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ABSTRACT The ecological conditions in urban area are greatly changed during the process of industrializa-
tion and urbanization of China. The pressure-state-response (PSR) framework is the most popular method to
evaluate the ecological quality by integrating a set of remote sensing and statistical indicators into one index
through a weighting method. However, a completely remote-sensed ecological index (RSEI), integrating
normalized difference vegetation index (NDVI), Wet, land surface temperature (LST), and the normalized
differential build-up and bare soil index (NDBSI) through principal components analysis (PCA) method, has
been proposed to assess the regional ecological quality. The publications about urban ecological evaluation
by RSEI often focus on only one city or a certain area and there are few types of research on the ecological
quality assessment by RSEI of 35 major cities in China. In this paper, we employed RSEI to monitor the
changes in the ecological quality in China’ 35 major cities. The results of RSEI were compared to that of
PSR and stepwise regression method was applied to establish the quantitative relationship among RSEI,
NDVI, Wet, NDBSI, and LST. The results show that there are 18 cities with ecological quality deteriorated,
mainly located in the east and southwest of China (Shanghai, Guangzhou, Hongkong, Macao, Nanjing,
Haikou, Shijiazhuang, and Xi’an), and 17 cities with better ecological quality, mainly located in the north
and central area of China (Beijing, Tianjin, Shenzhen, Taipei, Fuzhou, Chongqing, and Jinan), from 1990 to
2015. The 3D-scatter plots of RSEI, NDVI, Wet, NDBSI, and LST demonstrate that the levels of very bad
and bad mainly situate in where with a high density of built-up and low vegetation cover and soil water
content. The PSR map, acquired from integrating 17 indicators, is quite similar to that of RSEI generated by
merging only four remote-sensed indicators. This indicates that RSEI can be adopted to characterize regional
ecological quality. Take the quantitative equation of Shanghai in 2015 as an example, every 1.46 decrement in
NDBSI or each 3.72 increments in NDVI value can result in one increment in RSEI value and the ecological
quality can be improved. Specifically, the expansion of the built-up area can lead to ecological degradation,
and vegetation construction can promote eco-environmental quality.

INDEX TERMS Ecological quality assessment, remote sensing-based ecological index (RSEI), 35 major
cities in China.

I. INTRODUCTION
The ecological environment is closely related to human health
and human life. The industrialization and urbanization of
China have been growing rapidly since the government’s
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reform and opening up policy was carried out in 1978, which
greatly affected the change of land use and land cover through
the expansion of built-up area and urban boundary [1]. How-
ever, the change rate of land use and land cover was faster than
the self-regulation speed of the ecosystem [2], which caused
the enormous pressure and the destruction to the ecological
environment [3]. China’s major cities have existed a series
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of urban problems, such as heat island effect, water-logging,
road traffic and air pollution [4], [5]. The city’s ecological
environment has changed dramatically with the growth of the
economy in China. Therefore, it is becoming the hot spot
to quantitatively describe and evaluate the spatiotemporal
dynamics of the urban ecological environment.

Remote sensing has become an effective way to evaluate
regional ecological environment [1], [5]–[8]. It is difficult to
apply a uniform index for assessing the conditions of ecosys-
tems because of its complexity [9]. A number of ecologi-
cal indicators have been proposed to evaluate the status of
ecosystem health. For instances, the Normalized Difference
Vegetation Index (NDVI) or leaf area index were used to
monitor environmental change [10]–[14]; land surface tem-
perature (LST) was adopted to assess the urban heat island
effects [6], [7], [15]–[19]; the normalized difference built-
up index (NDBI), an index-based built-up index (IBI) and
the normalized difference impervious surface index (NDISI)
were applied to delineate the built-up and impervious sur-
face area [20]–[23]; the normalized difference water index
(NDWI) and the modified NDWI (MNDWI) were used to
extract water bodies [24]–[27]; NDVI and LST were applied
to monitor drought or soil moisture [28]–[31]; a bare soil
index (BI) [32] and dry bare-soil index (DBSI) [33] was
employed to map bare soil areas. It is not sufficient to adopt
only one or two ecological indicators to assess the status
of the ecosystem due to the complexity and diversity of the
influence factors.

