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ABSTRACT Recently, with the increasing supply of band width and the diversification of applications
in the Internet of Things (IoT), it has been a challenging problem to identify frequent items (also called
heavy hitters) in high-speed and dynamically changing data streams. As well as, these data streams are
from multiple sources in a distributed environment. To solve it, we propose the distributed-tracking schemes
for continuously mining frequent items in the multi-level, non-regular tree-based communication structure.
Our method employs a combination of local tracking and delays updating at each node to produce highly
communication-efficient and space-efficient solutions. To reduce the communication cost, it only sends the
frequency increments to violate a pre-defined threshold through a hierarchy of intermediate nodes, which is
interposed between the monitoring nodes and the root node. With the information gathered, the root node
continuously reports the set of frequent items. Two optimization approaches are proposed to minimize the
worst-case total communication and minimize the worst-case maximum load on any link under any input
streams. We perform extensive simulations with real traffic traces to evaluate the performances of the two
optimization approaches.

INDEX TERMS Frequent items, distributed weighted data streams, multi-level communication structure,
continuous tracking.

I. INTRODUCTION
Recently, with the increasing supply of band width and
diverse applications in traditional Internet and Internet of
Things [1], it is of great significance to identify frequent
items (also called heavy hitters) in high-speed and variable
data streams on designing high quality data integration, con-
nection, communication mechanism and a number of appli-
cations, such as discovering denial-of-service (DoS) attacks,
warning heavy network users, monitoring traffic trends, bal-
ancing traffic load, and discovering virus signatures [2]–[7].

Most of the existing work focuses on detecting frequent
items at a single node [8]–[16]. However, in many applica-
tions, data sets are physically distributed over a large number
of nodes [17]. For example, in IP-network monitoring, an ISP
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(Internet Service Provider) may have packet traces collected
at hundreds (or even thousands) of ingress and egress routers,
and the amount of data collected at each router can be in
the order of several terabytes. In order to detect a DDoS
attack, we need to find the destination IP addresses that occur
frequently in IP traffic aggregated over the union of all packet
traces at all ingress and egress points. A similar scenario
emerges within the sensor networks. For example, many sen-
sors are deployed in the field to collect environ-mental infor-
mation and the frequently occurring sensor measurements are
usually the most interesting sort of data [18]. In this case,
an item can be a value that a sensor read at a particular point in
time, the same itemmay appear multiple times at one or more
sensor nodes. In summary, the underlying infrastructure com-
prises several remote nodes that (each with its own local data
source) can exchange information through a communication
network.
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Furthermore, to identify frequent items in a distributed
environment also needs to consider the communication cost.
For example, in IP networkmonitoring, given the gigantic and
evolving nature of these physically distributed data sets, it is
usually infeasible to transport all the data to a single location
for completing processing due to the prohibitively high com-
munication cost. In wireless sensor networks, the main factor
affecting battery life is the communication cost; therefore,
in order to improve the availability useful life of the network,
we need to reduce the communication cost. Communication
cost is one of the most important measure of complexity
during the entire tracking period. Besides, the monitoring is
continuous, which need real-time track of measurements or
events. In this situation, a continuous query is placed instead
of a one-shot query which only requires one-shot responses.
This yield yet further challenge.

This paper studies how to design communication-efficient
algorithms for continuously tracking the global frequent
items over the distributed weighted data streams. The remain-
der of the paper was organized as follows: in section II
we defined the problem and discussed the related work,
in section III we proposed the method of hierarchical con-
tinuous distributed frequent item mining, in section IV we
analyzed its complexity, in section V we proposed two opti-
mization approaches. We presented the experimental results
in section VI, and concluded the paper in section VII.

II. PRELIMINARIES
We first define the multi-level, non-regular tree-based com-
munication structure by use of an examples, and formalize it.

