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ABSTRACT In this paper, we propose to use deep neural networks for image compression in the
wavelet transform domain. When the input image is transformed from the spatial pixel domain to the
wavelet transform domain, one low-frequency sub-band (LF sub-band) and three high-frequency sub-bands
(HF sub-bands) are generated. Low-frequency sub-band is firstly used to predict each high-frequency sub-
band to eliminate redundancy between the sub-bands, after which the sub-bands are fed into different auto-
encoders to do the encoding. In order to further improve the compression efficiency, we use a conditional
probability model to estimate the context-dependent prior probability of the encoded codes, which can
be used for entropy coding. The entire training process is unsupervised, and the auto-encoders and the
conditional probability model are trained jointly. The experimental results show that the proposed approach
outperforms JPEG, JPEG2000, BPG, and some mainstream neural network-based image compression.
Furthermore, it produces better visual quality with clearer details and textures because more high-frequency
coefficients can be reserved, thanks to the high-frequency prediction.

INDEX TERMS Image coding, neural networks, discrete wavelet transforms, predictive models.

I. INTRODUCTION
In recent years, Machine Learning (ML) has been widely
used in various fields of image processing and achieves the
significant performance, such as image recognition [1]–[3],
image classification [4], [5], image segmentation [6], [7], etc..
In the field of image compression, the auto-encoder [8] is
a network that can be trained for dimension reduction [9],
which makes it possible for the implementation of ML-based
image compression. However, due to the limited fitting
ability of the shallow neural networks and the limitation
of hardware computing ability, the performance of image
compression using shallow auto-encoder was unsatisfactory.
Therefore, ML-based image compression was not system-
atically formed in the early stage. With the proposal of
deep neural networks (DNN) [10] and convolutional neural
networks (CNN) [11], [12], image compression based on
deep neural networks (deep image compression) gradually
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shows advantages. In 2016, G. Toderici et al. [13] proposed
an image compression system based on recurrent neural
networks (RNN) [14], [15], which was the first time to
train a DNN completely as an image compression system.
This compression model was used to compress images with
size 32 × 32, which can yield equal quality to JPEG [16]
at the same compression ratio. Subsequently, deep image
compression became widely concerned by the researchers.
At present, deep image compression can be roughly divided
into three categories: recurrent auto-encoder based compres-
sion [13], [17]–[19], classical auto-encoder by end-to-end
training [20]–[24], [41] and conceptual image compression
methods [25].

In the same way as the traditional image compression,
a deep image compression system can be divided into four
major parts: encoder, decoder, quantization, and entropy cod-
ing. The main role of the encoder is to reduce the dimen-
sion of the input data and make the data more compact for
further compression. Quantization is the process to discrete
the continuous valued codes, making it possible to represent
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each code unit with limited bits, which is a lossy process.
Then the quantized codes are input to the decoder, which is
used to produce the reconstructed image by decoding process.
The entropy coding is used to further compress the codes by
lossless compression, where the entropy can be calculated
according to the prior probability of the codes.

Different from the traditional image compression, in a deep
image compression system, the four major parts are usually
composed by neural networks, and the parameters in the
compression model are optimized iteratively in the training.
There are two challenges to train the compression model:
first, How to deal with the non-differentiable quantization in
the back propagation; second, How to control the trade-off
between distortion and bit rates.

We focus on the second challenge and propose a deep
image compression approach in the wavelet transform
domain based on high frequency sub-band prediction. The
compression model is trained to extract features in wavelet
sub-bands, instead of in the spatial pixel domain image. Com-
pared with the image compression in the spatial pixel domain,
there are two advantages for our compression approach:
firstly, the wavelet transform separates the low-frequency
and the high-frequency information of the input image.
As a result, each sub-band can be processed respectively
according to different characteristics, which is helpful to the
reservation of high-frequency information to improve the
quality of detail reconstruction; Secondly, after the discrete
wavelet transform (DWT) [26], the probability distribution of
high-frequency coefficients is relatively concentrated, which
is conducive for modeling the prior probability of high-
frequency codes. Furthermore, inspired by the idea of wavelet
zero tree compression [27], we use neural networks to predict
high frequency sub-bands (HF sub-bands) according to low
frequency sub-band (LF sub-band), in order to remove the
redundancy between LF sub-band and HF sub-bands.

II. RELATED WORKS
A. TRODITIONAL IMAGE COMPRESSION
Currently, JPEG and JPEG2000 [28] are the international
standards for image compression, and h. 265/HEVC [29]
is the latest video compression standards, which can also
implement the intra-frame coding as image compression.
JPEG is the earliest proposed image compression standard
based on discrete cosine transform (DCT) [30]. After the
image is decomposed by DCT, the high-frequency coeffi-
cients are dramatically quantized and compressed to realize
data compression. However, each coefficient after DCT is
related to all the pixels of the whole image; thus, it requires a
large amount of computation. Therefore, block segmentation
is carried out before implementing the subsequent compres-
sion, which leads to some block artifacts [31] under low bit
rate. Compared with JPEG, JPEG2000 is based on DWT.
Because the length of the base function of the DWT is vari-
able, the coefficients after DWT only reflect some local fea-
tures of the input image, showing good local characteristics.

Thus, the block artifacts can be well avoided in the JPEG2000
because the compression is carried out without block segmen-
tation. BPG [32] is a recently proposed image compression
method based on a subset of the HEVC, which has smaller
compressed files than JPEG and JPEG2000 for similar qual-
ity because the correlation between adjacent blocks are con-
sidered and up to 35 prediction modes are adopted in the
compression.