The Pressure-State-Response (PSR) framework, initially
proposed by the organization of economic cooperation and
development (OECD) for environmental policy-making [34],
can integrate a set of remote sensing and statistical data into
one index through a weighting method, e.g., analytic hierar-
chy process (AHP) [35], analytic network process (ANP) [36]
and Delphi [37]. The selection andmeasurement of indicators
for the PSR model can be grouped into three categories,
i.e., indicators of pressures (exerted by human activities),
environmental status and societal responses [1], [38]. Sub-
sequently, it has been widely applied to evaluate the health
of the eco-environment, such as forest ecosystem [39], [40],
soil ecosystem [41], wetland ecosystem [35], agriculture
ecosystem [42], [43], water ecosystem [44] and urban ecosys-
tem [45], etc. However, a large number of remote sensing
and socio-economic data are employed to construct the PSR
framework and the access to the weight of indicators may
affect by the subjective experience in practice. For this rea-
son, based on the framework of PSR, a completely remote
sensing-based ecological index (RSEI), adopted to evaluate
the ecological status in Fuzhou city of China, was gener-
ated by integrating four indicators (greenness, wetness, dry-
ness, and heat) through principal components analysis (PCA)
method [46]. In recent years, many studies were employed
RSEI to assess the urban ecological conditions, e.g., Fuzhou
city in China [1], [45], [47], Xiong’an NewArea in China [5],
Zhengzhou city in China [48], Nanjing city in China [49],
Lanzhou city [49], Weinan city in China [50], Hangzhou

FIGURE 1. Location of the study area.

city [51], Shanghai city in China and New York in Amer-
ica [52], Haidian city in China [53], etc.

As shown above, we can see that the existing research on
urban ecological assessment by RSEI only focused on one
city or a certain region and few studies are adopted RSEI to
assess the ecological quality of 35 major cities in China. The
objective of this study was to fill the above-mentioned knowl-
edge gaps by evaluating the temporal and spatial changes of
eco-environment in China’s 35 major cities based on RSEI.
Firstly, four indicators, i.e., NDVI (greenness), Wet (wet-
ness), LST (heat) and the normalized differential build-up and
bare soil index (NDBSI) (dryness) combined with IBI and
BI, were derived from Landsat data and RSEI maps of 35
major cities in China were generated through PCA embedded
in ENVI software in 1990 and 2015, respectively. Secondly,
the spatial and temporal changes of urban eco-environment
in 35 major cities of China were assessed by RSEI. Thirdly,
we adopted the PSR model through the AHP method based
on remote sensing and socio-economic data in 2000 and
2015 to evaluate the ecological conditions of Nanjing City,
Beijing and Shanghai. The results from RSEI were compared
with that of PSR framework to obtain the difference between
them and further verify the ability of RSEI in monitoring the
health of the city ecosystem. Finally, we employed a stepwise
regression method to establish the quantitative relationships
among RSEI, NDVI, Wet, NDBSI and LST.

II. IMATERIALS AND METHODS
A. STUDY AREA
We concentrated upon 35 major cities in China (Figure 1).
All of them are provincial capitals or municipalities except
Hong Kong, Macao and Shenzhen, which are special admin-
istrative region and special economic region zone estab-
lished in 1997, 1999 and 1978, respectively. According
to geography of China, 35 major cities were classified
into 6 groups [7]: Northeast China (Shenyang, Harbin and
Changchun), North China (Beijing, Tianjin, Shijiazhuang,
Taiyuan and Hohhot), East China (Shanghai, Hangzhou,
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Nanjing, Jinan, Nanchang, Fuzhou, Hefei and Taipei),
Southwest China (Lhasa, Chongqing, Chengdu, Guiyang and
Kunming), Northwest China (Xi’an, Lanzhou, Yinchuan,
Xining and Urumqi), and Central South China (Hongkong,
Macao, Guangzhou, Haikou, Changsha, Shenzhen, Wuhan,
Zhengzhou and Nanning) (Figure 1). The altitude increases
gradually from east to west and temperature rises gradually
from north to south in winter. The economy of 35 major
cities in China have grown rapidly and the built-up area
has expanded continuously since the policy of reform and
opening up.

B. DATA AND PRE-PROCESSING
A total of 180 Landsat-5 Thematic Mapper (TM) and
Landsat-8 Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) imageries with cloud free were down-
loaded from Earthexplorer of the United States Geologi-
cal Survey (USGS) (https://earthexplorer.usgs.gov/) to obtain
RSEI maps in 1990 and 2015, over a period of 25 years.
The acquisition time of these images is mainly in spring
and autumn. Regarding the same city, the acquisition time of
remote sensing data is almost the same (about not exceeding
a month) in 1990 and 2015 (Table 1) and the RSEI is season-
specific. It can be seen that the vegetation has a similar
growing condition and the results are comparable.

Based on the nearest-neighbor re-sampling and a second-
order polynomial methods, the TM imageswere co-registered
to the OLI/TIRS with a mean of RMSE less than 0.5 pixels
in the Environment for Visualizing Images (ENVI) software.
Then, the Fast Line-of-Sight Atmospheric Analysis of Spec-
tral Hypercubes (FLAASH) module was adopted to convert
the raw digital number of 180 Landsat images into land
surface reflectance by ENVI software [26].

