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ABSTRACT This paper presents a fast and efficient cryptosystem for enciphering digital images. It employs
two of the most prominent dynamical systems-chaotic maps and cellular automata. The key streams in the
proposed encryption scheme are derived from the SHA-256 hash function. Hash functions produce the digest
of the input plaintext, known as a hash value, which can be considered as a unique signature of the input.
This makes the keys more plaintext dependent, which is a desirable property of a robust cryptosystem. These
key streams are used as the secret keys (i.e., initial conditions and control parameters) of an improved
one-dimensional (1-D) chaotic map, i.e., the Logistic-Sine map. As far as we know, this paper is a first
that combines the well-known diffusion-confusion architecture and the fourth order 1-D memory cellular
automata (MCA) for image encryption. First, a pixel-wise XOR operation is applied to the original image,
followed by a pixel-wise random permutation. The resulting image is decomposed into four blocks according
to the quadtree decomposition strategy. Then, a fourth order reversible MCA is applied, the blocks obtained
from the quadtree decomposition are considered as the initial MCA configurations, and the transition rules
are determined using the chaotic map. The performance analyses show that the proposed encryption scheme
presents a high immunity against all kind of attacks while maintaining a low complexity, which outcome a
notably better performance/complexity trade-off compared to some recently proposed image schemes.

INDEX TERMS Logistic-Sine map, chaos, cellular automata, image encryption, quadtree decomposition,
hash functions.

I. INTRODUCTION
In recent years, with the unprecedented advancement in
technology and aggressive expansion in internet usage,
the amount of data generated and its distribution over various
networks has increased remarkably. As the number of people
using the internet has passed four billion marks in 2018,
it is obvious to observe a surge in both the generation and
the distribution of multimedia data, especially digital images.
However, the security, integrity, and authenticity of this huge
amount of digital data have become a crucial challenge for
both the users as well as the organizations dealing with it.
In particular, sensitive information like confidential military
and medical images are at high risk of being intercepted by
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intruders. To meet these security challenges, development
of robust cryptographic schemes is quite essential. These
schemes help secure communication of data between the
sender and the authorized receivers having common security
keys. Apart from the security aspects, high computational
speed is also a desirable criterion for an efficient cryptosys-
tem to be incorporated with a real-time communication.

Multimedia data like high-quality digital images are
too bulky regarding data size, therefore, cryptographic
schemes like DES, 3DES, and AES are unable to meet
the requirements of high computational speed. Besides,
image encryption schemes follow two main categories: mod-
ular arithmetic-based algorithms (like most of the algo-
rithms which rely on the substitution-permutation-diffusion
architecture [1]–[3]) and algorithms entirely based on an
analytical mathematics approach (e.g., algebraic methods and
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methods derived from number theory). There is no doubt on
the robustness of many of algorithms modeled wholly by
mathematical approaches, but most of the recently developed
ones fit the category of modular arithmetic due to its lower
computational complexity [4]. Encryption schemes associ-
ated with modular arithmetic are introduced to offer alterna-
tives which give amathematical approaches-like performance
while maintaining a decreased complexity. In this context,
we propose a new image encryption scheme, based on mod-
ular arithmetic with one-time key generation [5], to boost the
ratio performance/complexity.

A wide range of encryption algorithms that belong to
the modular arithmetic class employs dynamical systems.
Cryptosystems based on dynamical systems are gaining more
attention as they surpass the issues of security, authenticity
and computational speed.

Chaotic maps are one of the most promising dynami-
cal systems to design cryptosystems because the discrete
dynamic chaotic maps have an inherent property of hiding
relationship between initial and final states [6]. This unpre-
dictable nature of chaotic map components makes it more
suitable for constructing image cryptosystems. Confusion
and diffusion are two basic and important phases of a
chaos-based system. Confusion withholds any correspon-
dence between the key and the ciphertext, and it is usu-
ally achieved by permutation of pixels using chaotic maps
without making any changes in the pixel values. Diffusion,
on the other hand, ensures that changing any pixel in the
original image leads to the change in multiple pixels of the
cipher image. Owing to its significant relevance in the design
of image cryptosystems, researchers have proposed many
variants and improved algorithms to encrypt digital images
using chaotic maps including [7]–[14]. In chaos-based image
encryption, many confusion and diffusion techniques are
reported in the literature such as DNA-based encryption [2],
dynamic random growth technique [15], non-adjacent cou-
pled map lattices system [16], etc. A new image encryption
algorithm called the Tent-Logistic map-based Data Encryp-
tion Algorithm (TL-DEA) is reported in [14]. It adopts the
substitution-permutation network that operates on the pixels,
under two rounds. Firstly, the image is decomposed into
fixed-length data blocks. Then, substitution and permuta-
tion processes are carried out on these blocks using the
Tent-Logistic map.

Cellular automata (CA) are another essential dynamical
system which has gained much attention from researchers
in recent years. Efficient modeling of various physical, bio-
logical, and mathematical systems was performed using CA
simulation. Stephen Wolfram, who for the first time, intro-
duced the concept of cryptography using CA in 1985 [17].
Since then, many research work in this direction were pre-
sented including [18]–[21], which mainly aims at design-
ing cryptosystems for encrypting digital images using CA.
However, more robust and efficient cryptographic schemes
were achieved using a combination of chaotic systems and
CA [22]–[24]. [25] used the quadtree decomposition strategy

for decomposing the image into several blocks atmultiple lev-
els and then reversible memory cellular automata (MCA) are
used to induce confusion and diffusion in the original image.
In [26], a mixture of chaos-based systems and CA is used
for image encryption along with the quadtree decomposition
strategy. Secret key streams are generated using LTS chaotic
sequences, and an improved (one-dimensional) 1D chaotic
system is used for bit level permutation in confusion phase.
Then a combination of chaotic system and reversible MCA is
used for inducing diffusion. Hash functions are an important
cryptographic tool that computes a fixed length digest of
plaintext, known as hash value [27]. This unique represen-
tation of the message can be considered as the fingerprint of
the input plaintext. It is a one-way function in the sense that
once the message is hashed it is impossible to recover the
plaintext back from its hash value. Due to its crucial features,
hash functions find application in many fields like message
authentication codes and digital signatures. In cryptogra-
phy, it is widely used for storing password hashes and key
derivation.

This paper presents an efficient and robust image cryp-
tosystem that combines chaos-based system and reversible
MCA to encrypt/decrypt a digital image. Key streams are
derived using a 1D chaotic map and an image depen-
dent hash value generated by hash function SHA-256. The
cryptographic scheme involves three stages of encryption.
Firstly, to induce diffusion, image pixels are bitwise XORed
with a chaotic sequence using Logistic-Sine (LS) map. The
permutation of image pixels is then carried out using a
pseudo-random number generator (PRNG) to induce confu-
sion. Finally, the resulting image is split into four blocks of
equal size using the quadtree decomposition strategy, and
a fourth order reversible MCA is applied to them. These
four blocks are considered as the initial configurations of
the MCA, and the transition rules are determined using the
chaotic map. This yields four output configurations constitute
the final cipher image. Both confusion and diffusion are
introduced in this phase. The performance analysis of the
proposed encryption scheme and those of some well-known
encryption schemes are provided in this paper. The given
results demonstrate that the proposed scheme has a sound
balance between the low complexity and the high level of
security. It is worth noting that, trials to reduce the complexity
of the proposed algorithm using a lower order MCA, give
weaker performances.