A. PROBLEM DEFINITION
Here, suppose that a distributed monitoring environment is a
tree-based hierarchical structure. It consists of m≥ 1 moni-
toring nodes, one central root node and several intermediate
nodes. Each monitoring node is a leaf which observes and
summarizes a single local data stream. Partial knowledge of
these summaries will be then relayed through a hierarchy of
intermediate nodes that is interposed between the monitor-
ing nodes and the root node. With the knowledge gathered,
the root node continuously reports the set of frequent items
over the union of all m distributed data streams. An exam-
ple of the tree-based communication structure is shown
in Figure1. For the sake of clarity, we number the nodes by
levels from top to bottom and from left to right. In this figure,
there are 7 local data streams (i.e., S1, S2, S3, S4, S5, S6, S7)
processed by monitoring nodes 1, 4, 5, 6, 7, 8 and 9 respec-
tively, root node islabelledby0,andintermediate nodes arela-
belledby2 and 3 respectively.

Denote the distributed data streams as S1, S2, . . . , Sm.
Si consists of a sequence of tuples (v, ci,v,t ), ordered by
timestamp t , where i is the ID of data stream(1 ≤ i ≤ m),
v ∈ U ({1 . . . k}), k is a positive integer) is the item name,
ci,v,t > 0 is the weight of the item. Denote the union of data
stream S1, S2, . . . , Sm as S, reordered by the timestamp. The
goal of the root node is to continuously supply the frequent

FIGURE 1. An example of the tree-based communication structure.

items in the global data stream S which satisfies the following
properties:
(1) Output each item v which satisfies fv ≥ ϕN
(2) Output no item v which satisfies fv < (ϕ − ε)N .

Where the true frequency of item v in S is denoted as fv
(i.e., the total weights of tuples throughout S with the same
item name v), the total frequency in S is denoted as N
(i.e., the total weights of all tuples throughout S), the user-
specified error bound is denoted as ε, the user-specified
support threshold is denoted as ϕ.

FIGURE 2. An extension of the tree-based communication structure.

In practice, the intermediate nodes and the root node might
need to directly process the items from the local data streams
as well. For example, in Figure 2, besides the messages
from the child nodes, the root node and the intermediate
nodes 2 and 3 need to process the items from the local data
streams S8, S9, S10 respectively. For clarity, we call them
extended structure (where the intermediate nodes and the root
node might process the local data streams) and the normal
structure (where only the monitoring nodes process the local
data streams) respectively in the following section.

B. RELATED WORK
Most of the existing work focuses on mining frequent items
in data streams at a single node [8]–[16]. Only a few
works investigated this problem in a distributed scenario.
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Tong et al. [17] proposed a local threshold-based determin-
istic algorithm and a sketch-based sampling approximate
algorithm to track distributed probabilistic frequent items.
Manjhi et al. [19] gave a method to find frequent items in
the union of multiple distributed data streams. However, this
method only can be applied to the case of the one-shot query
and its communication structure is restricted to balanced,
regular trees. Subsequently, Manjhi et al. [20] extended the
above work to the non-regular trees. Cormode et al. [21]
introduced an approach to continuously track approximate
quintiles summaries of collections of physically distributed
streams with communication cost O

(
k
ε2
log (n)

)
, and this

method can be extended to continuously track the frequent
items in a distributed environment with the same commu-
nication cost. As well, the communication structure was
extended from the single-level mode to the multi-level model.
The major drawback is its high communication cost, which
means the total error tolerance must be large enough to
prevent small deviations from triggering summary refreshes.
Babcock and Olston [22] designed some heuristics for mon-
itoring the top-k values over remote data streams. This
approach can be adapted to continuously track the frequent
items over remote data streams [23], [24]. There are two
main disadvantages: first, this method remains heuristic in
nature which means it lacks of a theoretical analysis; sec-
ond, only the single-level communication structure is consid-
ered. Yi and Zhang [25] proposed a deterministic algorithm
for continuously tracking frequent items over remote data
streams with worst-case communication cost O

( k
ε
log (n)