The socio-economic data, such as gross domestic prod-
uct (GDP), the population, the density of population and
investment in fixed assets, derived from the Nanjing, Beijing
and Shanghai yearbook in 2000, 2004, 2006 and 2015,
respectively. The amount of SO2and NOx was acquired from
Nanjing, Beijing and Shanghai Municipal Environmental
Protection Bureau. Moreover, the TM images of Nanjing City
in 2000, Beijing in 2004 and Shanghai in 2006 were also
obtained.

C. CONSTRUCTION OF RSEI
RSEI is the function of four indicators (greenness, wetness,
dryness, and heat) which can be completely derived from
remote sensing data [1], [5], [46]. NDVI represents the green-
ness indicator and is employed to manifest the environmental
state in PSR model. The wet component came from Tasseled
Cap transformation stands for wetness and LST represents
heat indicators, which are selected as indicators of the local
climate changes in response to environmental changes in
the PSR model. NDBSI is the indicator of dryness which
is adopted to indicate the pressures generated from human
activities on the environment in the PSR model. Thus, the

expression of RSEI can be rewritten as:

RSEI = f (NDVI,Wet,LST ,NDBSI ) (1)

1) RETRIEVAL OF VEGETATION
NDVI is widely employed to indicate vegetation growth and
coverage status [54], [55], which can be expressed as:

NDVI =
ρnir − ρred

ρnir + ρred
(2)

where ρnir and ρred represent the reflectance of the near-
infrared and red bands, respectively.

2) RETRIEVAL OF LAND SURFACE MOISTURE
Kauth-Thomas Transformation (K-T Transformation) can
generate three components, i.e. wetness, greenness and
brightness, have been widely adopted to assess the ecological
environment. The water content of soil and vegetation can
be reflected by the wetness component [1], [5], [46]. The
wetness component of the TM [56] and OLI [57] can be
obtained by the following formula, respectively:

WetTM = 0.0315ρblue+0.2021ρgreen+0.3102ρred
+ 0.1594ρnir−0.6806ρswir1−0.6109ρswir2 (3)

WetOLI = 0.1511ρblue+0.1973ρgreen+0.3283ρred
+ 0.3407ρnir − 0.7117ρswir1−0.4559ρswir2 (4)

where ρbule, ρgreen,ρswir1 and ρSwir2 are the reflectance of
blue band, green band, short-wave infrared band1 and band
2, respectively.

3) RETRIEVAL OF LAND SURFACE TEMPERATURE
Land surface temperature (LST) was evaluated as fol-
lows [58], [59]:

LST =
Tsensor[

1+
(
λ× Tsensor/

ρ

)
ln ε

] (5)

where λ is the wavelength of the emitted radiance (11.435µm
for Landsat 5/7 and 10.9µm for band 10 of Landsat 8); ρ is a
constant (1.438×10−2 m K); ε is the land surface emissivity,
which can be expressed as [60]–[62]:

ε =


0.995 NDVI ≤ 0
0.970 0 < NDVI ≤ 0.157
1.0094+ 0.047 lnNDVI 0.157 < NDVI ≤ 0.727
0.986 NDV > 0.727

(6)

Tsensoris the at-satellite brightness temperature in Kelvin and
can be computed as follows:

Tsensor =
K2

ln (K1/Lλ + 1)
(7)

Lλ = Gain× DN + Bias (8)

where Lλ is the at-sensor spectral radiance. Gain and Bias
are the band-specific multiplicative rescaling factor and the
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TABLE 1. The acquisition time of images.

band-specific additive rescaling factor, respectively, which
are available in the head file of the used image. DN represents

the digital number of a given pixel. K1 and K2 are calibra-
tion coefficients for TM/ETM+/OLI sensor thermal band.
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TABLE 2. Index system of eco-environment evaluation and the weight of each indicator.

For TM, ETM+ and OLI, K2 = 1260.56K, 1282.71 K and
1321.08K, and K1 = 607.76, 666.09 and 774.89 mW cm−2

sr−1µm−1, respectively.

4) RETRIEVAL OF NORMALIZED DIFFERENCE BUILD-UP AND
BARE SOIL INDEX
As the urbanization and human activities, the build-up and
naked soil have gradually replaced the natural surface of the
ecosystem, causing the earth to be ‘‘dry’’, and deteriorate of
the environmental quality. Hu and Xu constructed a normal-
ized difference built-up and soil index (NDBSI) to represent
the dryness indicator, composed of IBI andBI and the formula
is expressed as [1]:

NDBSI = (BI + IBI )/
2 (9)

with (10) and (11), as shown at the bottom of this page.