In traditional image compression methods, the parameters
and compression modes need to be set artificially for trans-
formation, quantization, and coding process. Even for BPG
coding with multiple prediction modes, each prediction mode
is fixed, which lacks flexibility, and which limits the elimina-
tion of redundancy in the compression system. In addition,
because the encoding and decoding processes are carried out
independently, it is difficult to optimize the encoded codes
directly according to the quality of decoded image, so there
is still room for optimization in the encoding and decoding
process.

B. DEEP IMAGE COMPRESSION
In deep image compression, an auto-encoder based on DNN
is trained as encoder and decoder, whichmaps the input image
to codes, and then inversely maps the codes to the output
image, with the target of reducing the distortion between
the input image and the output image. Data dimension of
the code is usually lower than that of the input image,
in this way, the reduction of data dimension can be real-
ized. Much attention has been attracted to deep image com-
pression since 2016. Initially, the compression was mainly
implemented by a RNN-based auto-encoder with progres-
sive training [13], [17]–[19]. In each recurrence, residual
between the latest reconstruction and the input image was
encoded by the RNN-based auto-encoder. Encoded bits of
each residual are added to the total bits iteratively and finally
a progressive-increasing encoded bit stream is formed. How-
ever, the value range of the residual, as well as the speed of
convergence will change by iteration, making it a challenge
to make a trade-off between different residuals in a single
auto-encoder. Another kind of deep image compression is
implemented by a DNN-based auto-encoder with end-to-end
training [20]–[24], [41], in which there is no recurrent struc-
ture in both of the encoder and the decoder, thus, encoded bits
can be obtained from the encoder all at one time. Compared
with the RNN-based image compression, there is no need
for the adaption to the progressive-changing residuals in the
end-to-end image compression, which brings a more stable
training and simpler structure to the auto-encoder.

Currently, almost all the deep image compression
approaches are trained for the pixel domain image, making
a lack of high frequency sensitivity–some of the details and
textures of the image will become over-smoothed due to the
loss of high frequency information. Therefore, it is difficult
to meet the requirement of high quality HF reconstruction by
means of pixel-domain deep image compression.
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FIGURE 1. Framework of the proposed image compression based on high-frequency sub-band prediction.

III. DEEP IMAGE COMPRESSION IN THE
WAVELET TRANSFORM DOMAIN
A. FRAMEWORK
Fig. 1 is the framework of our compression model. The
input image x is firstly decomposed into four sub-bands
{x(s)} by DWT, which produces one LF sub-band and three
HF sub-bands. Four parallel auto-encoders are established to
encode/decode the sub-bands respectively. After the encod-
ing, each sub-band x(s) is mapped to a latent representa-
tion z(s), followed by the quantization (yields the codes z̄(s)).
Then, the decoders do the inverse mapping and output the
reconstructed sub-bands {x̂(s)}. Finally, the reconstructed
image x̂ is obtained by inverse discrete wavelet transform
(IDWT) from the reconstructed sub-bands. we can compactly
represent the networks as follows:

{x(s) = DWT (x) (1)

z(s) = E(s)(x(s)) (2)

z̄(s) = Q(s)(z(s)) (3)

x̂(s) = D(s)(z̄(s)) (4)

x̂ = IDWT ({x̂(s)}) (5)

where {x(s) represents four sub-bands after DWT. The super-
script (s) is the index of different sub-bands in {x(s)}.
E(s), D(s), and Q(s) represent the encoding, decoding and
quantization respectively. z̄(s) is the quantized latent represen-
tation (i.e. the codes).

In our compression approach, at the encoder side, HF sub-
bands are firstly predicted by LF sub-band before encoding.
Thus, in the encoding process, the LF sub-band is directly
input into LF encoder, while the HF residuals, instead of HF
sub-bands are input into HF encoders because some of the
HF information can be predicted by the LF sub-band. The
network is then extended as follows:

(x(ll), {x(h)}) = DWT (x) (6)

x̂(ll) = D(ll)(Q(ll)(E(ll)(x(ll)))) (7)

x̂(h) = D(h)(Q(h)(E(h)(r (h))))+ P(h)(x̂(ll)) (8)

x̂ = IDWT (x̂(ll), {x̂(h)}) (9)

FIGURE 2. Parallel branches of four sub-bands.

where the superscript (ll) is the LF sub-band, (h) is the index
of different HF sub-bands. r (h) is the residual between the
HF sub-band (h) and its prediction. P(a)(b) represents the
prediction process which to predict sub-band (a) according
to sub-band (b).

In order to further improve the compression efficiency,
a conditional probability model is adopted to estimate the
context-correlated prior probability of z̄(s), which is used
in the entropy coding to calculate the entropy. The auto-
encoders and the probability model are trained jointly,
according to the combined loss function:

Loss = LossAE + LossP (10)

where LossAE is the loss of the auto-encoder, and LossP is the
loss of the probability model.

