimensional datasets.
Moreover, as a preprocessing method for datasets of FNN,
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TABLE 7. Classification of EC methods and FS-EC methods on test sets.

GA FS-GA PSO FS-PSO
Datasets
mean std size mean std size mean std size mean std size
DS1 8.52E-01 6.60E-03 171 8.40E-01 7.60E-03 66 8.31E-01 1.06E-02 171 8.24E-01  9.20E-03 72
DS2 9.96E-01 1.70E-03 1953 9.89E-01 6.10E-03 351 9.86E-01  6.70E-03 1953 9.82E-01  7.90E-03 319
DS3 8.26E-01 5.44E-02 7503 7.73E-01 8.09E-02 780 7.60E-01  3.29E-02 7503 7.06E-01  5.19E-02 480
DS4 7.80E-01 5.09E-02 55945 8.86E-01 2.45E-02 5565 7.30E-01 2.30E-02 55945 7.60E-01 4.01E-02 5025
+ +
DS5 7.39E-01 9.64E-02 193753  7.96E-01 9.66E-02 10841  7.07E-01 6.11E-02 193753 7.46E-01 6.33E-02 9591
+ +
DS6 5.09E-01 5.60E-03 502503  5.77E-01 3.17E-02 14070  5.19E-01  0.00E+00 502503 5.50E-01 2.13E-02 12960
+ +
DS7 1.00E+00 0.00E+00 764466 1.00E+00  0.00E+00 190 9.34E-01 4.01E-02 764466 9.95E-01 7.40E-03 226
= +
DS8 9.85E-01 1.32E-02 845650  9.99E-01 1.20E-03 2129 9.86E-01 1.30E-02 845650 9.91E-01  5.00E-03 2380
+ =
TABLE 8. Classification of EC methods and FS-EC methods on test sets.
BBO FS-BBO SPS-PSO FS-SPS-PSO
Datasets
mean std size mean std size mean std size mean std size
DS1 8.48E-01  2.30E-03 171 8.40E-01 5.00E-03 72 8.50E-01  6.20E-03 171 8.45E-01 2.60E-03 78
DS2 9.93E-01  3.50E-03 1953 9.90E-01 3.90E-03 294 9.94E-01  7.00E-04 1953 9.93E-01 2.60E-03 385
DS3 8.84E-01  1.38E-02 7503 8.17E-01 4.92E-02 612 8.88E-01  3.70E-02 7503 7.36E-01 3.03E-02 639
DS4 9.19E-01  2.32E-02 55945 9.36E-01 9.80E-03 5539 8.54E-01 1.57E-02 55945 9.41E-01 1.92E-02 4512
+ +
DS5 8.38E-01  4.08E-02 193753 8.13E-01 4.05E-02 9800  8.42E-01 8.41E-02 193753  8.37E-0l1 3.74E-02 11325
DS6 5.41E-01 1.13E-02 502503 5.63E-01 2.05E-02 13041 5.02E-01 0.00E+00 502503  5.54E-01 2.15E-02 12680
+ +
DS7 9.73E-01 1.78E-02 764466 1.00E+00 1.10E-03 171 9.88E-01  5.90E-03 764466 1.00E+00  0.00E+00 185
+ +
DS8 9.93E-01  4.40E-03 845650 1.00E+00  4.00E-04 2538 9.97E-01 4.80E-03 845650  9.99E-01 1.50E-03 2244
+ +

the SPS-PSO based feature selection method makes it pos-
sible to optimize the weights of FNN with high-dimensional
datasets by EC methods.

V. CONCLUSION

This paper transforms the large-scale FNN optimization
problems and feature selection optimization problems into
stochastic optimization problems which can be solved by
EC methods. Then we present a parameter and strategy
self-adaptive particle swarm optimization algorithm and use
it to solve the large-scale FNN optimization problem. More-
over, in order to reduce the computational complexity of
large-scale FNN optimization problems, we use the SPS-PSO
based feature selection method as the preprocessing method
for datasets of FNN.

The experimental results show that SPS-PSO has advan-
tages in optimizing the weights for FNN compared with the
other three EC methods. Moreover, when the SPS-PSO based
feature selection method is applied to preprocess the inputs
of FNN, the solution size can be greatly reduced. The results
show that the SPS-PSO based feature selection makes it pos-
sible to optimize the large-scale FNN weights optimization
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problems. In the future work, we will further improve perfor-
mance of the SPS-PSO algorithm on optimizing the weights
of the FNN.
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