)
,

however the authors only consider the single-level com-
munication structure. Huang et al. [26], [27] designed two
randomized algorithms for finding frequent items over dis-
tributed streams, one [23] only supports the one-shot query,
and the other [24] supports the continuous query with com-

munication cost O
(√

k
ε
log (n)

)
. However, both of them only

consider the single-level communication structure. Several
research [28]–[30] have considered the problem of finding
items with frequency above a fixed threshold, not some frac-
tion ϕ of the total frequency as in this paper. Zhao et al. [28]
and Zhao et al. [29] proposed respectively two methods to
find icebergs (items whose frequency of occurrence is above
a certain threshold) over remote data sets. A major draw-
back is that they only consider the one-shot query, which is
not a continuous monitoring solution. Keralapura et al. [30]
considered the ‘‘threshold counts’’ problem where return-
ing the aggregate frequency counts of the items that are
continuously monitored by distributed nodes whenever the
actual counts exceed a given threshold value. However,
the authors only consider the single-level communication
structure.

In summary, none of the previous works have proposed
communication-efficient algorithms for continuously track-
ing the global frequent items over the distributed weighted
data streams in the multi-level, non-regular tree-based com-
munication structure.

III. HIERARCHICAL CONTINUOUS DISTRIBUTED
FREQUENT ITEM MINING
Our goal in this paper is to make the root node which is in the
tree based communication structure effectively track the fre-
quent items of the update streams observed at the monitoring
nodes. To achieve this goal, the root node needs to maintain
each item’s frequency as well as the total frequency. One
simple way is propagating all the updates from themonitoring
nodes to the root node. In this way, it is apparently very
wasteful. Another simple method is periodically sending the
approximate frequent items and total frequencymaintained in
the monitoring nodes to the root node. However, periodically
sending cannot provide continuous frequent items. This is
because that the accuracy of returned frequent items can be
guaranteed only at the time of sending. Moreover, the com-
munication cost is higher.

In this paper, we improve the optimized weighted frequent
algorithm (OWFrequent [31]) to continuously track the global
frequent items over the distributed weighted data streams.
Our method employs a combination of local tracking and
delayed updating at each node to produce highly communica-
tion and space-efficient solutions. To reduce the communica-
tion cost, only the frequency increments of the items violating
a pre-defined threshold are relayed through a hierarchy of
intermediate nodes interposed between the monitoring nodes
and the root node.

A. ESTIMATE EACH ITEM’S FREQUENCY
IN THEROOTNODE
The monitoring nodes will not send the exact fre-
quency counts of the items to the root node, but send the
frequency increments of the items. Therefore, a new factor
of frequency increment is added in OWFrequent to track the
increment on the frequency count since last update to the
parent node. In order to reduce the communication cost,
the frequency increment will not be sent to the parent node
until its value violates a pre-defined threshold (i.e., delayed
updating). To be precise, all the nodes in tree structure work
as follows:

A-1) Each monitoring node (numbered s) uses OWFre-
quent to maintain an αs-synopsis structure (a min-heap with⌈

1
αs

⌉
entries, 1 < αs < ε represents the error tolerance

of node s) for the items in the local data stream Sis (1 ≤
is ≤ m). When a new item

(
v, cis,v

)
arrives, if v is in the

αs-synopsis structure, then increase 1v = 1v + cis,v, where
1v represents the frequency increment of item v and its
initial value is 0. Otherwise, v enters the αs-synopsis structure
(i.e., when replacing the minimum item in OWFrequent), and
set1v = cis,v. When1v ≥ βsNis , the monitoring node sends
a message (v,1v) to its parent node, and resets 1v = 0,
where βs represents the delayed update coefficient of node
s (0 < βs < ε), Nis represents the total frequency of all items
in Sis .