B. DISCRETE WAVELET TRANSFORMS
Haar wavelet [33] is used in our model to transform the
input image from the spatial pixel domain to the wavelet
domain. x(ll), x(lh), x(hl) , and x(hh) sub-bands are generated
after the DWT, where x(ll) is the LF sub-band, x(lh), x(hl),
and x(hh) are the HF sub-bands. The LF sub-band contains
low frequency information of the input image, which can be
seen as an approximation of the input image because most of
the information is concentrated in the LF sub-band. Three HF
sub-bands contain some high frequency informationwith hor-
izontal, vertical, and diagonal textures, respectively. The sub-
bands are processed along four parallel branches, as shown
in Fig. 2.
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The end-to-end training is adopted in the whole system,
i.e., the branches are not trained separately, instead, four
branches are trained jointly from the input-end x to the
output-end x̂. Compared with separate training, four parallel
branches are connected when produced the reconstructed
image by IDWT in the joint training. Accordingly, when
the model is optimized by back propagation, the correlation
between sub-bands can be considered in the process of opti-
mization. Therefore, the latent representation of each sub-
band can be optimized directly according to the quality of
reconstructed image. In addition, after adding the entropy
coding model, the bit allocation between sub-bands can be
better optimized in joint training, because the correlation
between sub-bands can also be considered in the bitrate
optimization.

C. PREDICTION OF HIGH FREQUENCY SUB-BANDS
The LF sub-band can be continually decomposed by the
wavelet transform stage by stage, which is referred to as
multi-stage wavelet transform. After multi-stage wavelet
transform, the sub-bands obtained by the transform present
a tower-like distribution, forming a wavelet tree, as shown
in Fig. 3.

FIGURE 3. Tower-like distribution of sub-bands obtained from
multi-stage wavelet transform.

According to the theory of image coding based on wavelet
zero-tree, there are strong correlations between the coeffi-
cients of the homonymous sub-bands from different stages.
For example, in Fig. 3, the coefficients of the three shaded
blocks in HH sub-band from level one, two, and three show
a strong correlation. As a result, some coefficients can be
predicted by the homonymous sub-bands to remove some
redundancy.

In our wavelet based compression system, the LF sub-
band x(ll) can be continually decomposed by DWT to produce
one LF sub-band x(ll2) and three HF sub-bands x(h2). Since
the wavelet transform is invertible, from the perspective of
information theory, there is no loss of information before and
after the wavelet transform, i.e.:

I
(
x(ll)

)
= I

(
x(ll2)

)
+ I (x(h2)|x(ll2))

= I
(
x(h2)

)
+ I (x(ll2)|x(h2)) (11)

where I (∗) is the self-information, and I (∗|∗) is the condi-
tional self-information. According to the wavelet tree theory,

x(h) sub-band can be predicted by x(h2) sub-band because of
the strong correlation. And according to (11), since all the
information of x(h2) is included in the self-information of
x(ll), x(ll) can be used to make predictions for x(h). Therefore,
we add a HF prediction before encoding, and encode only the
HF residuals to improve compression efficiency. The residual
of each HF sub-band can be represented as:

r (h) = x(h) − P(h)(x(ll)) (12)

However, in the lossy compression system, some of the LF
information will get loss when transmitting from the encoder
to the decoder, we have I (x̂(ll)) < I (x(ll)), thus, there will
be I (P(h)(x̂(ll))) < I (P(h)(x(ll))), i.e., compared with the
HF prediction at the encoder side, some information of HF
prediction will get loss at the decoder. Unfortunately, this part
of loss information is not transmitted to the decoder because
it has been subtracted at the encoder, which causes some
extra loss of HF information. In order to solve this problem,
at the encoder side, when we get the predicted HF sub-bands,
an extra network was trained to yield a mask with the same
size of the prediction, which is represented byM (h). The range
of each value in M (h) is (0, 1), and each HF prediction is
masked byM (h) before subtracted by x(h), then (12) becomes:

r (h) = x(h) − P(h)
(
x(ll)

)
◦M (h) (13)

where ◦ represents the Hadamard product produced by ele-
ment multiplication.

Since M (h) can be optimized by the gradient descent
according to the gradient with respect to the reconstructed
image, which can be seen as a feedback from decoder to the
encoder. Therefore, after filtered by the mask, the predictions
can be appropriately kept at the encoder according to the
quality of reconstructed image.

After the prediction process, the HF residuals obtained
according to (13) are input into the HF encoders E (h), while
the LF sub-band is directly input into the E (ll). At the decoder
side, the HF prediction is also made according to the decoded
LF sub-bands x̂(ll). The structure of the prediction network at
the decoder is same as the one at the encoder, but without the
mask network because all the predictions can be used for the
HF reconstruction at the decoder side. The reconstructed HF
sub-bands are obtained by the combination of decoded HF
residuals and theHF predictions, which can be represented as:

x̂(h) = r̂ (h) + P(h)
(
x̂(ll)

)
(14)

D. AUTO-ENCODERS FOR DIFFERENT SUB-BANDS
The encoders and decoders of four sub-bands are imple-
mented fully by convolutional neural networks. At the
encoder side, convolutional layers with different strides are
used to extract multiple-scale features of each sub-band. After
the encoding, each encoder yields a latent representation
z(s) ∈ Rw×h×n(s) , where n(s) is the number of feature maps,
w and h are the width and height of each feature map,
respectively. At the decoder side, transpose convolutional
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layers with different strides are used to reconstruct the corre-
sponding sub-band from z̄(s), which performs the counterpart
inverse operations to the encoder.

