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ABSTRACT With the refinement of tasks in artificial intelligence, bringing in exponential level increments
in computation cost and storage. Therefore, the augment of computation resource for complicated neural
networks severely hinders their applications on limited-power devices in recent years. As a result, there is
an impending necessity to compress and accelerate the deep networks by special ways. Considering the
different peculiarities of weight quantization and sparse regularization, in this paper, we propose a low rank
sparse quantization (LRSQ) method to quantize network weights and regularize the corresponding structures
at the same time. Our LRSQ can: 1) obtain low-bit quantized networks to reduce memory and computation
cost and 2) learn a compact structure from complex convolutional networks for subsequent channel pruning
which has significant reduction on FLOPs. In experimental sections, we evaluate the proposed method on
several popular models such as VGG-7/16/19 and ResNet-18/34/50, and results show that this method can
dramatically reduce parameters and channels of the networkwith slight inference accuracy loss. Furthermore,
we also visualize and analyze the four-dimensional weight tensors, which shows the low rank and group-
sparsity structure of it. Finally, we try pruning unimportant channels which are zero-channels in our quantized
model, and finding even a little better precision than the standard full-precision network.

INDEX TERMS Convolutional neural network (CNN), weight quantization, spectral regularization, sparsity,
visualization, channel pruning.

I. INTRODUCTION
Recently, the world has witnessed a new round of artifi-
cial intelligence revolution. Deep neural networks (DNNs),
especially convolutional neural networks(CNNs), have made
great success in various areas. From handwritten character
recognition to image recognition, and burgeoning AI appli-
cations [1]–[3]. However, all of these achievements are rely
on complex deep neural network models, which contain hun-
dreds of millions of parameters. In the 2012 ILSVRC contest,
Krizhevsky et al. constructed a multi-layers network with
over 60 million parameters (650 thousand neurons), and this
large network has exceeded all previous methods in terms of
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classification accuracy [4]. But it took more than two days to
train the entire network. With the complication of network
structure, we could certainly reach a level that traditional
methods cannot, while model size (such as almost 50, 200,
250, and 500 MByte for GoogleNet, ResNet-101, AlexNet,
and VGG-Net respectively) [5] and computational com-
plexity requirements would increase exponentially. There-
fore, embedding these high performances models into smart
mobile devices could be a large challenge. There is impend-
ing necessity to compress and accelerate the deep networks
without affecting the performance. Effective compression
methods could have significant impacts on artificial intelli-
gence systems, embedded devices, and mobile devices. Since
the huge computation cost of CNNs is mainly dominated
by convolutional operation, which is exactly the dot-product
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between weights and activations [5]. Based on this, many
studies are performed to compress the scale of CNNs with-
out accuracy loss, including parameter pruning and sharing,
low bit quantization, special model architecture designment,
low rank approximation of weight and adding sparsity reg-
ularization etc. Parameter pruning and sharing approaches,
however, often produce non-structured connectivity which
may hurt inference accuracy. On the other hand, low rank
approximation can indeed obtain compact structure while
needing more resources to decompose 4D-tensors. Inspired
by the facts that (1) quantization is an efficient method to
decrease memory and computation in practical limited-power
applications, which has aroused widespread concerns among
a large number of scholars; (2) some regularization con-
straints could get special model structure, such as kernel and
channel sparsity model. In this paper, we propose a LowRank
Sparse Quantization (LRSQ) method to learn a compact and
sparse structure of deep CNNs by weight quantization with
regularization constraint during training process. In fact, our
LRSQ method combines weight quantization with spectral
relaxation regularization constraint, achieves not only reduce
the computation cost and memory but also make it possible
for channel pruning. This promises the event-driven hardware
design for efficient mobile intelligence.

II. RELATED WORK
Until recent years, methods of neural network compression
and acceleration can be roughly divided into the following
categories.

A. PARAMETER PRUNING AND SHARING
Han et al. [6]–[8] and Liu et al. [9] mainly try finding
and pruning the redundant parameters and connections in
the network model, sharing analogous weights, and keeping
important connections with greater weights to achieve the
purpose of reducing the storage and computation complexity.

B. LOW RANK APPROXIMATION
Denton et al. [10] and Jaderberg et al. [11] propose methods
to train high-dimensional weight tensors which are expressed
as the product of several low-order vectors, and retain signifi-
cant eigenvalues to obtain key feature information of network
so as to reduce the computation cost without performance
loss.