5) ACQUISITION OF RSEI
PCA included in ENVI software, which can allocate the
weight of each factor according to the load of each fac-
tor to the principal components, was adopted to integrate
four indicators, i.e. NDVI, Wet, LST and NDBSI. The
first component of PCA (PC1), usually explains more than
80% of the characteristics of the dataset, was employed
to represent RSEI. The expression of RSEI can be written
as [5]:

RSEI = 1-PC1 [f (NDVI,Wet,LST ,NDBSI )] (12)

Because of the unit and data range of indicators are differ-
ent, we need to normalize the value of four indicators between
0 and 1 before performing the PCA. We also rescaled the
value of RSEI from 0 to 1, and the closer the value is to 1,
the better ecological condition is, and vice versa [1], [5]. With
an interval of 0.2, the levels of RSEI were classified into five
groups: very bad, bad, acceptable, good, and natural [5].

D. CONSTRUCTION OF PSR
The ecological conditions of Nanjing City, Beijing and
Shanghai from PSR model was compared with that from
RSEI. PSR framework is composed of pressure layer, state
layer and response layer. The pressure layers indicate the
impacts of human activities on the environment and the state
layer exhibits the status of the environment on the study
period [1], [38], [45]. The response layer describes mea-
sures and policies that are applied to settle eco-environmental
issues [1], [38], [45]. With the help of literatures investiga-
tion [1], [38]–[40], [45] and the acceptability of the data,
we selected 17 indicators to construct PSR model (Table 2).
We adopted AHP method, assigning weights to each indi-
cator, to integrate these 17 indicators as one ecological
index [51], [63], which can be expressed as:

EI =
17∑
i=1

Wi × X ′i (13)

where EI is the eco-environmental assessment indicator;
Wiand X ′i represent the weight and the normalized data of

BI = [(ρswir1 + ρred )− (ρnir + ρblue)]
/
[(ρswir1 + ρred )+ (ρnir + ρblue)] (10)

IBI =
{2ρswir1/ (ρswir1 + ρnir )− [ρnir/ (ρnir + ρred )+ ρgreen/

(
ρgreen + ρswirl

)
]}

{2ρswir1/ (ρswir1 + ρnir )+ [ρnir/ (ρnir + ρred )+ ρgreen/
(
ρgreen + ρswirl

)
]}

(11)
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TABLE 3. The average of RSEI in China’s 35 major cities in 1990 and 2015.

indicator i, respectively; i is the number of indicators and
i =1, 2, 3. . . 17.
Before processing the PSR, we also need to rescale 17 indi-

cators between 0 and 1 due to the unit and data range of
indicators are different. If the indicators can generate positive
impact on ecosystem health, Equation (14) is used, and when
they are negative, Equation (15) is used [64].

X ′i = (Xi − Xmin) / (Xmax − Xmin) (14)

X ′i = (Xmax − Xi) / (Xmax − Xmin) (15)

where i and X ′i is the same as in Equation (13); Xi is the raw
data value of indicator i; Xmax and Xmin are the maximum and
minimum raw date value of indicator i, respectively.

III. RESULTS
A. THE VARIATIONS OF ECOLOGICAL QUALITY IN
35 MAJOR CITIES
Figure 2 and Table 3 show the spatial distribution of eco-
environmental variation and the changes of RSEI average in
China’s 35 major cities from 1990 to 2015, respectively. The
eco-environmental quality deteriorates in 18 cities, and what
in 17 cities becomes better during 1990-2015. The ecological
quality of Changchun in northeast China became better, the
average of RSEI increased from 0.40 in 1990 to 0.46 in
2015, and the other two cities got worse. There were one
cities’ (Shijiazhuang) eco-environmental quality deteriorated
in north China, the average of RSEI was declined from 0.64 in

FIGURE 2. Spatial distributions of eco-environmental quality change
based on RSEI in China’s 35 major cities over the period 1990–2015
(Yellow stars represent the health of eco-environment got worse and cyan
stars got better).