The size of each feature map (w × h) is same for all
the latent representations of four sub-bands, thus, the bit
allocation between sub-bands can be roughly controlled by
setting different n(s) to each sub-band. In general, since most
information of the input image is concentrated in the LF sub-
band, n(ll) is set much bigger than n(h), besides, n(hh) is set the
smallest of all because x(hh) contains the fewest information
of the input image. However, it is hard to precisely adjust
the bit allocation by simply set n(s) artificially because the
need of n(s) may differ in different images. Therefore, we add
a branch to yield an important map [24] at the end of each
encoder, which is used as a filter to filter out some codes from
the last few feature maps in z(s) by means of setting the cor-
responding codes to zero. The important map is represented
as Im(s)

∈ Rw×h×1, and each value in Im(s) is normalized to
(0, 1) by the sigmoid function. The filtering process can be
represented as:

I (z(s)ijk ) =

z
(s)
ijk , k/n(s) ≤ Im(s)

ij

0, k/n(s) > Im(s)
ij

(15)

where I(∗) represents the filtering process by important map,
the subscripts i, j, and k represent the coordinates on the
dimension of width, height, and feature map channel, respec-
tively. The important map is trained iteratively by optimiz-
ing both reconstructive quality and the bit cost, therefore,
the bit allocation between sub-bands can be fine-tuned by the
important map according to different kinds of image contents.
Furthermore, since an approximate of the important map can
be recovered according to I (z(s)) by:

ˆIm
(s)
ij =

k
n(s)

, k = argmax
k

(I (z(s)ijk ) 6= 0) (16)

and it will give the same result after filtered by ˆIm
(s)

as filtered
by Im(s). As a result, the important maps are not needed to be
coded, nor transmitted to the decoder.

After filtered by the important map, the filtered latent
representation I(z(s)) is obtained, then comes the quantization
(see section III.E). I(z̄(s)) is the code that actually to be
decoded at the decoder, with the bitrate of R(I(z̄(s)). To better
control the trade-off of reconstruction error and the bit rates,
a rate-distortion optimization function is used as the loss
function of the auto-encoders:

LossAE = λ • D
(
x, x̂

)
+

∑
s
R(I(z̄(s))) (17)

where D denotes the distortion loss between the input image
and the output image, R denotes the bitrate loss, and λ is a
weight parameter introduced to balance D and R.

E. QUANTIZATION
The non-uniform quantization is adopted in the system,
let �(s)

= [ω(s)1 , ω
(s)
2 , . . . , ω

(s)
q ] ∈ R1×q represents the

quantization centers of sub-band (s), which are optimized
during training, q is the number of quantization centers. The
results of quantization are determined by the 2-norm between
I (z(s)) and �(s), which can be represented as:

z̄(s)i = Q(s)
(
I(z(s))i

)
= argmin

wsj

∥∥∥I(z(s))i − ω(s)
j

∥∥∥
2

(18)

where the subscript i is the index of each code, and j is the
index of quantization center.

According to (18), the quantization function is a step func-
tion whose derivative at quantization centers is the impact
response, and the derivative at other points is zero. Thus,
the networks cannot be optimized by gradient descent in
back propagation. In order to solve the problem, in the back
propagation, we adopt a differentiable approximation of the
quantization function, the quantization result is determined
by all the quantization centers, which are weighted by nor-
malized 2-norm distance, i.e.:

d
dz
z̄(s) =

d
dz

Q̂
(
I(z(s))

)
(19)

In the forward propagation:

Q̂
(
I(z(s))

)
= Q(I(z(s))) (20)

In the back propagation:

Q̂
(
I
(
z(s)
)
i

)
=

∑q

j=1
σj(
∥∥∥I(z(s))i − ω(s)j ∥∥∥2)× ω(s)j (21)

where σ (∗) represents the softmax function.

F. ENTROPY CODING
Entropy coding is a lossless coding process based on the
principle of information entropy, where the entropy can be
used as the expectation of bit cost of the codes. After the
quantization, the quantized latent representation of four sub-
bands are obtained, which can be represented as z̄(ll), z̄(lh),
z̄(hl), and z̄(hh), where z̄(s) ∈ Rw×h×n(s) . Let L(s) = w×h×n(s)

denotes the code length of z̄(s), the entropy of z̄(s) can be
represented as:

H
(
z̄(s)
)
= E

(
R
(
z̄(s)
))

= Ez̄(s)∼p(z̄(s))
[
−log2

(
p
(
z̄(s)
))]

= Ez̄(s)∼p(z̄(s))

[∑
i

−log2
(
p
(
z̄(s)i
))]

(22)

where E
(
R
(
z̄(s)
))

represents the expectation of the bit cost
of z̄(s), i ∈ {1, 2, . . . ,L(s) is the index of each code,
p
(
z̄(s)
)
represents the prior probability of z̄(s).

According to (22), since the entropy is directly related
to the prior probability of z̄(s), we can transform the prob-
lem from solving entropy into solving the prior probability.
The prior probability can be simply estimated as a uniform
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distribution model, i.e., p
(
z̄(s)i
)
= 1/q, we have H

(
z̄(s)
)
=

Ez̄∼u(1/q)
[∑

i
−log2 (1/q)

]
= L(s)×log2 (q). This is obvi-

ously a compression with redundancy because sometimes,
the probability of code is context-dependent, e.g., the prob-
ability of a blue color appearing in a blue sky is rather
high, which may making smaller bitrate than L(s)×log2 (q),
therefore, a more reasonable prior probability model should
be established to improve the compression efficiency.