A-2) Each intermediate node (numbered s
′

) receives all
messages from its child nodes, and uses OWFrequent to
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maintain an αs′ -synopsis structure(a min-heap with
⌈

1
α
s
′

⌉
entries, where 1 < αs′ < ε represents the error tolerance
of node s

′

). When a new message (v, δv) arrives, if v is in the
αs′ -synopsis structure, then increase 1

′

v = 1
′

v + δv, where
1
′

v represents the frequency increment of item v and its initial
value is 0. Otherwise (v is not in the αs′ -synopsis structure),
v enters the αs′ -synopsis structure (i.e., when replacing the
minimum item in OWFrequent), and set 1

′

v = δv. When
1
′

v≥ βs′N
′

s′
, the intermediate node sends a message

(
v,1

′

v

)
to its parent node, and resets 1

′

v = 0, where 0 < βs′ <

ε represents the delayed update coefficient of node s
′

,N
′′

s
represents the total frequency of all messages received by
node s

′

.
A-3) the root node receives all messages from its child

nodes and usesOWFrequent tomaintain anα0-synopsis struc-
ture (a min-heap with

[
1
α0

]
entries, 1 < α0 < ε represents

the error tolerance of root node).

B. ESTIMATETHETOTAL FREQUENCY IN THEROOTNODE
Two counters are added in each node dedicated to record
the total frequency as well as its frequency increment which
will not be sent to the parent node until its value violates a
pre-defined threshold (i.e., delayed updating). To be precise,
all the nodes in the tree structure work as follows:

B-1) Each monitoring node (numbered s) adds two coun-
ters N

′′

s and 1
′′

s , where N
′′

s records the total frequency of all
items in the local data stream Sis (1 ≤ is ≤ m) processed by
node s (labeled N

′′

s = Nis ), 1
′′

s records the frequency incre-
ment of N

′′

s . When a new item
(
v, cis,v

)
arrives, increment

N
′′

s = N
′′

s + cis,v and 1
′′

s = 1
′′

s + cis,v . When 1
′′

s ≥ βsN
′′

s ,
the monitoring node sends a 0-message

(
0,1

′′

s

)
to its parent

node, and resets 1
′′

s= 0 . Where βs represents the delayed
update coefficient of node s.

B-2) Each intermediate node (numbered s
′

) adds two coun-
ters N

′′

s′
and 1

′′

s′
, where N

′′

s′
records the total frequency of all

0-messages received by node s
′

,1
′′

s′
records the frequency

increment of N
′′

s′
. When a new 0-message (0, δ) arrives,

increment N
′′

s′
= N

′′

s′
+ δ and 1

′′

s′
= 1

′′

s′
+ δ. When 1

′′

s′
≥

βs′N
′′

s′
, the intermediate node sends a 0-message 0,1

′′

s to

its parent node, and resets 1
′′

s′
= 0 , where βs′ represents the

delayed update coefficient of node s
′

.
B-3) The root node adds one counter N

′′

0 which records
the total frequency of all 0-messages received. Note that the
estimated total frequency in the root node is N

′′

0 .

C. IDENTIFY THE DISTRIBUTED FREQUENY ITEMS
IN THE ROOT NODE
When it comes a frequent item query, the root node scans
through each entry in the min-heap maintained by OWFre-
quent and reports item v if f̂v ≥

[
wN

′′

0

]
, where f̂v rep-

resents the estimated frequency of item v maintained by

OWFrequent, 0 < w < ϕ represents the output threshold
and N

′′

0 represents the estimated total frequency.

IV. COMPLEXITY ANALYSES
A. SPACE AND TIME COMPLEXITY ANALYSIS
Theorem 1: For each node s, the required memory space
is O

(
1
αs

)
, the required time to process one item is

O
(
log

(
1
αS

))
, where αS represents the error tolerance of

node s αs > 0.
Proof: Since node s needs to maintain an αs-synopsis

structure (i.e. a min-heap with
[
1
αs

]
entries in OWFre-

quent [32]) for all the items and messages are received, the
memory space required by node s is O

(
1
αS

)
Note that it

only required 2 more counters in node s to estimate the
total frequency N (see B-1,B-2,B-3 in sectionIII). Since the
min-heap in node s has

[
1
αs

]
entries, it requires O

(
log

(
1
αs

))
time to process one item.
Corollary 1: The errors tolerance of each node is bounded

by its memory size. That is to say, if the memory size of node
s is µ(measured the number of entries in the min-heap), then
αs ≥

1
µ
, where αs represents the error tolerance of node s.