1990 to 0.60 in 2015, and what improved in Beijing, Tian-
jin, Taiyuan and Hohhot. The ecological quality of Fuzhou,
Jinan and Taipei in east China became better, the average of
RSEI increased from 0.51, 0.41 and 0.56 in 1990 to 0.55,
0.49 and 0.59 in 2015, respectively, and the other five cities
got worse. There were two cities’ (Chengdu and Lhasa)
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FIGURE 3. RSEI map of some cities with eco-environment got worse. (a) Remote sensing image of Shanghai in 1990. (b) RSEI map of Shanghai
in 1990. (c) Remote sensing image of Shanghai in 2015. (d) RSEI map of Shanghai in 2015. (e) RSEI map of Guangzhou in 1990. (f) RSEI map of
Guangzhou in 2015. (g) RSEI map of Macro in 1990. (h) RESI map of Macro in 2015. (i) RSEI map of Harbin in 1990. (j) RSEI map of Harbin in 2015.
(k) RSEI map of Hongkang in 1990. (l) RSEI map of Hongkang in 2015. (m) RSEI map of Haikou in 1990. (n) RSEI map of Haikou in 2015. (o) RSEI map
of Nanjing in 1990. (p) RSEI map of Nanjing in 2015. (q) RSEI map of Hangzhou in 1990. (r) RSEI map of Hangzhou in 2015. (s) RSEI map of
Shijiazhuang in 1990. (t) RSEI map of Shijiazhuang in 2015.
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TABLE 4. Percentage statistics of the five RSEI levels in cities with eco-environment got worse.

eco-environmental quality deteriorated in southeast China,
the averages of RSEI were declined from 0.54 and 0.42 in
1990 to 0.53 and 0.47 in 2015, respectively, and it greatly
improved in Chongqing and Kunming and slightly improved
inKunming (the average of RSEIwas improved from 0.479 in
1990 to 0.483 in 2015). The eco-environmental quality of

Lanzhou in northwest China became better, the average of
RSEI increased from 0.27 in 1990 to 0.37 in 2015, respec-
tively, and what of Yinchuan, Xi’an, Xining and Urumqi ret-
rograded from 0.35, 0.61, 0.54 and 0.42 in 1990 to 0.34, 0.46,
0.50 and 0.41 in 2015, respectively. There were four coastal
cities’ (i.e. Guangzhou, Haikou, Hongkong and Macao)
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FIGURE 4. RSEI map of some cities with eco-environment became better. (a) Remote sensing image of Beijing in 1990. (b) RSEI map of
Beijing in 1990. (c) Remote sensing image of Beijing in 2015. (d) RSEI map of Beijing in 2015. (e) Remote sensing image of Shenzhen
in 1990. (f) RSEI map of Shenzhen in 1990. (g) Remote sensing image of Shenzhen in 2015. (h) RSEI map of Shenzhen in 2015. (i) RESI
map of Fuzhou in 1990. (j) RESI map of Fuzhou in 2015. (k) RESI mao of Nanchang in 1990. (l) RESI map of Nanchang in 2015. (m) RESI
map of Guiyang in 1990. (n) RESI map of Guiyang in 2015. (0) RESI map of Wuhan in 1990. (p) RESI map of Wuhan in 2015. (q) RESI map
of Taipei in 1990. (r) RESI map of Taipei in 2015. (s) RESI map of Hohhot in 1990. (t) RESI map of Hohhot in 2015.
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TABLE 5. Percentage statistics of the five RSEI levels in cities with eco-environment got better.

eco-environmental quality deteriorated in the central area
of China, the averages of RSEI were declined from 0.43,
0.45, 0.46 and 0.61 in 1990 to 0.33, 0.34, 0.40 and 0.59 in
2015, respectively, and it greatly improved in Changsha and
Wuhan and slightly improved in Shenzhen and Zhengzhou
(the averages of RSEI were improved from 0.495 and 0.43 in
1990 to 0.497 and 0.46 in 2015, respectively).

B. SPATIAL DISTRIBUTIONS OF RSEI
1) CITIES WITH ECOLOGICAL QUALITY GOT WORSE
Figure 3 demonstrates the spatial distribution of RSEI in
some cities with deteriorated eco-environment and the pro-
portions of RSEI levels are shown in Table 4. As shown
in Figure 3a and 3c, the built-up area of Shanghai greatly

expanded in 2015 than that of in 1990. The levels of very
bad and bad were mainly located in central area below the
Chongming County of Shanghai in 1990, while the most
part of Shanghai was in very bad and bad levels of RSEI
and the farmland declined in 2015. The ratio of bad and
very bad levels was increased from 37.9% in 1990 to 58.9%
in 2015. This demonstrated that the ecological quality got
worse during 1990-2015. Table 3 shows that the mean RSEI
of Shanghai is declined from 0.52 (corresponding to level
acceptable) in 1990 to 0.39 (corresponding to level bad) in
2015. This also indicated that the overall ecological quality
of the area was good in 1990 and became worse in 2015. The
most part of Guangzhouwas in levels bad and very bad except
the south, which accounted for 52.1% in 1990 and 53.6%
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TABLE 6. Percentage statistics of the five RSEI and PSR levels in Nanjing.

in 2015. It showed a bad ecological quality in Guangzhou.
The very bad and bad levels of RSEI (water was extracted),
accounting for 52.1%, mainly lied in the south, central part
and north ofMacao. The central area combined with the south
and connected with the North ofMacao by three roads, whose
built-up area significantly expanded and the proportion of
very bad and bad levels increased to 53.6% in 2015. As shown
in Figure 3, the levels bad and very bad are mainly distributed
in the area of built-up and covered with bare soil, while the
area with levels good and excellent is mainly covered with
vegetation.