We modeled the p
(
z̄(s)
)
by a conditional probability model

inspired by [23], where each code z̄(s)i is generated based on
all the codes in front of z̄(s)i :

p
(
z̄(s)i
)
= p

(
z̄(s)i | z̄

(s)
i−1, z̄

(s)
i−2, . . . , z̄

(s)
1

)
(23)

Thus, the prior probability of z̄(s) is the joint probability:

p
(
z̄(s)
)
= p(z̄(s)L , z̄

(s)
L−1, · · · , z̄

(s)
i , · · · z̄

(s)
1 )

=

L(s)∏
i=1

p
(
z̄(s)i | z̄

(s)
i−1, z̄

(s)
i−2, . . . , z̄

(s)
1

)
(24)

However, since the number of correlated codes increases
as the index i sliding from 1 to L(s), it is hard to establish
the probability model because the size of correlated region
is unfixed, furthermore, it takes large amount of calculations
to consider all the codes in front of z̄(s)i . As a result, only a
fixed size of neighborhood of z̄(s)i is taken into consideration,
as shown in Fig. 4.

FIGURE 4. The neighborhood of z̄ (s)
i being considered in the probability

model. The red block represents the center code z̄ (s)
i , the cube which

highlighted by red lines is the neighborhood of z̄ (s)
i with the size of

m×m × m (in this figure m = 5). When estimate the probability of z̄ (s)
i ,

only the forward codes of z̄ (s)
i in the neighborhood region are taken into

consideration, which are marked in grey in the figure.

The probability model is implemented by CNN. Since
both width, height and channel dimensions are involved in
the 3D-neighbourhood, the 3D convolution kernels are used
to extract the feature from the 3D region. Since only the
forward codes of z̄(s)i are considered, we use a kernel mask
in each convolutional layer to make the convolution kernel

‘‘ignore’’ the code after z̄(s)i . The values in the mask are set
as follows: the values after the mask center are set to 0; the
values in front of the mask center are set to 1; the value of the
mask center is set to 0 for the mask of first layer, whereas is
set to 1 for the masks of other layers (the values are set in a
raster scan order: from width to height to channel).

The output of the probability model is p
(
z̄(s)
)
∈

Rw×h×n(s)×q, which corresponds to the probability of z̄(s)i
taking different values of quantization centers in�(s). In order
to get a lower bitrate in the entropy coding, the results
in (22) is expected as small as possible, i.e., the probability
model is trained to achieve the maximum likelihood. We use
cross entropy as the loss function of the probability model,
assuming pr is the real probability, and p is the output of the
probability model, the cross entropy loss of probability model
can be represented by:

Loss(s)P = −
∑

i

q∑
j=1

pr (z̄
(s)
i = ω

(s)
j )log(p(z̄(s)i = ω

(s)
j ))

= −

∑
i
pr (z̄

(s)
i )log(p(z̄(s)i ))

= −

∑
i
log(p(z̄(s)i )) (25)

compared with (22) and (25), we have:

H
(
z̄(s)
)
= Ez̄(s)∼p(z̄(s))

[
R
(
z̄(s)
)]
= Ez̄(s)∼p(z̄(s))

[
Loss(s)P

]
→ R

(
z̄(s)
)
= Loss(s)P (26)

According to (26), when the probabilitymodel is optimized
according to the loss function of cross entropy, it can be
regarded as a process of directly optimizing the bit cost of z̄(s),
which has the benefit to directly minimize the bit cost in the
loss function. Combining with (17) and (25), the loss function
of the whole system can be represented as:

Loss = LossAE + LossP

= λ • D
(
x̂, x

)
+

∑
s
R(I(z̄(s)))+

∑
s
R
(
z̄(s)
)

= λ • D
(
x̂, x

)
+

∑
s
I(R(z̄(s)))+

∑
s
R
(
z̄(s)
)

(27)

Note that the R(I(z̄(s))) is different from R
(
z̄(s)
)
in (27).

R(I(z̄(s))) in LossAE is the bit cost of codes that actually
transmitted to the decoder after masked by the important map,
which is optimized according to rate-distortion trade-off.
While R

(
z̄(s)
)
in LossP is the cross entropy loss of the prob-

ability model, which is optimized according to the max-
imum likelihood, it is numerically equal to the bit cost
of all the codes in z̄(s), including the zero codes which
has been ‘‘filtered-out’’ by the important map. As a result,
R(I(z̄(s))) = I(R(z̄(s))) ≤ R

(
z̄(s)
)
, and R

(
z̄(s)
)
is the bit cost

after compression.

IV. NEURAL NETWORK ARCHITECTURES
The proposed compression system consists of wavelet model,
prediction model, auto-encoder, and probability model,
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FIGURE 5. The convolution implementation of Haar wavelet model. The
input image x is firstly normalized before DWT, and de-normalized after
IDWT to yield the output image x̂ . The ‘‘conv’’ and ‘‘deconv’’ represent
convolution and transpose convolution, respectively. ‘‘stride2’’ represents
the stride of the sliding window of each dimension is 2.

FIGURE 6. The HF prediction model. It is a network with three CNN layers
to yield the HF prediction, and the three HF sub-bands are predicted
respectively in three parallel branches. The layer ‘‘conv 5× 5× 64
stride1 ReLU’’ represents a convolution layer with kernel size 5× 5,
64 output channels and a stride of 1, followed the by the ReLU activation
function.

FIGURE 7. The architecture of mask network.

which are all formed by CNN layers. The wavelet model
is described in Fig. 5, where four convolution kernels with
the size of 2× 2 are adopted as the wavelet filters of Haar
wavelet:

The prediction model of the HF sub-bands and the mask
network are described in Fig.6 and Fig.7, respectively:

After the HF prediction, the HF residuals are obtained
according to (13), LF sub-band and three HF residuals are
input into the auto-encoders, which is described in Fig. 8. The
architecture of the probability model is shown in Fig. 9.