The main contributions of this paper are the followings.
First, to the best of our knowledge, no previous study has
taken advantage of the fourth order 1D MCA to improve
the efficiency of the classic diffusion-confusion architecture
(i.e., the bit-wise XOR operation and the pixel-wise random
permutation). Computer simulations show that the proposed
combination CA–chaos, compared to a set of recently pub-
lished works, gives competitive performances with a lower
level of complexity. Second, the secret key (i.e., the initial
condition and the control parameter) of the 1D chaotic map
are generated using the 256-bit long hash value of the original
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image, this reliance boosted the sensitivity to minor changes
in the original image or the initial keys, and then insured
a high immunity to known/chosen plaintext attacks. Third,
the time complexity of the proposed encryption scheme is
significantly reduced as it employed a one-dimensional map
instead of higher-dimensional ones and one iteration of the
fourth order 1D MCA.

The rest of the paper is structured as follows. The pre-
liminaries, including CA and chaotic system, are presented
in Section II. Section III describes the proposed scheme, the
analysis of which is provided in Section IV. Finally, conclud-
ing remarks are reached in Section V.

II. PRELIMINARIES
A. CELLULAR AUTOMATA
CA is a class of discrete dynamical system invented by John
von Neumann [28] based on local rules. Using CA, emer-
gence and complex behavior of a wide variety of natural
systems can be demonstrated [29]. There are four elements of
CA that define the overall structure and working of a cellular
automaton:

1) A grid of identical objects called cells arranged in a
circular register. Each of these cells assumes a finite
number of states.

2) The cell states.
3) The neighborhood of a cell.
4) The transition rules that determine how a cell state

changes over time.
The grid of cells, in general, can be a 1D or 2D array. The
output obtained at discrete time intervals is another grid of
the same size as input. These grids, usually known as CA
configurations, form a pattern when visualized after seri-
ally stacking them for multiple iterations. The patterns can
be categorized into four classes based on the behavior of
subsequent configurations [30], [31]. Class 1 includes pat-
tern with simple behavior in which a uniform final state is
obtained irrespective of the initial configuration. In class 2,
different final states are possible, but the pattern consists of
simple structures that either remains same forever or repeats
itself after few iterations. The behavior of class 3 is com-
pletely random in the sense that the location and frequency
of structures formed in the pattern are quite unpredictable.
And finally, the behavior of class 4 is a combination of
order and randomness. Example of pattern from each of the
above-mentioned classes for a 1D CA is shown in Fig. 1.
In cryptography, we can exploit the property of randomness
from class 3, for inducing confusion and diffusion in the
ciphertext.

1) ELEMENTARY CA
An elementary CA is the simplest class of cellular automata
with aforementioned characteristics. The grid of cells in the
elementary CA is one dimensional or linear. Each cell can
assume only two states, 0 or 1. The neighborhood is defined
as the r left and right neighbors of the current cell including
itself such that the total number of cells in the neighborhood

FIGURE 1. Example of patterns for the four classes of a 1D CA. (a) Class 1.
(b) Class 2. (c) Class 3. (d) Class 4.

is 2r + 1. r is also called the radius. Generally, the transition
rule is defined as follows

S ti = F
{
S t−1i−r , S

t−1
i−r+1, . . . , S

t−1
i , . . . , S t−1i+r−1, S

t−1
i+r

}
, (1)

where S ti represents the state of ith cell at discrete time t
and F is a function of states of the neighborhood of cell i.
A configuration Ci with cell size N is defined as the set of all
the cell states at a given time t as follows

Ci =
{
S t0, S

t
1, . . . , S

t
N−1

}
. (2)

The discrete time at which a configuration is defined is known
as a generation. Cell state at generation t is the function of
states of neighborhood at generation t − 1.
Working of the simplest possible 1D CA with cell states

0 or 1 and radius r = 1 is depicted in Fig. 2. Since neigh-
borhood size, in this case, is 3, there are 23 = 8 possible
ways in which it can be configured as shown in Fig. 2. For
each of the neighborhood pattern in the current generation,
a binary output is assigned to the cell in the next generation.
So, in this case, a set of eight binary digits, known as ruleset,
is needed for rule formation. Again, since the number of
possible ways in which these rulesets can be configured is 28,
there are 256 rules following which next configuration can be
obtained. The ruleset shown in Fig. 2 is known as Rule-30 as
the decimal equivalent of binary digits is 30.

2) MEMORY CELLULAR AUTOMATA
Standard CA discussed in the previous section are memory-
less. That is, the states of the configuration at generation t
depend only on the states of the configuration at generation
t − 1. However, there is another class of CA in which the
states of the configuration at generation t not only depend
on the generation at t − 1 but also on the previous gen-
erations. Such class of CAs is known as memory cellular
automata, MCA. MCA exhibit the property of reversibil-
ity which ensures the recovery of the original configura-
tion using inverse MCA. A k th order MCA implies that
configuration at generation t , Ct depends on configurations
of k previous generations Ct−1,Ct−2, . . .Ct−k . Also, it is
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FIGURE 2. CA evolution and ruleset.

evident that to ensure the reversibility of a k th order MCA,
k − 1 transition rules are sufficient to retrieve the original
configuration [25]. Therefore, an MCA of order k is defined
as follows

Ct=F1(Ct−1)⊕ F2(Ct−2)⊕ · · · ⊕ Fk−1(Ct−k+1)⊕ (Ct−k ),

(3)

whereF1,F2, . . . ,Fk−1 are the transition rules and⊕ denotes
the bit-XOR operation. (3) is reversible for any set of tran-
sition rules, and the corresponding inverse MCA is defined
by

Pt=Fk−1(Pt−1)⊕Fk−2(Pt−2) ⊕. . .⊕F1(Pt−k+1)⊕ (Pt−k ),

(4)

where Pt−i, i ∈ {0, 1, . . . , k} are the possible configurations
of the inverse MCA.

The reversibility of MCA can be proved as follows. Let
the configuration Ct is obtained by applying k th order MCA
on k previous configurationsCt−1,Ct−2, . . . ,Ct−k using (3).
We prove that configurationCt−k can be recovered from k
latest configurations Ct ,Ct−1, . . . ,Ct−k+1 using the inverse
MCA defined by (4). It should be noted that configurations
are placed in reverse order while applying the inverse MCA.
That is,

Pt−1 = Ct−k+1,Pt−2 = Ct−k+2, . . . ,

Pt−k+1 = Ct−1,Pt = Ct−1.

Therefore, (4) follows

Pt
= Fk−1(Pt−1)⊕ Fk−2(Pt−2)⊕ · · · ⊕ F1(Pt−k+1)⊕ (Pt−k )

= Fk−1(Ct−k+1)⊕ Fk−2(Ct−k+2)⊕ · · · ⊕ F1(Ct−1)⊕(Ct )

= F1(Ct−1)⊕ F2(Ct−2)⊕ · · · ⊕ Fk−1(Ct−k+1)⊕ (Ct ),

(5)

substituting value of Ct in (5) from (3), we get

Pt
= F1(Ct−1)⊕ F2(Ct−2)⊕ · · · ⊕ Fk−1(Ct−k+1)

⊕F1(Ct−1)⊕ F2(Ct−2)⊕ · · · ⊕ Fk−1(Ct−k+1)⊕ (Ct−k )

= [F1(Ct−1)⊕ F1(Ct−1)]⊕ [F2(Ct−2)⊕ F2(Ct−2)] . . .

⊕[Fk−1(Ct−k+1)⊕ Fk−1(Ct−k+1)]⊕ (C(t − k))

= 0⊕ 0 · · · ⊕ 0⊕ (Ct−k )

= Ct−k . (6)

Hence, the configuration Ct−k can always be recovered by
the MCA defined by (4) using Ct ,Ct−1, . . . ,Ct−k+1 config-
urations. Therefore, (4) represents the inverse MCA defined
by (3).