C. SPECIAL MODEL ARCHITECTURE
Constraining the model architecture by reducing convolu-
tional layers, removing fully connected layers, using convo-
lutional filters of small size, designing special architecture
for different tasks, such as NIN [12], Squeeze-Net [13] and
Mobile-Net [14].

D. REGULARIZATION CONSTRAINT
As we all know, Group Lasso is an efficient regular-
ization to learn sparse structures in numerous studies.
Kim and Xing [15] and Feng and Darrell [16] used

group lasso to regularize the structure of filters in DNNs.
Wen et al. [17] applied group lasso to regularize multiple
DNN structures (filters, channels, filter shapes and layer
depth).

E. LOW BIT QUANTIZATION
Another branch of approaches for model compression and
acceleration is low bit quantization which means that the
weights and activations of deep neural networks are rep-
resented by discrete values, decreasing the floating-point
calculations in the actual computational process and also
reducing the storage space. Courbariaux et al. [18] and
Li et al. [19] groundbreakingly constrain network weights to
the binary or ternary space, which remove the multiplication
operations. It follows that both weights and activations are
mapped into binary space at the same time, i.e. binary neu-
ral networks [20], XNOR-Net [21], which directly replace
multiply-accumulate operations by binary logic operations.
Furthermore, DoReFa-Net [22] not only quantizes weights
and activations, but also quantizes gradients to low-bit width
floating-point numbers with discrete states in the backward
propagation. Recently, Wu et al. [23] develop a new method
termed as ‘‘WAGE’’ to discretize parameter in both training
and inference process, where weights (W), activations (A),
gradients (G) and errors (E) among layers are shifted and
linearly constrained to low-bit width integers.

F. CHANNEL PRUNING
Compared with parameter pruning and weight quantiza-
tion, channel pruning removes redundant channels other than
parameters from the network. The pivotal issue of channel
pruning is to evaluate the importance of weight channels.
Li et al. [30] measures the importance of channels by just
calculating the sum of absolute values of weights, which is
simple and ineffective. Hu et al. [31] defines the average per-
centage of zeros (APoZ) to evaluate the activation of neurons,
which are considered to be redundant with high values of
APoZ. Considering the need of learning precision, [32]–[35]
try to train network with sparsity regularizer, and transform
the problem of measuring channel importance into optimiza-
tion problem about reconstruction error of output feature.

III. LOW RANK SPARSE QUANTIZATION
In this work, we propose using, as a regularizer for convo-
lutional layers, the regularization constraint of spectral clus-
tering. We also train the network combined with our weight
quantization method at the same time. Assuming a typical
DNNwith L layers can be summarized as the following forms

xL = fL(xL−1WL + bL),

xL−1 = fL−1(xL−2WL−1 + bL−1), . . . ,

x1 = f1(IW1 + b1) (1)

where fi is the nonlinear activation function, bi denotes the set
of bias, and xi is output activation of each layer, I means the
input image data. Given Loss(W′) be the general loss function
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between predictions and data labels, while W′ is quantized
weight tensor. Thus the final total loss objective function with
regularization loss Loss_reg(W′) is

minW′Loss
(
W′
)
+

∑L

l=1
Loss_reg

(
W′
)

(2)

where Loss_reg
(
W′
)
is the regularization constraint of spec-

tral clustering for each layer. In the following subsections,
we first investigate the problem of proposed weight quantiza-
tion method. Later we will exploit how to implement accurate
gradients in the back propagation process. Then spectral clus-
tering regularization is introduced during training process,
and a unified framework of low rank sparse quantization
method will be presented. Finally, we introduce other types
of regularization constraint for comparison in experimental
section.

A. SPARSE WEIGHT QUANTIZATION
In this section, we mainly concentrate on sparse weight quan-
tization for networks. Similarity to XNOR-net [21], we rep-
resent an L-layer CNN with [I,W, ∗], where I is the input
tensor,W is the weight tensor, and ∗ represents convolutional
operation between I and W (In this section, we ignore bias
terms of convolutional filters). Furthermore, I ∈Rc×win×hin ,
where (c,win, hin) represents channel, width and height of
input data respectively. And for W ∈Rcout×cin×s×s, where
(cout, cin, s, s) represents output channels, input channels and
filters size. In convolutional layers, we need to reshape
4-dimensional weight tensor W into 2-dimensional tensor,
i.e., Wcout×cin×s×s−→Wcout×(cinss), and apply our quantiza-
tion function on it. In back propagation process, we compute
the derivatives of quantized compound functions for weights
update.