V. EXPERIMENTS
A. DATASETS
The proposed compression models are trained on a subset of
ImageNet [34] with about 440000 3-channel images in RGB
color space. Each image in the training dataset is reshaped to
256× 256 to save the storage. After training, the models are
tested on the Kodak PhotoCD image dataset [35].

FIGURE 8. The architecture of auto-encoder. The layer ‘‘conv/deconv
5× 5× 64’’ represents a convolution/transpose-convolution layer with
64 output channels, and with kernel size 5× 5. n is the number of
channels of each z̄ (s), which is set different for different sub-bands
(detailed in section V.E). ‘‘SAME’’ padding is used in all the convolution
and transpose convolution layers with the padding value of 0.

FIGURE 9. The architecture of probability model. ‘‘conv3 5× 5× 5×n’’
represents a convolution layer with the 3D-kernel size 5× 5× 5, n output
channels, where n is the channel number of z̄(s). ‘‘SAME’’ padding is also
used in all the convolution layers with the padding value of ω

(s)

1 .

B. PREPROCESSING FOR IMAGES
The images in the training set are randomly cropped into
160× 160 patches, and randomly flipped before input into
the compression model. In the normalization process, we
normalize each channel of the input patch by z-score normal-
ization, according to the mean and variance obtained from the
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training set, the normalization can be described as:

N (xc) =
xc − meanc

2
√
varc

(28)

where the subscript c is the index of different chan-
nels of the input patch. At the decoder side, accordingly,
the de-normalization is carried out to the image obtained
by IDWT, and produce the final reconstructed image.

C. MEASUREMENT OF DISTORTION
In (27), D

(
x, x̂

)
represents the distortion between the input

image and the reconstructed image. In deep compression
system, mean squared error (MSE) and multi-scale struc-

tural similarity index (MS-SSIM) [36] are generally used
as the measurement of distortion. Compared with MSE,
MS-SSIM is the quality evaluation metric which can better
reflect the image quality observed by human eyes, as a result,
we adoptMS-SSIM as the measurement of distortion in train-
ing and testing process. During the training, the distortion
D
(
x, x̂

)
= 1−MS_SSIM

(
x, x̂

)
, which is to be minimized

according to the loss function described in (27).

D. TRAINING PARAMETERS
We adopt Adam optimizer [37] to train the models with a
mini-batch size of 25. The loss function of the system is (27),
which combines the loss of auto-encoder and the loss of prob-
ability model to yield a joint training. The initial learning rate
of the auto-encoder and probability model are set to 2×10−4

and 1×10−4, respectively, with a decay factor of 10 for every
2 epoch. In order to realize a more precise control of the bit
cost in the training, we set a bitrate threshold Rt to penalize
the bitrate loss only when it is higher than Rt . Therefore, (27)
can be re-described by:

Loss = λ • (1−MS_SSIM
(
x, x̂

)
)+ max(R− Rt , 0) (29)

where R = 1∑
s L

(s)

∑
s
[
I(R(z̄(s)))+ R

(
z̄(s)
)]
/2, which can be

regarded as the average bitrate loss of each code unit. The
weight parameter λ is set to 100. In this way, we trained
6models with different bitrates corresponding to 0.2, 0.3, 0.4,
0.5, 0.6, and 0.7 bits per pixel (bpps), respectively.

E. CHANNEL ALLOCATION BETWEEN SUB-BANDS
The bit allocation of sub-bands can be self-adaptive after
adding the important map to z̄(s). Since LF sub-band contains
the vast majority of energy of the input image, the value
of MS-SSIM is dominantly decided by the reconstructive
quality of LF sub-band. As a result, we found that the codes
in z̄(ll) tends to be kept preferentially when the model is opti-
mized according to MS-SSIM distortion measure. However,
in this situation, the details in the reconstructed image tend
to become over-smoothed because of the loss of HF infor-
mation. Taking the 0.6bpp model as an example, as shown
in Fig.10, when the total number of the channels is fixed,
comparing the reconstructed images under different chan-
nel allocations, it shows that the reconstructed image of

FIGURE 10. Reconstruction results of two models trained
under 0.6 bpp. Channel allocation of model A is 64,16,16, and 4 for z̄(ll),
z̄(lh), z̄(hl), and z̄(hh), respectively. While in model B the corresponding
allocation is 80, 8, 8, and 4. The actual bit cost of LF sub-band and HF sub-
bands for the two models are, model A: 26.35kb(LF) / 8.86kb(HF)–MS-SSIM
0.978, model B: 30.03kb(LF) / 6.67kb(HF)–MS-SSIM 0.98, respectively.

TABLE 1. Channel allocation for different models.

‘‘model A’’ (n(ll) = 64) has sharper edges and clearer textures
than that of ‘‘model B’’ (n(ll) = 80), showing an advantages
of decreasing some channels of LF sub-band, in spite of a
lower MS-SSIM. Therefore, in order to yield a better recon-
struction of details and textures, we artificially reduce some
channel of z̄(ll) to guarantee the bits for HF sub-bands. The
channel allocations for each model are described in Table 1.

In this way, our compression model makes it possible to
reconstructed more HF details by flexibly control the bit
allocation of sub-bands, which cannot be achieved in the
compression model trained in the spatial pixel domain.

F. OTHER SETTINGS
In the quantization, the number q is set to 6, and the quanti-
zation centers are initialized by uniform initialization in the
range of (−2, 2). Batch normalization [38] is added after each
convolutional and transpose convolutional layers in the auto-
encoders. We train and test all the models on a GeForce GTX
1070 GPU, and each model is trained for 6 epochs, which
takes around 30 hours.