B. THE LOGISTIC-SINE MAP
The LS map is a 1D nonlinear combination of two existing
seed maps, namely the Logistic map and the Sine map [32].
It is mathematically defined by

xn+1 =
(
αxn (1− xn)+ (4− α)

sin (πxn)
4

)
mod 1, (7)

whereα ∈ (0, 4] is the control parameter and x0 ∈ (0, 1) is the
seed. The bifurcation diagram and the Lyapunov exponent of
the LS map are illustrated in Figs. 3(a) and 3(b), respectively.
An analysis reported in [32] shown the excellent chaoticness
of (7). It was reached that the LS map outperforms its cor-
responding seed maps (i.e., the Logistic map and the Sine
map). First, the output sequences of (7) spread out in the
whole range of the seed x0 ∈ (0, 1). That is, the LS map has
a uniform distribution within (0, 1) (cf. Fig. 3(a)). Second,
the Lyapunov exponent of (7) is always greater than 0 in the
entire range of the control parameter α ∈ (0, 4] (cf. Fig. 3(b)).
However, the Lyapunov exponents of its corresponding seed
maps are positive only in limited ranges. Finally, the Lya-
punov exponent of the LS map is always larger than those
of its seed maps. Considering all the above, the LS map
outperforms its seed maps and is purely chaotic in the whole
range of the secret key (i.e., control parameter and seed).

C. THE BACKGROUND OF COMBINING CA AND
CHAOTIC MAP
Knowing that complexity does not imply performance, our
paper aims at achieving better performance with the mini-
mum of operations. This belongs to the background of the
development of real-time applications and their implementa-
tion. With the purpose of improving complexity, the design
of the proposed encryption scheme is based on the selection
of efficient operations while avoiding rounds (for both key
generation and encryption steps).

With the descriptions provided in subsection II.A, one can
note that the evolution pattern of CAs matches well the prin-
ciples of confusion and diffusion required by any encryption
scheme obeying the well-known diffusion-confusion archi-
tecture. Using CA, confusion and diffusion are achieved
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FIGURE 3. Bifurcation diagram (a) and Lyapunov exponent (b) of the LS map.

jointly and without loop neither on key generation nor on
encryption steps. Through preliminary tests, we noted that
(i) CAwith a high number of iterations increases substantially
its time complexity (ii) utilizing only CAwith a lower number
of iterations does not lead to competitive performance, espe-
cially for sensitivity tests. For this reason, we made use of a
chaotic map to further improve the diffusion in the proposed
algorithm. We remind that the main feature of chaotic maps
is their high sensitivity to initial conditions, which makes
them very useful in encryption schemes due to enhancing
diffusion.

The paper presents a new architecture of image encryp-
tion scheme which takes benefit from both memory CA and
chaos advantages, and the consideration of the complexity
side in our proposal promotes its integration in real-time
systems.

III. PROPOSED IMAGE ENCRYPTION ALGORITHM
In this section, we describe in detail the proposed scheme for
both encryption and decryption. The encryption/decryption
scheme involves a series of prominent cryptographic tech-
niques including MCA, hash functions, chaotic systems, and
random permutation. A hash function is used in the proposed
scheme to get a unique signature of the original image. The
hash value corresponding to the original image is used for
derivation of various system parameters and keys required at
different stages of encryption/decryption. Generation details
of these keys are further discussed in this section. In our
algorithm, the SHA-256 is employed, a custom designed
cryptographic hash function that generates a 256-bit hash
value.

At first, a string of hash value is generated, and its first
212 bits are split into four substrings of unequal lengths
according to (8)-(11). These substrings are then converted to
their corresponding decimal values, h1−52, h53−106, h107−158,

and h159−212. System parameters and the seeds of (7) are
obtained using these decimal values as follows

x ′0 =
1
2
(x0 + h1−52), (8)

α′0 =
1
2
(α0 + h53−106), (9)

x ′1 =
1
2
(x1 + h107−158), (10)

α′1 =
1
2
(α1 + h159−212), (11)

where x0, α0, x1, and α1 are the initial secret keys and hi−j
denotes the decimal conversion of the substring taking from
the ith bit to jth bit of the hash value.

A. KEY GENERATION
A reversible MCA of k th order requires k − 1 transition rules
and k previous configurations to obtain the next configu-
ration. Since we are employing a fourth order MCA, three
transition rules are needed for the MCA operation. These
rules are defined using a set of sub-keys generated by (7) with
system parameters evaluated through (8) and (9). The detailed
procedure is described as follows.

1) Iterate (7) for l times (l ≥ 500) to avoid the transient
effect using the control parameter α′0 and the seed x ′0.
Continue iterating (7) 16×3 times to get the sequence e.

2) Map e from [0, 1] to [0, 255] according to (12), which
yields the sequence q.

q =
(
e× 1015

)
mod 256 (12)

3) Convert q into its binary form k, a sequence of length
16 × 3 × 8 = 384 bits. Then, divide k into 3 sub-
sequences of 128 bits each to obtain the sub-keys set
k = [k1 k2 k3].
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FIGURE 4. Flowchart of the proposed encryption scheme.

B. ENCRYPTION PROCESS
In this section stepwise procedure of the proposed encryption
scheme, illustrated in Fig. 4, is described in detail. The overall
process is composed of three phases under one round. First,
a M × N chaotic matrix is generated using (7), M and N
are the rows and columns of the original image. This matrix
is then mapped into a suitable range and bit-wise XORed
with the original image. The resulting image is then undergo-
ing pixel-wise permutation. Finally, a fourth order reversible
MCA is applied on the permuted image, which yields the
encrypted image.

1) BIT-WISE CHAOTIC DIFFUSION
The original image is first bit-wise XORed with a chaotic
matrix as follows.
• Iterate (7) M × N + 500 times with the control param-
eter α′1 and the seed x ′1. By ignoring the first 500 values
and rearrange the rest, a M × N chaotic matrix S is
obtained.

• Map S from [0, 1] to {0, 1, 2, . . . , 255} according to the
following

H =
(
S× 1015

)
mod 256. (13)

• Perform bit-wise XOR operation between H and the
original image P by

P1 = H⊕ P. (14)

Simply, the bit-wise chaotic diffusion is referred as

P1 = Fα′1,x ′1 (P) . (15)

2) PIXEL-WISE RANDOM PERMUTATION
In this step, P1 undergoes a pixel-wise random permu-
tation in which its pixels are permuted using a PRNG.
Positions of the pixels are updated according to a random
sequence w obtained using Algorithm 1. This yields the
permuted image P2.

Algorithm 1 Pixel-Wise Random Permutation
Input: Number of pixels n = M ×N and seed of the PRNG

sd .
Output: Permuted indices w.
1: w = 1
2: prn = PRNG(n, sd) {PRNG(.) can be any

pseudo-random number generator}
3: for i = 2 to n do
4: w = [w i]
5: k = d(i× prn (i− 1))e {d.e denotes the ceiling func-

tion}
6: w ([k i]) = w ([i k])
7: end for

The operation of pixel-wise randompermutation is referred
as

P2 = Gsd (P1) . (16)

3) FOURTH ORDER MCA
Image P2 is split into four M2 ×

N
2 blocks, namely B1,B2,B3,

and B4. Each of these blocks is first transformed into its
binary form and then converted to a one-dimensional binary
sequence of length M

2 ×
N
2 ×8 = 2MN . This yields the binary

sequences c1, c2, c3, and c4, which will be considered as the
initial configurations of the fourth order MCA defined by (3).
The transition rules of the MCA are derived using sub-keys
k1,k2, and k3. The final configurations are obtained after
applying the MCA evolution mechanism during r iterations.
Therefore, these configurations are transformed into their
decimal forms, rearranged into M

2 ×
N
2 matrices, and merged

to obtain the encrypted image C. The fourth Order MCA
mechanism is referred as

C = Hα′0,x
′

0
(P2) . (17)

C. THE DECRYPTION PROCESS
To properly recover the original image, a total of six
parameters must be transmitted to the decryption side.
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FIGURE 5. Flowchart of the proposed decryption scheme.