1) WEIGHT QUANTIZATION IN FORWARD PROCESS
In order to constrain weights to low-bit region in CNNs,
we introduce a scaling factor vector α ∈R+ for every output
channels and a low-bit vector b such that w ≈ αb (where
w is real-value weight vector for reshaped weight matrix
Wcout×(cinss)). Obviously, every layer has different cout values
of α. By bringing this scaling factor, memory usage and
convolutional operation computation would be reduced dras-
tically. Furthermore, channels could be clipped when α = 0.
According to the least squares method, our goal is to solve
the following optimization function.

minF (α,b)= min ‖w− αb‖2 (3)

By expanding above equation, we have

α∗,b∗ = argminα,bF = argminα,b(α
2bTb− 2αwTb+wTw)

(4)

Referring to XNOR-Net, we assume b ∈ {±1}n (n equals to
(cinss)) which is binary quantization function. Since bTb and
wTw are constant at the same time, and α is a positive value,
the equation (4) could be simplified into

b∗ = argmaxbw
Tb (5)

Therefore the optimal solution of (5) is b∗= sign(w), which is
similar to XNOR-Net. Here we can extend the quantization
level to k-bits (take the place of sign(w) function) by using
following expression

qk (wi) =

[
2k−1 (wi + 1)

]
2k−1

− 1 (6)

where marking [∗] refers to round operation in math.
We approximate sign function by using qk in (6), which is
shown below (and its approximation gradient which referring
to equation (12))

In actual training process, we usually constrain quantiza-
tion function qk to [−1, 1], which do not influence training
and inference accuracy. Next, we consider finding optimal
scaling factor α and corresponding suitable mapping func-
tion qk. We compute the partial derivative of first and second
order on equation (4) with respect to α and b

∂F
∂α
= 2αbTb− 2wTb = 0

∂F2

∂2α
= 2bTb ≥ 0

(7)


∂F
∂b
= 2αbT − 2αwT

= 0

∂F2

∂2b
= 2α2 ≥ 0

(8)

Solving (7) and (8) respectively, both second order derivatives
are always greater than or equal to zero, which satisfy the
necessary conditions for the optimal value. Thus, we can
obtain the following equationα

∗
∈ R, b = 0

α∗ =
wTw
bTb
≥0, b 6= 0

(9)

{
b∗∈ Rn, α = 0

b∗ =
w
α
≥0, α 6= 0

(10)

Discussing the above equation simultaneously, there are obvi-
ous four different combined conditions. By kicking out the
impossible status, the final optimal result for α isα

∗
= 0, if b = 0

α∗ =
wTb
bTb

, if b = qk(∗)
(11)

Therefore, all weights of one output channel may be pruned
when α = 0 during subsequent training process. Different
from ternary weight networks, we use a scaling factor in each
channel here in order to obtain sparse channels which could
be pruned in next training process. Specially, the net becomes
sparse XNOR-Net when k = 1. In DNNs, the computational
complexity is mainly dominated by the convolution opera-
tion, and could decrease dramatically after our quantization,
as shown in experiment section. In this paper, we conduct
experiments mainly aiming at k = 1 in order to get more
sparse parameters and channels, which facilitate subsequent
channel pruning.
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2) BACK PROPAGATION PROCESS
Since we use approximation function qk applying for weight
quantization, it is necessary to compute the compound deriva-
tion of w for compensation of back propagation. In order to
obtain the gradient of qk, we follow the same approach of sign
function in [21]

∂sign
∂r
= r1|r|≤1 (12)

It is worth noting that qk is not continuous and non-
differentiable in discontinuity points, as shown in above
section (for x = ±0.5 in Figure 1), which makes it difficult

FIGURE 1. Quantization function qk(k = 1) and its derivates.

for back propagation. To address this issue, we could approxi-
mate the partial derivatives of qk as follows [24] based on (12)

∂qk(x)
∂x

=


1
2a
, if r− a ≤ |x| ≤ r+ a

wi, others
(13)

∂qk(x)
∂x

=


−

1
a2
(|x| −(r+ a)), if r ≤ |x| ≤ r+ a

1
a2
(|x| −(r− a)), if r− a ≤ |x| ≤ r

wi, others
(14)