Proof: Refer to Theorem 1.
In practice, the memory size of each node is usually fixed,

according to Corollary 1, then the minimum error tolerance
of each node is fixed as well.

B. COMMUNICATION COMLEXITY ANALYSIS
Theorem 2: No matter in the normal or extended structure,
the total number of messages sent by node s(except the root

node) to its parent node is no more than 2
log
(
Ñs
)

βs
, where βs

represents the delayed update coefficient of node s; Ñs repre-
sents the total frequency of all items in Ts (Ts is the sub-tree
rooted at node numbered s).
Proof: In the first scenario where node s is in the normal

structure (i.e., only the monitoring nodes process the local
data streams). There are two cases for the inspected node s.
Case 1: node s is a monitoring node which processed the

local data streamSis , then according toA-1 andB-1 in section
III, node s will not send a message to its parent node until Nis
andN

′′

s are increased by a factor of 1+βs, node is bounded by
log(Nis)
log(1+βs)

+
log
(
N
′′

s

)
log(1+βs)

, whereN
′′

s represents the total frequency

of all items in Sis and N
′′

s = Nis . Obviously, in this case
Nis = Ñs , as there only one node(i.e. the monitoring node s)
in Ts . Since 1

log(1+βs)
≈

1
βs

(for 0 < βs < 1), the number
of messages sent by monitoring node s to its parent node is

about 2
log
(
Ñs
)

βs
.

Case 2: node s is an intermediate node, then according to
A-2 and B-2 in section III, node s will not send a message to
its parent node until N

′

s and N
′′

s are increased by a factor of
1+βs the number of messages sent by this node is bounded by
log
(
N
′

s

)
log(1+βs)

+
log
(
N
′′

s

)
log(1+βs)

≈
log
(
N
′

s+logN
′′

s

)
βs

, where N
′

s represents
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the total frequency of all messages(except the 0-messages)
received by node s, N

′′

s represents the total frequency of all
0-messages received by node s. Since each node only send
the frequency increments to its parent node, we haveN

′

s ≤ Ñs
and N

′′

s ≤ Ñs , thus, the number of messages sent by node s

to its parent node is no more than 2
log
(
Ñs
)

βs
.

In the second scenario where node s is in the extended
structure (i.e., the intermediate nodes and the root node
might directly process the local data streams). There are two
cases for the inspected node s as well. Similar to that of
the first scenario, it is easy to prove that in the extended
structure, whether the monitoring node or the intermediate
node, the number of messages sent by node s to its parent

node is no more than 2
log
(
Ñs
)

βs
.

In conclusion, no matter in the normal or extended struc-
ture, the total number of messages sent by node s to its parent

node is no more than 2
log
(
Ñs
)

βs
. Note that the root node will

not send any messages since it has no parent node.
Corollary 2:Nomatter in the normal or extended structure,

the total number of messages sent by all the nodes is no
more than 2 log (N )

∑z−1
s=1

1
βs

, where z represents the total
number of nodes, βs represents the delayed update coefficient
of node s, N is the total frequency of all items in the union of
all local data stream.

Proof: Because the root node (numbered 0) will not
send any messages, according to Theorem 2, the total
number of messages sent by all nodes is no more than

2
∑z−1

s=1

log
(
Ñs
)

βs
. Since for each 1 ≤ s ≤ z − 1, we have

Ñs ≤ N (no matter in the normal or extended structure).

Consequently, 2
∑z−1

s=1

log
(
Ñs
)

βs
≤ 2log (N )

∑z−1
s=1

1
βs
. To sum

up, no matter in the normal or extended structure, the total
number of messages sent by all nodes is no more than
2 log (N)

∑z−1
s=1

1
βs
.