2) CITIES WITH ECOLOGICAL QUALITY BECAME BETTER
Figure 4 and Table 5 show the spatial distribution of RSEI and
the proportions of RSEI levels in some cities with improved
eco-environment, respectively. As shown in Figure 3a, 3b, 3c
and 3d, the built-up area mainly lies in central part and south-
east of Beijing, whose RSEI level is very bad or bad, and the
north and southwest of Beijing are covered with vegetation,
corresponding to level good or excellent. Table 4 indicates
that the levels acceptable, good and natural account for 76.9%
in 1990 and 78.3% in 2015 of the area, while another two
levels make up only 23.1% in 1990 and 21.7% in 2015.
Table 3 manifests that the mean RSEI of Beijing is 0.59 (cor-
responding to the level acceptable) in 1990 and increases to
0.63 in 2015 (corresponding to the level good). This indicates
that the overall ecological quality of the area is good although
the urban area enlarged in 2015. The built-up area with very
bad and bad levels located in west, central area and north

of Shenzhen, while the south and southeast of area covered
with vegetation (corresponding to level good or excellent)
(Figure 4e∼4h). Table 3 indicates that the average of RSEI in
Shenzhen is 0.495 (corresponding to level acceptable) in 1990
and that is 0.497 (corresponding to level acceptable) in 2015.
It supports that an acceptable ecological quality exists in the
area. The proportion of level natural increased from 19.9%
in 1990 to 26.1% in 2015 (Table 4), which explained why the
ecological quality of Shenzhen slightly got better. Figure 4q
and 4r demonstrate that the levels very bad and bad lie in
central area and northwest of Taipei. Table 3 exhibits that
the average of RSEI increases from 0.56 in 1990 to 0.59
in 2015 (corresponding to the level acceptable), indicating
the ecological quality of area improved. Figure 4, Table 3 and
Table 5 show that the ecological quality in all other cities is
acceptable and is improved during 1990-2005.

IV. DISCUSSION
A. COMPARISON OF ECOLOGICAL QUALITY FROM RSEI
AND PSR
We obtained the raster image of socio-economic data
in Table 1 by the inverse distance weighted method combined
in GIS software [26]. The PSR map was derived by Equa-
tion (13) and compared with the results of RSEI in Nanjing,
Beijing and Shanghai. Figures 5(a)∼ (b) show that the levels
very bad and bad of RSEI, accounting for 44.4% (Table 6),
are mainly distributed in the central area and north of Nanjing
in 2000. As shown in Figure5(c), the levels of very bad and
bad, only accounting for 29.3% which are apparently less
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FIGURE 5. The maps of RSEI and PSR in Nanjing. (a) Remote sensing image in 2000. (b) RESI map in 2000. c) PSR map in 2000.
(d) Remote sensing image in 2015. (e) RESI image in 2015. (f) PSR map in 2015.

than that of RSEI, are also located in the central part and
north of Nanjing. The results of PSR are quite similar with
RSEI in south of Nanjing where with better the ecological
environment than what is in central part and north in 2000.
Figures 5 (e)∼ (f) exhibit that the PSRmap is quite consistent
with RSEI and the levels of very bad and bad have spread
to the south and north of Nanjing in 2015. The ecological
conditions in Liuhe, Pukou and Lishui district became worse.
Table 6 demonstrates that the proportion of levels very bad
and bad of RSEI is 64.9%, while 64.2% of PSR. As shown
in Figure 6, we can see that the levels of good and natural
of RSEI (accounting for 56.4% in 2004 and 63.4% in 2015)
and PSR (accounting for 58.3% in 2004 and 61.7% in 2015)
mainly lie in the north and east of Beijing, while the other
three levels of RSEI and PSR locate in south, central area
and southeast of Beijing. Figures 7(a) ∼ (b) show that the
levels very bad and bad of RSEI, accounting for 37.9%

(Table 4), are mainly distributed in the central area of Shang-
hai in 2000. As shown in Figure7(c), the levels very bad and
bad, only accounting for 5.9% which are apparent less than
that of RSEI, are also located in the central part of Nanjing.
Figure 7(e) demonstrates that the levels of bad and very bad
have expanded to south and north of Shanghai in 2015, while
Figure 7(f) describes the level of acceptance have spread
and the levels of bad and very bad extends to south of
Shanghai.