These parameters include the seeds and system parameters
of the LS map (cf. x0, α0, x1, and α1), the seed of the
PRNG (cf. sd), and the 256-bit hash value of the origi-
nal image. The receiver can now generates the parameters
x ′0, α

′

0, x
′

1, and α
′

1 through (1)-(4). The decryption process,
illustrated in Fig. 5, is performed in the reverse order of the
encryption process. An encrypted image C can be recovered
as

D = F−1
α′1,x

′

1



C2︷ ︸︸ ︷
G−1sd

H−1
α′0,x

′

0
(C)︸ ︷︷ ︸

C1



, (18)

where D is the decrypted image and F−1
α′1,x

′

1
, G−1sd , H

−1
α′0,x

′

0
are

the inverse functions of Fα′1,x ′1 ,Gsd , Hα′0,x
′

0
, respectively.

IV. PERFORMANCE ANALYSIS
To show the effectiveness of the proposed encryption scheme,
a set of tests have been performed. These tests include
key space analysis, statistical analysis, sensitivity analysis,
robustness analysis, and time complexity analysis. Note that
the proposed scheme can be immediately applied to any
image formats. One hundred of standard 8-bit grayscale
images of size 512 × 512 are used as benchmarking [33].
This image database is thought to be the largest database
ever to have used for evaluating an image cryptosystem.
The seeds and the control parameters of (7), i.e., x0, α0, x1,
and α1 are fixed at 0.2, 1.99, 0.7, and 2.75, respectively.
The seed of the PRNG is chosen to be 0.3. The num-
ber of iterations used for the MCA is n = 1. As they
contain new concepts and present high performances sur-
passed most of the previous works, some state-of-the-art
algorithms from [14], [25], [34] are selected for compari-
son with the proposed algorithm. It should be emphasized
that the algorithm from [34] employs a new cryptographic
technique, namely image filtering. Indeed, the images are
encrypted using block-based scrambling and image filtering.
The block-based scrambling consists of dividing the image
into blocks and randomly shuffling the pixels of each block.
In image filtering, random masks are employed to filter the
shuffled image.

A. KEY SPACE ANALYSIS
An encryption scheme should possess a large key space to
resist brute-force attacks. In the proposed encryption scheme,
the key space consists of:
• The seeds x0, x1 and the control parameters α0, α1
(cf. (7)).

• The seed sd of the PRNG (cf. Algorithm 1).
• The 256-bit long hash value.

Assuming that the computational precision of the 64-bit
double-precision numbers is 2−49, the possible values of x0
are more than 249, as are the values of x1, α0, α1, and sd . The
complexity of the currently best known practical collision
attack on the SHA-256 hash function is 2128. Therefore,
the key space is larger than 373 bits, which rendered impos-
sible any potential brute-force attacks.

B. STATISTICAL ANALYSIS
1) UNIFORMITY OF THE BIT DISTRIBUTION WITHIN EACH
BIT-PLANE
A bit-plane of an image represents the set of bits correspond-
ing to a bit position of the binary representations of the pixels.
Indeed, the pixels of a grayscale image are usually encoded
into 8 bits, and hence there are eight bit-planes corresponding
to each grayscale image. It has been found that the distribu-
tion of bit-planes of a natural image regarding the percentage
of 1’s and 0’s is usually nonuniform because of the shapes and
texture present in the image. However, this distribution should
be highly uniform (the expected value is 50%) in case of an
encrypted image because of bit-level randomness introduced
by diffusion and confusion in each bit-plane. Therefore a
secure cryptosystem should introduce as much uniformity in
the bit distribution as possible within each of its bit-plane.
Table 1 shows the mean and variance of the percentage of 1’s
in different original images and their encrypted counterparts
for different algorithms. It is observed that our scheme leads
to the best mean percentage of 1’s in five bit-planes. The
studied algorithms exhibit identical variances, in which they
are almost equal to zero with the exception of the algorithm
from [25] where the variance is somewhat larger than zero.

2) CORRELATION OF ADJACENT PIXELS
In an original image, the correlation between neighboring
pixels is always high as every pixel follows a certain pattern.
However, this correlation should be sufficiently low in an

VOLUME 7, 2019 66401



M. N. Aslam et al.: Fourth Order MCA and Chaos-Based Image Encryption Scheme

TABLE 1. Percentage of ‘1’s (mean and variance) in different original images vs. their encrypted counterparts for different algorithms.

encrypted image to ensure randomness and unpredictability
among the cipher image pixels. The correlation among pixels
can be exploited by a cryptanalyst for statistical attacks to
recover the secret key and subsequently the original image.
Therefore to make the encryption scheme secure, adjacent
pixels should be uncorrelated.

Correlation analysis of the original and encrypted images
is performed by computing and comparing 3000 pairs of
two adjacent pixels in horizontal, vertical and diagonal direc-
tions. These pixels are randomly selected from the original
and cipher images. The correlation coefficient between two
neighboring pixels can be calculated using the following
formula:

Cab =

∑K
i=1 (ai − E{a}) (bi − E{b})√∑K

i=1 (ai − E{a})2
√∑K

i=1 (bi − E{b})2
, (19)

where ai and bi are the grayscale values of two randomly
neighboring pixels, K is the total number of (ai, bi) combina-
tions obtained from the image, and E{.} denotes the expected
value of a random variable.

Table 2 reports the mean of absolute values of the
correlation coefficients in the horizontal, vertical and diag-
onal directions from the original and encrypted images. It is
observed that, in all directions, the obtained correlation coef-
ficients are quite close to one for the original images, and
are quite close to zero for their encrypted ones. Therefore,
the neighboring pixels of the original images are uncorre-
lated, and this for all directions. Similar results are shown
graphically in Figs. 6(a)-(c) and Figs. 6(d)-(f) which plot
the correlation coefficients between pixel pairs in the hori-
zontal, vertical, and diagonal directions of the original and
encrypted images of Cameraman, respectively. As a result,
the proposed algorithm can successfully cancel the correla-
tion between adjacent pixels, which makes correlation-based
attacks impossible.

3) HISTOGRAM AND CHI-SQUARE TEST
An image histogram is a graphical representation of the
distribution of pixel intensities in the image. It gives an idea
about the image content concerning the intensity range of the
image pixels. Most of the original images have a nonuniform

TABLE 2. Mean of absolute values of the correlation between pairs of the
original and encrypted images.

FIGURE 6. Distribution of pairs of adjacent pixels in the original and
encrypted images of Cameraman. Frames (a) and (d): Distributions of two
horizontally adjacent pixels in the original and encrypted images,
respectively. Frames (b) and (e): Distributions of two vertically adjacent
pixels in the original and encrypted images, respectively. Frames (c) and
(f): Distributions of two diagonally adjacent pixels in the original and
encrypted images, respectively.

histogram, however, a well-encrypted image reflects a uni-
form histogram to conceal the intensity information. Fig. 7
shows the original images of Cameraman and Airplane along
with their histograms, while the corresponding cipher images
and their histograms are shown in Fig. 8. It can be observed
from the figures that the encrypted image histograms are
fairly uniform and completely different from that of the cor-
responding original images.