V. APPROPRIATE SETTINS OF PARAMETERS
A. OPTIMIZATION APPROACHES
In this subsection, we first consider how to select the delayed
update coefficient to use at each node in order to achieve
one of the two objectives: (1) minimizing the worst-case
total communication cost under any input streams, (2) min-
imizing the worst-case load on any link under any input
streams.

We propose algorithm 1 to determine the optimized
delayed update coefficients which ensures a relatively small
amount of total communication. According to Corollary2,
the total number of messages sent by all nodes is no more
than 2 log (N )

∑z−1
s=1

1
βs

. Hence, we can use algorithm1 to

minimize
∑z−1

s=1
1
βs
, then we have a relatively small amount

of total communication in practice.
The algorithm 2 is proposed to determine the optimized

delayed update coefficients which ensure the minimum
worst-case maximum load on any link.

Algorithm 1 Total Communication Optimization
Require: the user-specified error bound ε
1: let s1, s2, . . . , sm represent the monitoring nodes;
2: calculate α

′

si (1 ≤ i ≤ m) and α
′

max , where α
′

si represents
the sum of each node’s error tolerance in the path from
monitoring node s to the root node, α

′

max represents the
maximum of all α

′

si

3:set β
′′

si = Max
{
ε−α

′

max
2 , ε2 − α

′

si

}
(1 ≤ i ≤ m);

4:let β
′

si (1 ≤ i ≤ m) represents the sum of each node’s
delayed update coefficient in the path from si to the root
node;
5:Caculate β1, β2, . . . , βz−1 to minimize

∑z−1
s=1

1
βs

subject

to the constraints: β
′

s1 ≤ β
′′

s1 , β
′

s2 ≤ β
′′

s2 , . . . , β
′

s1 ≤ β
′′

s1

Algorithm 2 Maximum Link Load Optimization
Require: the user-specified error bound ∈
1: let s1, s2, . . . , sm represent the monitoring nodes in
descending order according to their levels(if equals, sort
the node from left to right);
2: calculate α

′

si (1 ≤ i ≤ m) and α
′

max ;

3: set β
′′

si = Max
{
ε−α

′

max
2 , ε2 − α

′

si

}
(1 ≤ i ≤ m);

4: for each monitoring node Si from Si1 to Sm do
5: let ksi represents the number of nodes in the path from

Si to the root node of which delayed update
coefficients have not yet been determined;

6: let β
′′′

si represents a sum of each determined node’s
delayed update coefficient in the path from Si to the
root node.

7: set each undetermined node’s delayed update
coefficient β

′

si in the path from Si to the root node

according to
β
′′

si
−β
′′′

si
ksi

.
8: end for

B. THE INITIALIZATION PHASE
In this subsection, we demonstrate the requirements for an
initialization phase in our proposed method.
Theorem 3: No matter in the normal or extended structure,

the maximum message sending rate from node s (except the
root node) is 2

βst
(messages/s), where βs is the delayed update

coefficient of node s and t represents the time in seconds.

Proof: LetMs (t) = 2
log
(
Ñst

)
βs

. For clarification, in sim-
plest case that Ñst = pst , where ps > 0 is a constant.
Therefore the maximum message sending rate from node s
is M

′

s (t) =
2
βst

(messages/s) (derivative of Ms (t)).
Corollary 3:Nomatter in the normal or extended structure,

the total message sending rate from all nodes is no more than
z
t

∑z−1
s=1

1
βs

(messages/s), where z represents the total number
of nodes, βs represents the delayed update coefficient of node
s and t represents the time in seconds.