Although the proportion of each levels from PSR is
different with RSEI, the spatial distribution of the eco-
logical quality is quite similar with each other. A total
of 17 indicators were employed to generate PSR, while
only four remote-sensed indicators were adopted to calculate
RSEI. This indicates that RSEI, a completely remote sensing-
based ecological index, can be applied to evaluate the urban
ecological conditions.
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FIGURE 6. The maps of RSEI and PSR in Beijing. (a) Remote sensing image in 2004. (b) RESI image in 2004. c) PSR
image in 2004. (d) Remote sensing image in 2015. (e) RESI image in 2015. (f) PSR map in 2015.

B. PREDICTION OF ECOLOGICAL EFFECTS
In order to further quantitatively describe urban ecological
conditions, an ecological quality model can be established
for simulating and predicting the change trend of urban eco-
logical quality. First, taking Nanjing, Beijing and Shang-
hai as examples, we randomly sampled with 150m×150m
grid across the whole images of Wet, NDVI, NDBSI, LST
and RSEI, respectively, and a total of 278954, 728565 and
307088 pixels were sampled for each image of Nanjing,
Beijing and Shanghai, respectively. And then, taking RSEI as
the dependent variable and NDVI, Wet, LST and NDBSI as
the independent variables, stepwise regression [5] with a large
number of samples were adopted to quantitatively analyzing
the relationships of four indicators with RSEI. The regression
was proceeded in Statistical Product and Service Solutions
(SPSS) Version 22.0 and yielded the following relationship
models (significant at the 0.01 level):

Beijing in 1990

RSEI = 0.268Wet + 0.374NDVI − 0.377NDBSI

− 0.267LST + 0.561(R2 = 0.993) (16)

Beijing in 2015

RSEI = 0.198Wet + 0.326NDVI − 0.394NDBSI

− 0.267LST + 0.578(R2 = 0.997) (17)

Shanghai in 1990

RSEI = 0.188Wet + 0.391NDVI − 0.687NDBSI

− 0.228LST + 0.702(R2 = 0.999) (18)

Shanghai in 2015

RSEI = 0.203Wet + 0.269NDVI − 0.908NDBSI

− 0.226LST + 0.803(R2 = 0.995) (19)

Nanjing in 1990

RSEI = 0.191Wet + 0.252NDVI − 0.487NDBSI

− 0.315LST + 0.700(R2 = 0.991) (20)

Nanjing in 2015

RSEI = 0.356Wet + 0.331NDVI − 0.642NDBSI

− 0.156LST + 0.487(R2 = 0.990) (21)

The equation (16)∼ (21) show that all four indicators have
been retained in the stepwise regression procedure (p< 0.01).
It demonstrates that Wet, NDVI, NDBSI and LST are all
important factors in modulating RSEI and can be used as
predictor variables in revealing regional ecological condition.
Nevertheless, the four indicators work differently by their
coefficient of the equation. Table 6 indicates that both Wet
and NDVI contribute positively to RSEI, while NDBSI and
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FIGURE 7. The maps of RSEI and PSR in Shanghai. (a) Remote sensing image in 2006. (b) RESI image in 2006.
(c) PSR image in 2006. (d) Remote sensing image in 2015. (e) RESI image in 2015. (f) RESI image in 2015.

TABLE 7. Coefficient comparison of regression models.

LST work inversely in these three cities. Table 7 also exhibits
that NDBSI has the largest negative influence on RSEI, fol-
lowed by NDVI with larger positive impacts on RSEI, which
are all larger than that of Wet and LST in these three cities.
As shown in Table 7, the sum of the absolute coefficient value
of NDBSI and LST is larger than that of NDVI and Wet and
the difference of Shanghai increases from 0.336 in 1990 to
0.663 in 2015.

Figure 8 is a three-dimensional scatter plot illustrating the
relationships of RSEI with Wet, NDVI, NDBSI and LST.
It can be found that the most points are well aggregated
rather than scattered, indicating a high degree of correlation