Here r is the discontinuity point of function qk, and a is a small
positive parameter which need to be determined in training
process. It is can be seen that when a→ 0, the gradient of
qk approaches the function in Fig.1. In this paper, we adopt
equation (13) in experimental section. Next we implement the
gradient after quantization in backward. Assume the original
weights and quantized weights as

W = [w1,w2· · ·wn]≈w̃ = [w̃1, w̃2, · · · w̃n] (15)

And in forward process we need to quantize weight into

w̃ = αb = [α1b1, α2b2, · · · ,αnbn]
= [α1qk (w1) , α2qk (w2) , · · ·αnqk(wn)] (16)

where n is the output channel numbers of different layers.
Assuming L is the general loss function, and considering
interaction between neutrons, the backward gradient after
above approximation is

∂L
∂wi
=

∑n

m=1
(
∂L
∂w̃m

·
∂w̃m

∂wi
) (17)

We ignore b = 0 here, consider compound derivation and
obtain
∂L
∂wi
=α·

∂L
∂w̃i
·
∂bi
∂wi
+

1

bTi bi
[bi+

∂bi
∂wi

(wi−2αbi)]·
∑

m

∂L
∂w̃m

bj

(18)

There are no unknown parameters in (18), which is easy to be
implemented programmatically. For b = 0, we ignore above
changes, and do not adopt any other special operations. Fur-
thermore, the parameter and learning rate could get updated
by stochastic gradient decent (SGD) method with Pytorch in
this paper.

B. REGULARIZATION CONSTRAINT OF
SPECTRAL CLUSTERING
Clustering is one of most fundamental research topics in both
data mining and machine learning communities. It aims to
parameter sharing in recent studies, such as [25]–[27], all
uses of k-means method. Compression is achieved through
weight sharing by only recording important clusters and
weight assignment indexes. In order to compatible with
weight quantization, we would like re-training on a compact
model which encourages theweight to be concentrated tightly
around. The optional way is to retrain the quantized network
by adding regularization constraint of spectral clustering to
loss function. In this section, we mainly combine spectral
regularization with our quantization function to obtain low
rank model without accuracy loss.

1) BASIC REGULARIZATION EXPRESSION OF
SPECTRAL CLUSTERING
Given a set of c-dimensional data vector ai(i = 1, 2 . . ., n),
we form the c-by-n data matrix A = [a1, . . . ,an]. Mathemat-
ically, the result of clustering algorithm can be represented
by a cluster assignment indication matrix Pm×C , such that
P ij= 1 if data ai belongs to cluster j, and P ij = 0 otherwise.
That means there is only one 1 for each row of matrix P,
and the rest of the elements are all zeros [28]. Generally,
a clustering partition of the data vectors can be written in the
following form [27]

AP = [A1, . . . ,Ak ],Ai = [a(i)1 , . . . ,a
(i)
si ] (19)

where P is a permutation matrix, and Ai is m-by-si matrix
which represents the i-th cluster. For equation (19), we aim
to minimize the sum of squared distance between the data
points and their corresponding cluster centers.{

min J =
∑k

i=1
∑si

s=1 ‖ a
(i)
s −mi ‖

s.t. mi =
∑si

s=1 a
(i)
s /si

(20)

wheremi is the mean vector of the data in cluster i. In order to
maintain consistency of dimensions with weight quantization
above, we assume the weight of a convolutional layer is
W ∈Rcout×cin×s×s, where (cout, cin, s, s) represents out chan-
nels, input channels and filters size respectively. We reshape
it into a matrixW ∈Wcout×n, where n = cin× s× s. Each row
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vector being a output channel from 4-dimentinal tensors.
Considering our quantization method shown above, we could
get sparse low rank training models by adding proper reg-
ularization, make useful weights being tied more compact,
and even obtain zero rows of weight tensor. The spectral
relaxation regularization technique was initially introduced
in [27] used for weight clustering, extracting important fea-
tures by singular value decomposition (SVD). According
equation (20), the sum of squares cost function for spectral
relaxation can be written as

min
{
trace

(
WTW

)
− trace(XTWTWX)

}
(21)

where trace is matrix trace, W ∈Wcout×D is reshaped weight
tensor and X is the normalized cluster index matrix used
for solving clustering problem actually. In [27], the author
let X be an arbitrary orthogonal matrix and obtain a relaxed
maximization problem{

J = max {trace(XTWTWX)}
s.t. XTX = Ik

(22)

Furthermore, it has a closed-form solution according to
Ky Fan theorem. Let λk be the k-largest eigenvalues of matrix
WTW, so that J∗ =

∑k
n=1 λn and X∗ = [u1,u2· · ·uk]Q with

uk is the corresponding eigenvector of λk andQ is an arbitrary
orthogonal matrix. In training process, we could easily update
matrixX by using the closed-form of (22) in back propagation
process and obtain regularization term loss for experimental
section.