Proof: Refer to Theorem 3.
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From Theorem 3, the message sending rate from each node
decreases rapidly with the change of time. However, at the
very beginning the rate might be too high for the connected
link to transmit (i.e., the message sending rate might exceed
the bandwidth limit of the connected link at the very begin-
ning). That is to say, Theorem 3 demonstrates the requirement
for an initialization phase, i.e., each node may have to wait
some initialization time before the connected link is able to
transmit the generated messages. In practice, at the begin-
ning, each node will handle the incoming items (messages)
as usual; however, it will send any messages to its parent
node after the initialization time. Strictly speaking, in order
to guarantee the correctness of theory, each node needs to
send all the items whose frequency increments exceeding
the pre-defined threshold to its parent node right after the
initialization time. However, in practice, when a query is
submitted after a long time (e.g., one hour), the returned
global frequent items will be hardly affected by the initializa-
tion time due to its short duration (e.g., just several seconds
in practice). Meanwhile, the total communication overhead
will be significantly reduced by preventing the nodes from
sending any messages in the initialization phase.

VI. EXPERIMENTAL EVALUTION
In our experiments, we tracked the distributed TCP and UDP
elephant flows (i.e., frequent items) defined by the famous
five-tuple (i.e., source IP address, destination IP address,
source port, destination port and protocol) in the extended
communication structure depicted in Figure2.

We used three real traffic traces as input for our distributed
monitoring system. The CERNET trace is a TCP packet
header trace collected at an OC-48 link of CERNET (China
Education and Research Network) on May 31, 2007 in both
directions. The CAIDA48 trace [32] is an anonymized packet
header trace measured at an OC-48 west coast peering link
on August 14, 2002 and we used the first hour traffic of
one direction (Direction-1). The CAIDA192 trace [33] is an
anonymized packet header trace measured at an OC-192 link
from the equinix-sanjose Internet data collection monitor on
July 17, 2008 and we used the first 18-minute traffic of one
direction (Direction-A). The characteristics of these three
traffic traces are given in table 1. Notice that we just list the
approximate numbers of packets and flows (including both
TCP and UDP).

TABLE 1. Characteristics of traffic traces.

In Figure2, the packets of each trace are distributed to all
the nodes, i.e., nodes 0,1,2,3,4,5,6,7,8,9. In this experiment,
all the packets to all nodes at first are uniformly distributed
in Figure2. And then in order to evaluate the performance

under other probability distributions, we used random distri-
butions to update different nodes. The random distributions
are created by generating random probabilities associated
with each node in Figure2. These probabilities are used to
send the packets from the input trace to these nodes. Note
that a different random distribution is generated for every
simulation run. We repeat the simulation 500 times to ensure
that we capture a variety of different random distributions.

In this experiment, the error bound ε ranged from 0.006 to
0.01 (i.e., 0.006, 0.008, 0.01), the support threshold ϕ = ε.
For simplicity, we set α1 = α2 = α3 = α4 = α5 = α6 =
α7 = α8 = α9 = 0.1ε . Both of the optimization approaches
(i.e., Algorithm 1 and 2) are explored in the experiments. The
following two metrics are employed to evaluate the commu-
nication complexity:
• Total communication cost, measured the total number of
messages sent by all nodes.

• Maximum link load, measured the maximum number of
messages sent by any node.

A. UNIFORMLY DISTRIBUTED PACKETS
Here we explore the effect of using a uniform distribution to
update different nodes. Figures3, 4 and 5 show total commu-
nication cost accumulate over time with error bounds 0.006,
0.008 and 0.01.

FIGURE 3. Total communication cost over time with a uniform
distribution (ε = 0.006).

FIGURE 4. Total communication cost over time with a uniform
distribution (ε = 0.008).

Just as expected, in each figure the total communication
optimization method requires less communications than the
maximum link load optimization method. And then, the total
communication cost decreases rapidly with the error bound
(seeFigure3 (ε = 0.006)), This figure presents the highest
total communication overhead, whereas Figure5 (ε = 0.01)
presents the lowest total communication overhead. This is
because that the total communication cost has a strong reverse
relation with the delayed update coefficients according to
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Corollary 2. Generally speaking, the greater the error bound
is, the bigger the delayed update coefficients will be (see
Algorithms 1 and 2). Therefore, the total communication cost
has a strong reverse relation with the error bound. At last,
there is a sudden spike in the total communication cost fol-
lowed by a gradual increase in each figure. This is because
that the total message sending rate from all nodes has a strong
reverse relation with the time according to Corollary 3.