among the variables. The rod-shaped morphology of the
points expresses that the ecological status is relatively homo-
geneous in Beijing, Shanghai and Nanjing, respectively.
Images in the first and the third columns of Figure 8 demon-
strate the bottom of the scatter plots represent the area with
poor ecological quality, and the samples in these areas are
concentrated in where with low humidity and vegetation.
Images in the second and the fourth columns of Figure 8
indicate that the top of the scatter plots represent the area
with better ecological quality, and the samples in these areas
are concentrated in where with low heat and building density.
Figure 8 also expresses that the slope between NDBSI, LST
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FIGURE 8. 3D-scatter plots showing the relationship among RSEI, NDVI, Wet, NDBSI and LST in Beijing, Shanghai and Nanjing.
(a) 3D-Scatter plot among RSEI, NDVI and Wet of Beijing in 1990. (b) 3D-Scatter plot among RSEI, NDBSI and LST of Beijing in 1990.
(c) 3D-Scatter plot among RSEI, NDVI and Wet of Beijing in 2015. (d) 3D-Scatter plot among RSEI, NDBSI and LST of Beijing in 2015.
(e) 3D-Scatter plot among RSEI, NDVI and Wet of Shanghai in 1990. (f) 3D-Scatter plot among RSEI, NDBSI and LST of Shantghai
in 1990. (g) 3D-Scatter plot among RSEI, NDVI and Wet of Shanghai in 2015. (h) 3D-Scatter plot among RSEI, NDBSI and LST of
Shanghai in 2015. (i) 3D-Scatter plot among RSEI, NDVI and Wet of Nanjing in 1990. (j) 3D-Scatter plot among RSEI, NDBSI and LST of
Nanjing in 1990. (k) 3D-Scatter plot among RSEI, NDBSI and LST of Nanjing in 1990. (l) 3D-Scatter plot among RSEI, NDBSI and LST of
Nanjing in 2015.

and RSEI is larger than that of NDVI, Wet and RSEI, further
illustrating that the impacts of the former on the ecology is
greater than that of the latter.

The very strong fitness of the regression models equation
(16) ∼ (21) can be employed to predict RSEI changes in
Beijing, Shanghai and Nanjing, respectively. Take the equa-
tion (19) as an example, each 0.372 increment in NDVI
value or each 0.146 decrement in NDBSI would lead to
0.1 increment in RSEI value and the ecological quality will
be improved.

C. LIMITATIONS
There are some limitations of RSEI in assessing urban eco-
logical quality. First, the RSEI is mainly used in terrestrial
areas and is not suitable for large water areas (such as
oceans). The wet component from K-T Transformation is
mainly related to the moisture of vegetation and soil. If there
is a large area of water in the study area, it will increase
the contribution of water, and the calculated wet component

cannot truly reflect the moisture of vegetation and soil. In this
case, large areas of water must be masked. Second, if the
vegetation in the area was predominantly farmland-based,
the ecological quality of the area was sensitive to seasonal
changes. The vegetation covered area was changed into bare
soil after harvesting of crops, which will significantly affect
the area’s temporal ecological quality. Xu et al. [5] expressed
that the RSEI was declined from 0.645 in August 2016 into
0.512 in July 2015 due largely to crops’ phenology. There-
fore, the acquisition time of remote sensing images in two
periods should be similar with each other.

V. CONCLUSION
A completely remote sensing-based ecological index (RSEI)
was employed to assess the spatial and temporal distribution
characteristics of ecological conditions in China’ 35 major
cities by Landsat TM and OLI imageries in 1990 and 2015.
The results of RSEI were compared with that of the PSR
framework and the quantitative relationship among RSEI,
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NDVI, Wet, NDBSI and LST was constructed by stepwise
regression method.

This study shows that ecological quality gets better
in 17 cities and degrades in 18 cities during 1990-2015 in
China. The cities with ecological quality got worse mainly
lie in the east and southwest of China, e.g. Hongkong,
Guangzhou, Macao, Haikou, Nanchang, Shanghai, Nanjing,
Hefei, Hangzhou, Shijiazhuang, Shenyang, Harbin, Xi’an,
Yinchuan, Xining, Chengdu, Lhasa and Urumqi. The cities
with ecological quality became better mainly locate in the
central area and the north of China, i.e. Changchun, Beijing,
Tianjin, Jinan, Taiyuan, Hohhot, Zhengzhou, Lanzhou,
Wuhan, Changsha, Chongqing, Guiyang, Kunming, Nan-
ning, Shenzhen, Fuzhou and Taipei. Moreover, the levels very
bad and bad of RSEI are mainly distributed in where with
high density of building and low vegetation and humidity. The
results of PSR in Nanjing, Beijing and Shanghai, obtained
by integrating 17 indicators through AHP, are quite consis-
tent with that of RSEI, obtained by integrating 4 indicators
through PCA. This supports that RSEI can be applied to
monitor regional ecological status. NDBSI and LST can gen-
erate negative impacts on RSEI while NDVI and Wet have
positive influence. Take the equation (22) as an example, each
3.02 increment in NDVI value or each 1.56 decrement in
NDBSI will bring about 1 increment in RSEI value and the
ecological quality will become better.
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