2) TRAINING ALGORITHMS
Since we have got a sparse low-bit network through weight
quantization in section 3.1. To make the whole net more
compact, we are motivated to take advantage of (22) as a reg-
ularization term on W during quantization process. It would
appear zero rows within reshaped W ∈Wcout×D which may
be pruned as a channel in experimental work. As shown
above, the final loss objective function with regularization
loss Loss_reg(W) is

minW,XLoss (W)+
∑L

l=1
Loss_reg (W) (23)

Here, we adopt the sum of squared distance between the data
points and their corresponding cluster centers as regulariza-
tion term penalties. Furthermore, regularization loss for each
layer of the neural network is{
Loss_reg (W) = trace

(
WTW

)
− trace(XTWTWX)

s.t. XTX = Ik
(24)

During the training process, matrix W and X need to be
updated alternately. Generally, W is updated using common
SGD in back propagation, and X is updated by composing
the eigenvector of the k-largest eigenvalues of matrixWTW.
To save training memory and reduce the complexity of algo-
rithms, we update X every three epochs in practical training
process other than each iteration. The training algorithm of
our LRSQ is summarized in Algorithm 1.

Algorithm 1
Input: An L-layer CNN with [I,W, ∗], current weight Wt

and learning rate ηt

W0 and X0 initialization
For each epoch in iteration t do

Weights quantization: wt→ ẃt ≈ αb
Forward process:
x1 = f1(IẂ1 + b1), . . . , xL = fL(xL−1ẂL + bL)
computing Loss(Ẃt)+

∑
Loss_reg

(
Ẃt

)
Backward process:
computing ∇(Loss(Ẃt)+

∑
Loss_reg

(
Ẃt

)
)

Wt+1 = Update the parameters(Ẃt, ηt, gradients)
using SGD
ηt+1 = Update the parameters(ηt, t, weight decay)

End for
Update Xt = Vt(:, 0 : k− 1) every three epochs
whereWT

t Wt = Ut
∑

tV
T
T (Using SVD)

C. OTHER TYPESS OF REGULARIZATION CONSTRAINT
FOR COMPARISON
In order to show the superiority of our cluster regulariza-
tion than others, we introduce additional regularization con-
straints for comparison. In machine learning, the model is
too complicate to cause overfit. To avoid overfitting, one of
the most common methods is to use regularization, such as
l1 and l2 norm. In this paper, we compare these two methods
with proposed clustering regularization.

As shown above, to maintain dimension consistency with
weight quantization, we assuming the weight tensor of a con-
volutional layer is W ∈Rcout×cin×s×s, and we reshape it into
a 2-dimensional matrix Ẃ∈Wcout×n, where n = cin × s × s.
Each row vector being a output channel from 4-dimensional
weight tensors. Then the proposed generic optimization of a
DNN with l1 norm regularization can be formulated asminWLoss (W)+λ

∑L
l=1 Lossreg

(
Ẃ
)

s.t.Loss_reg
(
Ẃ
)
=
∑

i
∑

j

∣∣wij
∣∣ (25)

where wij is a element in Ẃ, and L are layers of the DNN.
As we all know, l1 norm is easy to lead sparsity solution,
we combine it with our sparse XNOR method for compar-
ison. Furthermore, the proposed optimization with l2 norm
regularization is formulated asminWLoss (W)+λ

∑L
l=1 Loss_reg

(
Ẃ
)

s.t. Loss_reg
(
Ẃ
)
=
∑

i
∑

j w
2
ij

(26)

which is similar to methods in [15]–[17]. The training algo-
rithm with l1 norm and l2 norm is the same as Algorithm 1.

IV. EXPERIMENTS
In this section, we mainly evaluate the effectiveness of our
method using common models (VGG-7 [12], ResNet-18)
on published datasets (CIFAR-10), and (VGG-16, VGG-19,
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TABLE 1. Comparison for different k value.