Chi-square test [35], [36] is performed to check the extent
of equiprobable frequency counts (H0 - null hypothesis), that
is, how much the distribution of encrypted image’s histogram
matches with the uniform distribution. It can be calculated as
follows

χ2
=

Lp−1∑
i=0

(oi − ei)2

ei
, (20)
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FIGURE 7. Original images and their histograms. Frames (a) and (b) are
the original images of Cameraman and Airplane, respectively. Frames
(c) and (d) are the histograms of the original images of Cameraman and
Airplane, respectively.

FIGURE 8. Encrypted images and their histograms. Frames (a) and (b) are
the encrypted images of Cameraman and Airplane, respectively. Frames
(c) and (d) are the histograms of the encrypted images of Cameraman and
Airplane, respectively.

where Lp denotes the number of pixel levels (for a grayscale
image, Lp = 256), oi represents the observed occurrence
frequency of each pixel value (0−255) in the histogram of the
encrypted image, and ei is the expected occurrence frequency
of the uniform distribution, i.e., ei = (M × N )/256. If the
p-value exceeds the significance level ls (ls ∈ [0, 1]), the null
hypothesis is accepted and the histogram follows the uniform
distribution. Table 3 shows the Chi-square test of histograms
(mean, variance and success rate), with a significance level
of 0.05, for different algorithms. It is obvious from the table
that the proposed algorithm outperforms, with a success rate
of 97%, the comparative algorithms. Therefore, the proposed
algorithm can remove spatial redundancies in the original
image, and then, no useful information can be found to apply
histogram-based attacks. It is worth noting that, in literature,
histogram analysis is often performed as a hypothesis test.
However, some works present the analysis using variance
calculation [37].

4) GLOBAL ENTROPY
Global entropy is evaluated to perform statistical measure-
ment of randomness in the image usually to characterize the
texture of the image. The global entropy of a source X is

TABLE 3. Chi-square test of histograms (mean, variance, and success
rate) for different algorithms.

given by

H (X ) = −
K∑
i=1

p(xi) log2 (p(xi)) [bits], (21)

where K is the number of symbols in X and p(xi) is the
probability of symbol xi. A high value of entropy correspond
to high randomness in the image while the predictability of
the information rises as the entropy of image gets lower. The
optimum entropy (i.e., 8 bits) is obtained when the pixels are
equiprobable, which means a uniform distribution of the pix-
els. The global entropies (mean and variance) of the studied
algorithms are reported in Table 4. The proposed algorithm
and the ones from [14], [34] present similar global entropy
values that approach to the optimum value, while the obtained
entropy for the algorithm in [25] is a bit far from the optimum
value. Consequently, the information loss from the proposed
algorithm is negligible.

5) LOCAL ENTROPY
Local Shannon entropy is evaluated to measure the image’s
randomness qualitatively rather than quantitative measure (as
for the global entropy) that cannot necessarily guarantee the
randomness of the image [38]. The calculation of the local
entropy is detailed in [38]. Comparison of local entropies is
reported in Table 5, where the proposed algorithm and those
from [14], [34] have average local entropies approximately
equal to the optimum value, 7.9024693 [38].

C. SENSITIVITY ANALYSIS
1) KEY SENSITIVITY
A secure encryption scheme should be sensitive to the secret
keys such that even a tiny change in the keys should com-
pletely change the encrypted image as well as the decrypted
one. Fig. 9(a) shows a comparison of the mean Hamming
distances as a function of the number of altered bits in the
secret keys

(
cf. (7)

)
. During this test, the indices of the

n (n = 1, . . . , 10) altered bits as well as the 512×512 images
are randomly generated under 200 iterations. It is seen that
even a single altered bit, the proposed algorithm and the
one from [34] are quite close to the optimal value of 0.5.
Therefore, the proposed algorithm is extremely sensitive
to minor change within its secret keys, and the avalanche
effect is reached. Moreover, it is noted that the algorithm
reported in [25] fails in this test and presents critical security
issues.
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TABLE 4. Global entropy (mean and variance) analysis.

TABLE 5. Local entropy (mean and variance) analysis.

FIGURE 9. Sensitivity analysis: (a) key sensitivity and (b) plaintext sensitivity for the proposed algorithm (where α0 = 2.6484375,
x0 = 0.3515625, α1 = 1.078125, and x1 = 0.712890625) and the comparative ones.

2) PLAINTEXT SENSITIVITY
An encryption scheme should be sensitive to plaintext such
that even one-bit change in the original image yields a com-
pletely different cipher image. Cryptosystems with better
plaintext sensitivity are less prone to chosen plaintext attacks
wheremore than one original images are encrypted to analyze
the change in their corresponding cipher images. Fig. 9(b)
shows a comparison of the mean Hamming distances as a
function of the number of altered bits in the original image.
During this test, the indices of the n (n = 1, . . . , 10) altered
bits as well as the 512× 512 images are randomly generated
under 200 iterations. It is observed that even one altered bit,
the proposed algorithm and the ones from [14], [34] are quite
close to the optimal value of 0.5. As a result, the proposed
algorithm is quite sensitive to small changewithin the original
image, and no useful information can be obtained from the
algorithm. As for the algorithm in [25] there is a harmony
between the obtained Hamming distances for plaintext and
key sensitivity which supports the hypothesis of a potential
vulnerability in the algorithm.

3) UACI AND NPCR
One of the well-known chosen-plaintext attacks is the differ-
ential attack. By analyzing how small changes in the orig-
inal images can significantly affect the encrypted images,

the differential attack reaches to find correlations between the
original and encrypted images, which leads to deciphering the
encrypted images without using the secret keys. The ability
of an image cryptosystem to resist differential attacks can
be quantitatively examined using the number of changing
pixel rate (NPCR), and the unified averaged changed inten-
sity (UACI). A high UACI/NPCR value corresponds to high
resistance against various differential attacks [39]. For two
encrypted images C1 and C2 generated from two original
images with a one-pixel difference, the NPCR and UACI are
defined as follows

NPCR =
1
MN

M∑
i=1

N∑
j=1

D(i, j), (22)

UACI =
1

255×MN

M∑
i=1

N∑
j=1

|C1(i, j)− C2(i, j)|, (23)

whereM andN denotes the image’s width and height, respec-
tively, and D(i, j) represents the difference between C1 and
C2 which is given by

D(i, j) =

{
0, if C1(i, j) = C2(i, j),
1, if C1(i, j) 6= C2(i, j).

The NPCR and UACI (mean and variance) values are com-
pared in Table 6. As for the proposed algorithm, the mean
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TABLE 6. NPCR and UACI (mean and variance) of the encrypted images due to one-bit change in the original image.

FIGURE 10. Test of image occlusion attacks: encrypted images with
(a) 1/16, (b) 1/8, (c) 1/4, and (d) 1/2 data loss; corresponding decrypted
images (e)-(h) in accordance with (a)-(d).

values of NPCR and UACI are 99.6103% and 33.4615%,
respectively. They are approximately equal to the theoreti-
cally ideal values of 99.6% and 33.4%, respectively. That is,
the proposed algorithm possesses high immunity against dif-
ferential attacks. For this test, the algorithm reported in [25]
has the lowest perfromance, while the proposed algorithm
and the tested ones from [14], [34] have competitive perfor-
mances.

D. ROBUSTNESS ANALYSIS
1) OCCLUSION ATTACK
Ciphered images are inevitably affected by occlusions during
transmission. Quality of the decrypted image sharply deterio-
rates as the occlusion size increases. Therefore an encryption
scheme should be robust enough to resist such occlusion
attacks. Figs. 10 (a)-(d) depict the encrypted images with
a data loss of 1/16, 1/8, 1/4, and 1/2, respectively. The
corresponding decrypted images from Figs. 10 (a)-(d) are
shown in Figs. 10 (e)-(h), respectively. It is seen that even a
data loss of 50% from the encrypted image its corresponding
decrypted image maintains the most visual information of the
original image. Table 7 quantitatively compares the effect of
these occlusion attacks on the decrypted images bymeasuring
the PSNR (mean) between the original and the decrypted
images. It is evident that the proposed algorithm performs
better against the occlusion attacks.