G. EXPERIMENTAL RESULTS AND COMPARISON
Fig. 11 shows the rate-distortion (R-D) results of differ-
ent compression methods tested on the Kodak PhotoCD
image dataset. We firstly compare our compression approach
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FIGURE 11. Comparison of the ratio-distortion curves by different
compression methods.

with some traditional image compression methods, includ-
ing JPEG, JPEG2000 and BPG, where the JPEG results are
generated using the IrfanView software [39]; the JPEG2000
results are generated using JPEG200 Toolbox for matlab
contributed by Nikola Sprljan [40]; and the BPG results
are generated by the online BPG codec [32]. We use our
models to compress the input image, and record the bpp and
MS-SSIM values, respectively. Then the target bpps of all the
comparison methods are set near to the bpps of our method,
and the corresponding MS-SSIM values are collected to
form the R-D curves. We also compare our compression
approach to some state-of-the-art deep compression meth-
ods [18], [20], [23], [41].When comparingwith [23] and [41],
we train 6 models for both [23] and [41] on our training
set, corresponding to the target bpps shown in Table 1. The
implementation of [23] is provided by the authors, and the
experimental results of [23] are verified matching to those in
the paper. For a fair comparison, when training the models
of [23], the number of codes of z̄(s) are set equal to that of our
models to carry the same amount of information. Note that,
in Fig. 11, the bpp values of the proposed method and of [23]
approach are both obtained according to the estimated bit rate
values of the coding models. We implement the compression
approach as described in [41], and obtain similar results to
that shown in [41]. In practice, the scale parameter of [41]
is set to 4 for all the models, which is same as the scale
of our models. When comparing with [18] and [20], since
we have no access to replicate the models described in the
papers, we collect the corresponding results test on Kodak
dataset from the papers, and seriously transcribe them on our
R-D curves.

It can be seen from Fig. 11 that when comparing with
the traditional compression methods, the proposed compres-
sion approach outperforms JPEG, JPEG2000 and BPG in
terms of MS-SSIM, especially under low bit rates. When
comparing with the deep compression approaches, the pro-
posed compression approach outperforms Ballé et al. [20]
and Theis et al. [18]. Comparing with [20] and [18], up to
25% and 56% bitrates savings can be achieved respectively
using the proposed approach, under the same reconstructive
quality. When comparing under the same bpp, the MS-SSIM
value of the proposed method is about 0.003 lower than
those of the method in [23], which is trained in the spatial
pixel domain and shows the outperformed performance in
terms of MS-SSIM. Since the adversarial training is used
in [41], the compression approach of [41] shows the best
performance under low bitrates; whereas when the bitrates is
higher than 0.4bpp, the proposedmethod shows a comparable
performance with the compression approach of [41], in terms
of MS-SSIM.

We then compare the quality of only HF images between
the proposed approach, the methods of [23], and of [41]. The
HF images are obtained by IDWT only from HF sub-bands
(the coefficients of LF sub-band are set to zeros). Since the
models are trained in the pixel domain in both [23] and [41],
we first decompose the reconstructed images of [23] and [41]
by DWT, then obtain the HF images by the same way. We use
MS-SSIM to measure the distortion of HF images. The com-
parison results under low, middle, and high bitrates are shown
in Table 2.

In Table. 2, we highlight the better results with higher
MS-SSIM values and lower bitrates at the same time. Com-
pared withMentzer et al. [23], ourMS-SSIM of the HF image
can averagely achieve 0.0010, 0.0026, and 0.0048 gains under
low, middle, and high bitrates, respectively. In particular, for
images with more details and textures (e.g. kodim5, kodim8,
and kodim13), the HF image of the proposed approach shows
outstanding performance in terms of MS-SSIM. Compared
with Rippel et al. [41], our MS-SSIM of the HF image can
averagely achieve 0.0030 and 0.0046 gains under middle
and high bitrates, respectively. In particular, our MS-SSIM
of the HF image can slightly exceed that of [41] under low
bitrates, showing a better reconstruction of high frequency
information. Furthermore, it shows in Table 2 that when the
total bitrates increase, in the methods of [23] and of [41], the
MS-SSIM values of HF images present a slightly increasing,
whereas in the proposedmethod, those of HF images increase
obviously, showing an obviously improvement of the detail
reconstruction.

Fig. 12 and Fig. 13 shows the visual comparison of
some details between different methods under low bitrates
and high bitrates, respectively. The results of the proposed
approach, of Mentzer et al. [23] and of Rippel et al. [41]
are obtained from the corresponding models trained under
0.3bpp and 0.7bpp.

As shown in Fig. 12, block artifacts occurs obviously
in the reconstructed image of JPEG, leading a poor visual
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TABLE 2. MS-SSIM comparison between the reconstructed HF images of the proposed approach, of [23] approach, and of [41] approach.

quality and the disappearance of almost all the details. Blurry
distortion will occur in the reconstructed image of JPEG2000,
especially in the background region, which is caused by the
heavily compression on HF coefficients. The reconstructed
image of BPG has the sharpest edges of all the compar-
ison methods. When evaluating the visual performance of
the whole image, BPG image shows a clearer and smoother
visual quality compared with the reconstructed image of
JPEG and of JPEG2000. However, in some local regions
with rich high frequency textures, the reconstructed image
of BPG turns to become blurry. Whereas in these regions,
JPEG2000 may better reconstruct the high frequency textures
thanks to the DWT. The reconstructed image of [23] has a bal-
ance between foreground and background, which shows an
acceptable visual quality but lacks some details. The recon-
structed image of [41] shows a satisfactory visual quality

with clear edges, however, color distortion may occur under
low bitrates. Comparedwith thesemethods, our reconstructed
images shows better visual results with sharp edge, satisfac-
tory details and clear background. As shown in Fig. 12(b),
the textures of the roof can be well reconstructed using our
approach, whereas the textures will become blurry or only be
partly reconstructed using other methods.