FIGURE 5. Total communication cost over time with a uniform
distribution (ε = 0.01).

FIGURE 6. Maximum link load over time with a uniform distribution
(ε = 0.006).

FIGURE 7. Maximum link load over time with a uniform distribution
(ε = 0.008).

Figures 6, 7 and 8 show how maximum link loads accu-
mulate over time with error bounds 0.006, 0.008 and 0.01.
Just as expected, in each figure the maximum link load of the
maximum link load optimization method is much less than
that of the total communication optimization method. The
maximum link load decreases rapidly with the error bound,
i.e., Figure6 (ε = 0.006) presents the biggest maximum link
load, whereas Figure8 (ε = 0.01) presents the smallest max-
imum link load. This is because that the maximum link load
has a strong reverse relationwith the delayed update threshold
according to Theorem 2. And in general, a greater error bound
will result in bigger delayed update thresholds. Therefore,
the maximum link load has a strong reverse relation with the
error bound. At last, just as the total communication cost, a
sudden spike in maximum link load is exhibited followed by
a gradual increase in each figure. This is because that each

node’s message sending rate has a strong reverse relation with
the time according to Theorem 3.

In all the above 6 figures, both the total communication
cost and the maximum link load increase rapidly at first,
however keep almost steady as time goes on. These results
demonstrate the requirements for an initialization phase.
In fact, extending the initialization phase to cover the first
107 packets in our experiments will drastically reduce the
total communication cost and the maximum link load

B. RANDOMLY DISTRIBUTED PACKETS
Previous results were based on selectingwhich node to update
uniformly. Here we explore the effect of using random distri-
butions to update different nodes.

FIGURE 8. Maximum link load over time with a uniform distribution
(ε = 0.01).

FIGURE 9. Average total communication cost over time with random
distributions (ε = 0.006).

FIGURE 10. Average total communication cost over time with random
distributions (ε = 0.008).

Figures 9, 10 and 11 show the average total communica-
tion cost over 500 repetitions with random incoming packet
distributions (ε = 0.006, 0.008, 0.01). The error bars in the
figures represent the standard deviations of the total commu-
nication cost generated by the 500 simulation runs.

Figures 12, 13 and 14 show the average maximum link
loads over 500 repetitions with random incoming packet
distributions (ε = 0.006, 0.008, 0.01). The error bars in the
figures represent the standard deviations of the maximum
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FIGURE 11. Average total communication cost over time with random
distributions (ε = 0.01).

FIGURE 12. Average maximum link load over time with random
distributions (ε = 0.006).

FIGURE 13. Average maximum link load over time with random
distributions (ε = 0.008).

FIGURE 14. Average maximum link load over time with random
distributions (ε = 0.01).

link loads generated by the 500 simulation runs. From all
the 6 figures we can see that the effect of using random
distributions is relatively small.

VII. CONCLUSION
Wehave given amethod to efficiently identify global frequent
items in distributed data streams in a continuous fashion,
which is a fundamental problem in many network and sensor
monitoring fields.

In this paper, we consider normal and extended commu-
nication structures to investigate continuously tracking the
distributed frequent items in order to continuously report the
frequent items in the root node.

we propose several algorithms running respectively on
the monitoring nodes, intermediate nodes and the root node
to maintain each item’s estimated frequency as well as the

estimated total frequency. The proposed algorithms make use
of the delayed updating concept to significantly reduce the
communication overhead. In addition, we analyze the theo-
retical complexity and propose two parameter optimization
approaches about a low total communication cost and a small
maximum link load, respectively. Last, Experiments with real
traffic traces confirm the theoretical analyses and demon-
strate the performances of the two optimization approaches.
We believe that the communication overhead can be further
reduced with randomized algorithms. We will work on this
direction in the future.
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