2) NOISE ATTACK
An encrypted image gets affected by several noises during
transmission through different channels. The robustness of
an encryption scheme against these noises should be ana-
lyzed. Fig. 11 shows the effect of salt & pepper noise with

TABLE 7. PSNR (mean) between original and decrypted images subject to
occlusion attacks.

FIGURE 11. Decrypted images subject to the salt & pepper noise with a
noise density of (a) 0.005; (b) 0.05; (c) 0.100; and (d) 0.300.

TABLE 8. PSNR (mean) between the original and decrypted images under
salt & pepper noise.

various densities on the decrypted images of Cameraman.
As can see, the decrypted images are noisy but cognizable.
Table 8 quantitatively compares the ability to defend noise
attacks by evaluating the PSNR (mean) between original and
decrypted images subjected to salt & pepper noises. It is
found that the proposed algorithm outperforms algorithms
from [14], [25], [34] in withstanding noise attacks.

E. KNOWN-PLAINTEXT AND CHOSEN-PLAINTEXT
ATTACKS
In known-plaintext attack (KPA), the cryptanalyst has access
to both cipher image and its corresponding original image,
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TABLE 9. Statistical and differential analyses of the encrypted ones of the all white and all black images.

FIGURE 12. Encrypted images of the all white (a) and all black (c); their
histograms (b) and (d), respectively.

which allows him to recover secret information such as
secret keys, and thus break the cipher [40]. As for the
chosen-plaintext attack (CPA), the attacker selects an arbi-
trary original image, and then he got its cipher version [40].
Doing so, the attacker tries to obtain the secret keys or to
develop an algorithm that allows him to decipher an encrypted
image that was encrypted using these keys but without actu-
ally accessing the keys. In the proposed algorithm, the SHA-
256 hash value of the input image is employed to generate
the secret keys of (7). So, when the input image changes
the secret keys change too as is the output image. That
is, an attacker cannot get sensitive information about the
encryption by ciphering some special images. Therefore,
the proposed algorithm possess high ability in resisting
chosen-plaintext and known-plaintext attacks. During a hack-
ing attempt, the attacker profit from encrypting all white and
all black images since they completely disable the permu-
tation/substitution process. Various statistical and differen-
tial analysis of the proposed algorithm for all white and all
black images are showcased in Fig. 12 and Table 9, which
contains a comparison with other tested algorithms. It is
clear that the proposed algorithm produces unrecognizable
images with uniform histograms, zero correlations, global
and local entropies quite close to the optimal values of 8 and
7.9024693, respectively, andNPCR andUACI values approx-
imate to the expected ones of 99.6% and 33.4%, respectively.
The comparative algorithms fail in ciphering all black image.
Considering all the above, the proposed scheme performs
better against chosen-plaintext and known-plaintext attacks.

F. TIME COMPLEXITY ANALYSIS
The time complexity orders and their orders of magnitude
for a 512 × 512 grayscale image are compared in Table 10.
The details of complexity computation are available in

TABLE 10. Time complexity orders and their orders of magnitude for a
grayscale image of size M × N = 512× 512. For the given simulation
results in [14] and [25], L = MN and n = 1, respectively.

Appendix V. It is shown from Table 10 that the proposed
algorithm and the one from [25] have the same order of
magnitude of computational complexity. Moreover, the algo-
rithms from [14], [34] are the slowest ones.

V. CONCLUSION
In this paper we proposed a fast and efficient image encryp-
tion scheme that combines two familiar dynamical systems:
chaotic map and cellular automata. The process is composed
of a key generation layer followed by a diffusion-confusion
layer and a fourth order 1D MCA, under one round. The
secret keys of the LSmap are derived using the SHA-256 hash
value of the original image, leading to produce one-time key-
streams. This fostered a high sensitivity to small alterations in
the original image, and hence guaranteed an excellent ability
in defending chosen-plaintext and known-plaintext attacks.
The keystream of the diffusion process and the transition
rules of the fourth order 1D MCA are both derived from
the LS map. The diffusion-confusion layer consists of a
bit-wise XOR operation followed by a pixel-wise random
permutation. The resulting image is decomposed into four
blocks according to the quadtree decomposition strategy.
Then, a fourth order MCA is applied, the blocks obtained
from the quadtree decomposition are considered as the initial
MCA configurations. Performance of the proposed algorithm
is evaluated using several analyses such as key space analysis,
statistical analysis, sensitivity analysis, robustness analysis,
and complexity analysis. We found that the proposed algo-
rithm is fast running and can efficiently resisting all kind of
attacks, which gives a better performance/complexity trade-
off, in particular with regard to the selected state-of-the-art
algorithms. Furthermore, the lower computational complex-
ity makes our encryption scheme prominent for real-time
applications and hardware implementation.
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TABLE 11. Time complexity analysis for the evaluated image encryption algorithms.

APPENDIX
TIME COMPLEXITY ANALYSIS FOR THE PROPOSED
IMAGE ENCRYPTION ALGORITHM AND THE ONES
IN [14], [34], AND [25]
Table 11 reports a count of occurrences of each operation
according to MN , the number of pixels. [14]’s encryption
algorithm calls searching and sorting operations. Let a vector
of k elements, searching is of time complexity O(k), and
sorting is of average time complexity k log(k) if one considers
the quicksort algorithm [41]. The proposed algorithm and
the one in [34] use randomly generated numbers. To derive
their time complexities, we assume a linear congruential
generator since it is widely used as a uniform random number
generator [42]. About SHA-256 hash algorithm, note that the
algorithm has an entry size of 512 bits and a constant number
of operations.

After gathering the operations given by Table 11, then
ignoring lower-orders terms, complexity orders are expressed
as

O
(
MN

(
34+ log(L)+ 2

√
L
))

for [14]

O
(
108MN + 72L4

)
for [34]

O

((
2+ 108n

m−1∑
i=1

4−i
)
MN

)
for [25]

O ((27n+ 20)MN ) for our proposed
algorithm.

(24)

To make the comparison easier, let simplify the time com-
plexity of [25]. The term

m−1∑
i=1

4−i =
log2(M )−3∑

i=1

(
1
4

)i
(25)

is, in fact, a geometric series with common ratio 1
4 , the sum

then becomes

log2(M )−3∑
i=1

(
1
4

)i
=

1
3
−

1
3
43−log2(M )

=
1
3
−

64
3M2 . (26)

Disregarding the lower-order term, the derived complexity
order of [25] is simplified as O ((36n+ 2)MN ). It is worth
noting that, since 36n + 2 ≥ 27n + 20 ∀n ≥ 2, complexity
order of our proposed encryption algorithm is lower than that
of [25] for n greater than 2.

REFERENCES
[1] H. Liu and X. Wang, ‘‘Color image encryption using spatial bit-level

permutation and high-dimension chaotic system,’’Opt. Commun., vol. 284,
nos. 16–17, pp. 3895–3903, 2011.

[2] H. Liu, X. Wang, and A. Kadir, ‘‘Image encryption using DNA com-
plementary rule and chaotic maps,’’ Appl. Soft. Comput., vol. 12, no. 5,
pp. 1457–1466, 2012.

[3] X.-Y. Wang, L. Yang, R. Liu, and A. Kadir, ‘‘A chaotic image encryption
algorithm based on perceptron model,’’ Nonlinear Dyn., vol. 62, no. 3,
pp. 615–621, 2010.