TABLE 2. Comparison with state-of-art algorithms.

FIGURE 2. Training curves on VGG-7 and ResNet-18. (a) VGG. (b) ResNet.

ResNet-34 and ResNet-50) on (CIFAR-100) for image clas-
sification by Pytorch. Most previous works do not quantize
the first and last layers. In our method, we also adopt the
same strategy and report the averaged results over three runs
for each experiment by SGD optimizer. Firstly, we make
comparison with existed methods for weight quantization.
Then learning the effects of adding spectral regularization
constraint. Finally, we also attempt to prune zero output
channels of each layers and retrain the network. We evaluate
the effect of the different regularizers using the following
quantities: parameter sparsity = (#zero parameters) / (#total
parameters), channel sparsity = (#zero channels) / (#total
channels), compression rate = (#full precision memory) /
(#memory after quantization). Our source code is available
at Github.

A. PERFORMANCE COMPARISON FOR
WEIGHT QUANTIZATION
CIFAR-10: In this section, we compare inference accu-
racy under the same conditions which only quantize weight

TABLE 3. Comparison for different networks on CIFAR-100.

FIGURE 3. Parameter sparsity on ResNet-18.

not activations. The network structure for ‘‘VGG-7’’ is
‘‘2(128-C3) + MP2 + 2(256-C3) + MP2 + 2(512-C3) +
MP2 + 2(1024-FC) + Softmax’’, and ‘‘ResNet-18’’ is stan-
dard ResNet-18. The learning rate starts at 0.1 and we use the
learning rate decay equal to 0.1 at epochs number 60, 120 and
160 for the whole 200 epochs. For our quantization func-
tion, we make comparison for k = 1, 2, 3. The experimental
results are shown in Table 1. Interestingly, the performance of
k = 2, 3 is better than full precision in VGG-7. Furthermore,
Table 2 shows the comparison result of other mainstream
methods, where ‘‘FWN’’ represents full precision without
any quantization, ‘‘BWN’’ is binary weight networks [12],
‘‘TWN’’ is ternary weight networks [10] and ‘‘XNOR’’ refers
to XNOR-Net [11]. Specially, ‘‘OURs’’ refers to k = 1 (the
following experiments keep the same k).

It could be seen that the proposed method achieves almost
equal accuracy compared with full precision, and has outper-
form a little more than other several state-of-art algorithms.
Fig. 2 presents the training curve comparison among FWN,
XNOR and our method on CIFAR-10. It can be seen that our
method and XNOR achieve more rapid convergence than full
precision, and minimal difference in accuracy.
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TABLE 4. Output channel sparsity by regularization.

FIGURE 4. Channel sparsity on ResNet-18.

CIFAR-100: To demonstrate the effectiveness of our
method, we conduct our experiments on more complicated
datasets (CIFAR-100). We also use more popular network
like VGG-16/VGG-19 and ResNet-34/ResNet-50 to train
here. The learning rate starts at 0.1 and we use the learning
rate decay equal to 0.2 at epochs number 60, 120 and 160 for
the whole 200 epochs.

Considering the best performance among BWN, XNOR
and TWN, we mainly compared XNOR with OURS on
CIFAR-100 by different network. The results are shown
in Table 3, which shows that our method is much better than
XNOR and closes to FWN. Obviously, our method performs
better in complex data sets.

FIGURE 5. Visualization results of 4-dimensional weight tensor.
(a) Conv2 in full precision. (b) Conv2 in Q. (c) Conv2 in Q + L1.
(d) Conv2 in Q + L2. (e) Conv2 in Q + R.

B. EFFECTS WITH SPECTRAL REGULARIZATION
CONSTRAINT
We explore the effects of spectral regularization on
ResNet-18 for example in this section (more results about
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TABLE 5. Required memory (MByte) and compression rate (CR) for VGG-7
and ResNet-18.

TABLE 6. Test error and FLOPs after different channels pruning strategy.