As shown in Fig. 13, when the bitrates increase, visual
qualities of JPEG and JPEG2000 improve obviously, how-
ever, some block artifacts still exist in the reconstructed image
of JPEG. Since DWT is adopted in JPEG2000, it shows
local characteristic in the reconstructed image, where the
textures in the regions of interest (ROIs) are well recon-
structed, whereas the textures in other regions are tend to
be ignored. As a result, the quality difference between the
ROIs and other regions may have some unpleasant effect
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FIGURE 12. Visual comparison between different compression methods under low bitrates. (a), (b), and (c) are the details sampled from kodim1, kodim8,
and kodim21 from Kodak PhotoCD image dataset.

FIGURE 13. Visual comparison between different compression methods under high bitrates.

on the visual quality. In contrast, the textures are evenly
reconstructed in the reconstructed image of our method,
both in ROIs and other regions, showing a pleasant visual
quality. Visual qualities of [23] and [41] are also improved
with the increasing of bitrates, however, there are still some
high frequency textures which cannot be well reconstructed,

showing some high frequency distortions. And the high
frequency distortions are hard to be eliminated by simply
increasing the bitrates when themodels are trained in the pixel
domain. Compared with [23] and [41], since our compression
models are trained in the wavelet domain, it is easier to
reconstruct the high frequency textures because the features

52494 VOLUME 7, 2019



C. Yang et al.: Deep Image Compression in the Wavelet Transform Domain Based on HF Sub-Band Prediction

FIGURE 14. R-D comparison between models with and without HF
prediction.

TABLE 3. comparison of HF reconstruction between models with and
without prediction under 0.6bpp.

of LF and HF sub bands are extracted separately. As a result,
the reconstructed images of the proposed method may have
richer and clearer textures.

FIGURE 15. Visual comparison between models with and without
prediction. Both of the models are trained under 0.6bpp, (a), (b), and
(c) are the details sampled from kodim7, kodim10, and kodim14 from
Kodak PhotoCD image dataset.

H. COMPRESSION WITHOUT HF PREDICTION
In order to show the effectiveness of the HF prediction,
we remove the prediction steps in both encoder and decoder,
i.e., all the sub-bands are directly input into the auto-
encoders, and other settings are all same as those of the model
with prediction. Six models without prediction are trained,
and the rate-distortion comparison is shown in Fig. 14. Exper-
imental results show that adding the predictive model will
improve the MS-SSIM value by an average of 0.0019. Taking
the model trained under 0.6bpp as an example, we evaluate
the bit cost of HF sub-bands and the quality of HF image at the
same time, and the results are shown in Table. 3. In Table. 3,
the total bit cost (kbyte), the bit cost of HF sub-bands (kbyte),
and the MS-SSIM of HF image are all listed, which can be
seen that after adding the prediction model, the bit cost of HF
sub-bands is highly reduced by an average of 24.8%, and the
MS-SSIM value of the HF image is increased by an average
of 0.002. It means that the prediction model can effectively
predict the HF information according to LF sub-band, which
is beneficial to produce a better high frequency reconstruction
using lower HF bit cost.

Visual comparison of some details are shown in Fig.15.
From Fig. 15 we can see that there are some jagged edges in
the reconstructed image obtained by the model without pre-
diction, whereas the edges are smoother in the reconstructed
image obtained by the model with prediction. In addition,
after adding the prediction module, the details and textures
of the reconstructed image become clearer.
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Above all, the addition of the prediction model can effec-
tively remove the redundancy of the HF sub-bands, fur-
thermore, visual quality of the reconstructed image can be
improved obviously.

VI. CONCLUSIONS & FUTURE WORKS
In this paper, we proposed a DWT-based image compression
system implemented completely by deep convolutional neu-
ral networks. Haar wavelet is used to decompose the input
image into sub-bands, then the sub-bands are encoded and
decoded respectively in the wavelet transform domain and
finally yield the reconstructed image by IDWT. In addition,
a prediction model for high frequency sub-bands was used
both in the encoder and the decoder, which can effectively
remove the redundancy between low frequency sub-band
and high frequency sub-bands. Experimental results show
that the proposed compression approach outperforms JPEG,
JPEG2000 and BPG, as well as some deep image compres-
sion approaches trained in spatial pixel domain. The proposed
method shows advantage in the HF reconstruction, because
the channel allocation between sub-bands can be more flex-
ibly adjusted, making it possible to allocate more channels
for HF sub-bands. As a result, it produces the reconstructed
image with finer details and clearer textures, showing signif-
icant advantages in visual comparison.

Future works may consider other kinds of wavelets, such
as Daubechies(dbN), which is adopted in the JPEG2000,
or Symlet(symN). Furthermore, the correlation between dif-
ferent high frequency sub-bands can be used to improve the
prediction model to eliminate more redundancy. Also, the
correlation between sub-bands can be considered in the prob-
ability model to further increase the compression efficiency.
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