VOLUME 7, 2019 66407



M. N. Aslam et al.: Fourth Order MCA and Chaos-Based Image Encryption Scheme

[4] S. E. Assad and M. Farajallah, ‘‘A new chaos-based image encryption sys-
tem,’’ Signal Process., Image Commun., vol. 41, pp. 144–157, Feb. 2016.

[5] H. Liu and X. Wang, ‘‘Color image encryption based on one-time
keys and robust chaotic maps,’’ Comput. Math. Appl., vol. 59, no. 10,
pp. 3320–3327, 2010.

[6] P. Stavroulakis and M. Stamp, Handbook of Information and Communica-
tion Security, 1st ed. Berlin, Germany: Springer, 2014.

[7] A. Belazi, R. Rhouma, and S. Belghith, ‘‘A novel approach to construct
S-box based on Rossler system,’’ in Proc. Int. Wireless Commun. Mobile
Comput. Conf. (IWCMC), Aug. 2015, pp. 611–615.

[8] A. Belazi, A. A. A. El-Latif, R. Rhouma, and S. Belghith, ‘‘Selective
image encryption scheme based on DWT, AES S-box and chaotic permu-
tation,’’ in Proc. Int. Wireless Commun. Mobile Comput. Conf. (IWCMC),
Aug. 2015, pp. 606–610.

[9] A. A. Alzaidi, M. Ahmad, M. Doja, E. Al Solami, and M. S. Beg, ‘‘A new
1D chaotic map and β-hill climbing for generating substitution-boxes,’’
IEEE Access, vol. 6, pp. 55405–55418, Oct. 2018.

[10] C. Zhu and K. Sun, ‘‘Cryptanalyzing and improving a novel color image
encryption algorithm using RT-enhanced chaotic tent maps,’’ IEEE Access,
vol. 6, pp. 18759–18770, Mar. 2018.

[11] J.-X. Chen, Z.-L. Zhu, and H. Yu, ‘‘A fast chaos-based symmetric image
cryptosystem with an improved diffusion scheme,’’ Optik-Int. J. Light
Electron Opt., vol. 125, no. 11, pp. 2472–2478, Jun. 2014.

[12] X.Wu, B. Zhu, Y. Hu, andY. Ran, ‘‘A novel color image encryption scheme
using rectangular transform-enhanced chaotic tent maps,’’ IEEE Access,
vol. 5, pp. 6429–6436, 2017.

[13] Y. Zhang and D. Xiao, ‘‘An image encryption scheme based on rotation
matrix bit-level permutation and block diffusion,’’Commun. Nonlinear Sci.
Numer. Simul., vol. 19, no. 1, pp. 74–82, 2014.

[14] Y. Zhou, Z. Hua, C.-M. Pun, and C. L. P. Chen, ‘‘Cascade chaotic system
with applications,’’ IEEE Trans. Cybern., vol. 45, no. 9, pp. 2001–2012,
Sep. 2015.

[15] X. Wang, L. Liu, and Y. Zhang, ‘‘A novel chaotic block image encryption
algorithm based on dynamic random growth technique,’’Opt. Lasers Eng.,
vol. 66, pp. 10–18, Mar. 2015.

[16] Y.-Q. Zhang and X.-Y. Wang, ‘‘A new image encryption algorithm based
on non-adjacent coupled map lattices,’’ Appl. Soft. Comput., vol. 26,
pp. 10–20, Jan. 2015.

[17] S.Wolfram, ‘‘Cryptographywith cellular automata,’’ inProc. Conf. Theory
Appl. Cryptograph. Techn.Berlin, Germany: Springer, Nov. 1985, pp. 429–
432.

[18] R.-J. Chen and J.-L. Lai, ‘‘Image security system using recursive cellular
automata substitution,’’ Pattern Recognit., vol. 40, no. 5, pp. 1621–1631,
May 2007.

[19] R.-J. Chen and S.-J. Horng, ‘‘Novel SCAN-CA-based image security
system using SCAN and 2-D von Neumann cellular automata,’’ Signal
Process., Image Commun., vol. 25, no. 6, pp. 413–426, Jul. 2010.

[20] A. A. Abdo, S. Lian, I. A. Ismail, M. Amin, and H. Diab, ‘‘A cryptosystem
based on elementary cellular automata,’’ Commun. Nonlinear Sci. Numer.
Simul., vol. 18, no. 1, pp. 136–147, 2013.

[21] J. Jin, ‘‘An image encryption based on elementary cellular automata,’’Opt.
Lasers Eng., vol. 50, no. 12, pp. 1836–1843, 2012.

[22] A. M. del Rey, G. R. Sánchez, and A. De La Villa Cuenca, ‘‘Encrypting
digital images using cellular automata,’’ in Proc. Int. Conf. Hybrid Artif.
Intell. Syst. Berlin, Germany: Springer, 2012, pp. 78–88.

[23] X. Wang and D. Luan, ‘‘A novel image encryption algorithm using chaos
and reversible cellular automata,’’ Commun. Nonlinear Sci. Numer. Simul.,
vol. 18, no. 11, pp. 3075–3085, 2013.

[24] A. Bakhshandeh and Z. Eslami, ‘‘An authenticated image encryption
scheme based on chaotic maps and memory cellular automata,’’ Opt.
Lasers Eng., vol. 51, no. 6, pp. 665–673, 2013.

[25] A. Souyah and K. M. Faraoun, ‘‘Fast and efficient randomized encryption
scheme for digital images based on quadtree decomposition and reversible
memory cellular automata,’’ Nonlinear Dyn., vol. 84, no. 2, pp. 715–732,
Apr. 2016.

[26] A. Souyah and K. M. Faraoun, ‘‘An image encryption scheme combining
chaos-memory cellular automata and weighted histogram,’’ Nonlinear
Dyn., vol. 86, no. 1, pp. 639–653, Oct. 2016.

[27] C. Paar and J. Pelzl,Understanding Cryptography: A Textbook for Students
and Practitioners, 1st ed. Berlin, Germany: Springer, 2009.

[28] J. V. Neumann, Theory of Self-Reproducing Automata, A. W. Burks, Ed.
Champaign, IL, USA: Univ. of Illinois Press, 1966.

[29] K. C. Clarke, ‘‘Cellular automata and agent-based models,’’ in Handbook
of Regional Science. Berlin, Germany: Springer, 2014, pp. 1217–1233.

[30] S. Wolfram, ‘‘Random sequence generation by cellular automata,’’ Adv.
Appl. Math., vol. 7, pp. 123–169, 1986.

[31] S. Wolfram, A New Kind of Science, vol. 5. Champaign, IL, USA:Wolfram
Media, 2002.

[32] Y. Zhou, L. Bao, and C. P. Chen, ‘‘A new 1D chaotic system for image
encryption,’’ Signal Process., vol. 97, no. 11, pp. 172–182, 2014.

[33] Computer Vision Group, University of Granada (CVG-UGR). Image
Database. Accessed: Jan. 1, 2019. [Online]. Available: http://decsai.
ugr.es/cvg/dbimagenes/

[34] Z. Hua and Y. Zhou, ‘‘Design of image cipher using block-based scram-
bling and image filtering,’’ Inf. Sci., vol. 396, pp. 97–113, Aug. 2017.

[35] N. D. Gagunashvili, ‘‘CHICOM:A code of tests for comparing unweighted
and weighted histograms and two weighted histograms,’’ Comput. Phys.
Commun., vol. 183, no. 1, pp. 193–196, Jan. 2012.

[36] N. D. Gagunashvili, ‘‘CHIWEI: A code of goodness of fit tests for
weighted and unweighted histograms,’’Comput. Phys. Commun., vol. 183,
no. 2, pp. 418–421, Oct. 2012.