TABLE 7. channel sparsity on CIFAR-100.

other network will show in appendix). As explain above,
a more compact and sparse structure is achieved after adding
weight regularization to our quantization loss function.
Fig.3 shows the network parameter sparsity of each convolu-
tional layer, where ‘‘Q’’ is by our quantization only, ‘‘Q + R’’
is quantization with spectral regularization, ‘‘Q + L1’’ is
quantization with l1 norm, and ‘‘Q + L2’’ is quantization
with l2 norm. It could be seen that our LRSQ obtain greater
sparsity than other methods in back convolution layers with
large amount of parameters, and the sparseness promotion
of the L1 norm is also reflected in the following figure.
Table 4 and Fig.3 counts the zero rows of the reshaped 4D
tensors, which means that weights of one output channel are
all quantized into zero.

Evidently, our quantization method has greatly promoted
the parameter sparsity. Furthermore, adding regularizations
make it more obvious, especially in layers with more param-
eters, while do not have accuracy loss. For output channel
sparsity, there will have more zero output channels by LRSQ

TABLE 8. channel sparsity on CIFAR-100.

than other several methods with l1 norm and l2 norm as shown
in Fig.4 and Table 4, which representsmore compact structure
for the network and provides possibility for channel pruning.
We also show the visualization result of convolutional kernel
on ResNet-18 in Fig 5 (black pixels mean that parameter
value equals to zero).

C. MEMORY COMPRESSION AND FLOPs REDUCTION
We have already explained the sparsity of parameters and
channels in above experimental section, and considering
quantization effects of net weight, the required memory
and computational float-point operations (FLOPs) for CNNs
could be decreased greatly. For parameter memory, we use
Huffman coding in [6] to saveweight parameters. The general
coding formula can be expressed as

Huffmanlength= −p∗log2p (27)

where p is the occurrence probability of unique element. We
calculate the memory consumption of the whole network
except the first and last layer, results are shown in Table 5. Our
LRSQ could compress the net from 80× to 120× (140×) by
adding regularization constraint. Our quantization network
is so small that can be easily fitted into portable devices
theoretically. The key compression factor of our method is
using scaling factor each channel and obtain zero channel
with low rank regularization.

To compute the number of FLOPs, we assume convolution
is implemented as a sliding window and nonlinearity is com-
puted for free. For convolutional layers we have [29]

FLOPs = 2HW(Cins2+1)Cout (28)

where H andW are weight andwidth of the input featuremap.
However, bias is ignored in our experiments, which simplify
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TABLE 9. channel sparsity on CIFAR-100.

above computation. In this section, we only compute FLOPs
of ResNet-18 except the first and last layer. The results are
summarized in Table 6.

D. CHANNELS PRUNING
As shown above, there exists plenty of redundancy in
ResNet-18 for image classification, and zero channels are

TABLE 10. Channel sparsity on CIFAR-100.
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TABLE 10. (Continued.) Channel sparsity on CIFAR-100.

ubiquitous after our quantization with spectral regularization.
To further compress the model, we attempt to investigate
the influence of channels pruning on ResNet-18, retrain the
full precision network which zero channels are clipped. The
results are summarized in Table 6. Evidently, inferring accu-
racy improving may occur when pruning some unimportant
channels. Moreover, fewer channels means less inference
time and memory in hardware applications. In view of this,
we conduct FLOPs comparison according to section C, com-
parison results are also shown below. Obviously, our LRSQ
have achieved great performance, which reducing nearly 21%
FLOPs without accuracy loss. From the level of network
interpretability, those zero channels are redundant ingredi-
ents for training process which could be clipped in practical
applications

V. CONCLUSION AND FUTURE WORK
In deep convolutional networks, the parameter size is key
factor that directly affects the learning performance. Mod-
els compression aims to reduce the redundancy of complex
models and accelerate training and inference process. There-
fore, we introduce a Low Rank Sparse Quantization (LRSQ)
method to achieve the goal, and learn a compact and sparse
structure of deep CNN during training process. We find that
network accuracy drop slightly by our method. Interestingly,
our quantifiedmodel adding spectral clustering regularization
has obtained compact structure with evident group sparsity,
and zero channels of weight tensor which could be pruned.
Experiments show that model memory and FLOPs consump-
tion also decrease obviously. In future work, we wish our
work may be implemented on hardware applications.

APPENDIX
Various networks have been proposed to compute the channel
sparsity on CIFAR-100, which demonstrates the effectiveness
of our method for channel sparsity. It can be seen that the
phenomenon of channel sparsity on VGG is more obvious
than ResNet, where ‘‘Q’’ is by our quantization without any
regularization, ‘‘Q + R’’ denotes quantization with spectral
regularization.
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