[37] Y.-Q. Zhang and X.-Y. Wang, ‘‘A symmetric image encryption algorithm
based on mixed linear–nonlinear coupled map lattice,’’ Inf. Sci., vol. 273,
pp. 329–351, Jul. 2014.

[38] Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J. P. Noonan, and P. Natarajan,
‘‘Local Shannon entropy measure with statistical tests for image random-
ness,’’ Inf. Sci., vol. 222, pp. 323–342, Feb. 2013.

[39] Y. Wu, J. P. Noonan, and S. Agaian, ‘‘NPCR and UACI randomness tests
for image encryption,’’Cyber J., Multidiscipl. J. Sci. Technol., J. Sel. Areas
Telecommu., vol. 1, pp. 31–38, Apr. 2011.

[40] X.Wang, L. Teng, andX. Qin, ‘‘A novel colour image encryption algorithm
based on chaos,’’ Signal Process., vol. 92, no. 4, pp. 1101–1108, Apr. 2012.

[41] C. A. R. Hoare, ‘‘Algorithm 64: Quicksort,’’ Commun. ACM, vol. 4, no. 7,
p. 321, Jul. 1961.

[42] P. L’Ecuyer, ‘‘Uniform random number generation,’’ Ann. Oper. Res.,
vol. 53, no. 1, pp. 77–120, Dec. 1994.

MD NAZISH ASLAM received the M.Tech.
degree in control and instrumentation system
from the Department of Electrical Engineering,
Jamia Millia Islamia University, New Delhi, India,
in 2016.

From 2016 to 2017, he was with PIRO
Technologies Pvt. Ltd., New Delhi, as a Research
Associate and has been a Senior Research Asso-
ciate, since 2017, where he is currently involv-
ing in image processing, wireless networks, image

cryptography, and machine learning. He has also delivered various research
oriented training program to the research scholars and faculty members
in the above-mentioned fields. His research interests include cryptography,
machine learning, and deep learning.

AKRAM BELAZI received the B.Eng. degree
in telecommunications and networks from the
National Engineering School of Gabes, ENIG
Tunisia, in 2011, the M.Sc. degree in electronic
systems and networks communications from the
Tunisia Polytechnic School, EPT, in 2013, and
the Ph.D. degree in telecommunications from
the National Engineering School of Tunis, ENIT
Tunisia, in 2017. His main research interests
include multimedia cryptography, machine learn-

ing, deep learning, and optimization techniques.

66408 VOLUME 7, 2019



M. N. Aslam et al.: Fourth Order MCA and Chaos-Based Image Encryption Scheme

SOFIANE KHARBECH (M’17) received the Engi-
neering degree in networking and telecommuni-
cations from the National Institute of Applied
Science and Technology, Tunis, Tunisia, in 2009,
the M.Sc. degree in electronic systems and com-
munication networks from the Tunisia Polytechnic
School, Carthage, Tunisia, in 2012, and the Ph.D.
degree in electrical engineering from the Uni-
versity of Valenciennes and Hainaut-Cambresis,
Valenciennes, France, in 2015.

From 2012 to 2015, he was a Research Engineer with the Laboratory
IEMN/DOAE (CNRS UMR 8520, France). Since 2015, he has been an
Assistant Professor with the Higher Institute for Technological Studies
of Gabes, Gabes, Tunisia, and a Senior Researcher with the Laboratory
Sys’Com (ENIT, Tunisia). His main research interests include cognitive
radio, wireless communications, and cryptography.

MUHAMMAD TALHA received the Ph.D.
degree in computer science from the Faculty of
Computing, Universiti Teknologi Malaysia. He is
currently a Researcher with the Deanship of Sci-
entific Research, King Saud University, Riyadh,
Saudi Arabia. He has authored more than 25 inter-
national journals and conferences. His research
interests include image processing, medical imag-
ing, features extraction, classification andmachine
learning techniques.

WEI XIANG (S’00–M’04–SM’10) received the
B.Eng. and M.Eng. degrees in electronic engi-
neering from the University of Electronic Sci-
ence and Technology of China, Chengdu, China,
in 1997 and 2000, respectively, and the Ph.D.
degree in telecommunications engineering from
the University of South Australia, Adelaide, Aus-
tralia, in 2004. From 2004 to 2015, he was with the
School of Mechanical and Electrical Engineering,
University of Southern Queensland, Toowoomba,

QLD, Australia. He is currently the Founding Professor and the Head of
the Discipline of Internet of Things Engineering, James Cook University,
Cairns, QLD, Australia. Due to his instrumental leadership in establishing
Australia’s first accredited Internet of Things Engineering degree program,
he was selected into Pearcy Foundation’s Hall of Fame, in 2018. He has
published over 250 peer-reviewed papers with over 130 journal articles.
He has severed in a large number of international conferences in the capacity
of General Co-Chair, TPC Co-Chair, and Symposium Chair. His research
interests include communications and information theory, particularly the
Internet of Things, and coding and signal processing for multimedia commu-
nications systems. He is an elected fellow of the IET in U.K. and Engineers
Australia. He received the TNQ Innovation Award, in 2016, and the Pearcey
Entrepreneurship Award, in 2017, and Engineers Australia Cairns Engineer
of the Year, in 2017. He was a co-recipient of four Best Paper Awards
system 2019 WiSATS, 2015 WCSP, 2011 IEEEWCNC, and 2009 ICWMC.
He has been awarded several prestigious fellowship titles. He was named
a Queensland International Fellow, from 2010 to 2011, by the Queensland
Government of Australia, an Endeavour Research Fellow, from 2012 to 2013,
by the Commonwealth Government of Australia, a Smart Futures Fellow,
from 2012 to 2015, by the Queensland Government of Australia, and a
JSPS Invitational Fellow jointly by the Australian Academy of Science and
Japanese Society for Promotion of Science, from 2014 to 2015. He is the Vice
Chair of the IEEE Northern Australia Section. He was an Editor for IEEE
COMMUNICATIONS LETTERS, from 2015 to 2017, and is an Associate Editor for
Telecommunications Systems (Springer).

VOLUME 7, 2019 66409


	INTRODUCTION
	PRELIMINARIES
	CELLULAR AUTOMATA
	ELEMENTARY CA
	MEMORY CELLULAR AUTOMATA

	THE LOGISTIC-SINE MAP
	THE BACKGROUND OF COMBINING CA AND CHAOTIC MAP

	PROPOSED IMAGE ENCRYPTION ALGORITHM
	KEY GENERATION
	ENCRYPTION PROCESS
	BIT-WISE CHAOTIC DIFFUSION
	PIXEL-WISE RANDOM PERMUTATION
	FOURTH ORDER MCA

	THE DECRYPTION PROCESS

	PERFORMANCE ANALYSIS
	KEY SPACE ANALYSIS
	STATISTICAL ANALYSIS
	UNIFORMITY OF THE BIT DISTRIBUTION WITHIN EACH BIT-PLANE
	CORRELATION OF ADJACENT PIXELS
	HISTOGRAM AND CHI-SQUARE TEST
	GLOBAL ENTROPY
	LOCAL ENTROPY

	SENSITIVITY ANALYSIS
	KEY SENSITIVITY
	PLAINTEXT SENSITIVITY
	UACI AND NPCR

	ROBUSTNESS ANALYSIS
	OCCLUSION ATTACK
	NOISE ATTACK

	KNOWN-PLAINTEXT AND CHOSEN-PLAINTEXT ATTACKS
	TIME COMPLEXITY ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	MD NAZISH ASLAM
	AKRAM BELAZI
	SOFIANE KHARBECH
	MUHAMMAD TALHA
	WEI XIANG


