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ABSTRACT As the Internet of Things (IoT) is rapidly expanding, a huge variety of devices is being
connected to the Internet. Device management is becoming an important topic for IoT. Especially for
using devices properly and securely, it is necessary to visualize what types of devices are in the network.
However, most conventional device identification methods are not suitable for resource-constrained IoT
devices. Therefore, we have developed a method of device identification that identifies the type and model
of devices on the basis of general communication information. It determines the type and model of devices
by calculating the similarity of features extracted from their network packets. The great merit of our proposed
device identifier is that it can be applied to various IoT devices without special equipment. We conducted
three experiments to evaluate its effectiveness. In the experiments, we focused on devices specialized for
specific functions such as network cameras and factory-used devices because they are effective targets of our
device identifier. In addition, we tried identifying models from devices of the same type. The first experiment
revealed the relationship between the packet header information used for identification and the success of
identification. The second experiment with 11 types of network cameras showed that the device identifier
correctly identified nine of them. In addition, the third experiment in a simulated factory environment showed
the device identifier correctly identified six types of factory-used devices. Thus, we have demonstrated the
feasibility of the proposed device identifier in a real environment.

INDEX TERMS Internet of Things, device identification, network management.

I. INTRODUCTION
The Internet of Things (IoT) is rapidly expanding as a huge
variety of devices is being connected to the Internet. McKin-
sey estimates that the potential economic impact of IoT appli-
cations will be US$11.1 trillion per year in 2025 [1]. More
and more devices will be installed in various environments
such as homes, factories, and streets [2]–[4]. Since many dif-
ferent types and huge numbers of devices will be connected
to the network, network administrators will not be able to
grasp what kinds of devices are connected to the network.
For detecting illegally connected devices or managing assets
of devices, it is necessary to visualize what types of devices
are currently connected to the network. However, IoT device
management presents several problems.

First, IoT devices are diverse. For example, IoT devices
include sensors such as cameras and thermometers, small
computers such as smartphones, and actuators such as speak-
ers and displays. They have different computing resources
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and use different communication protocols. Therefore, it is
difficult to determine the properties and states of various
devices in a common way.

Second, many mobile devices will be connected to IoT,
and their installation location and network connection state
will change frequently. For example, in a factory, when a pro-
duction line is refurbished, a device used on the line may be
reused on a separate line. In a home, users move devices such
as a laptop computer, headphones, or a speaker in accordance
with their circumstances. In addition, not only the physical
location but also the network location changes dynamically.
Some mobile devices have multiple access interfaces such as
Wi-Fi and 4G LTE and change access networks frequently in
accordance with their location. Thus, devices in the network
dynamically change. Therefore, conventional Internet proto-
col (IP)-based management is not suitable for IoT network
management. Also the media access control (MAC) address
cannot be used to identify devices because some operating
systems now generate MAC addresses randomly for each
network connection for security.
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Third, the number of IoT devices will become huge. Even
small offices will have more than 100 IoT devices at all times.
Therefore, it is not realistic to manually manage a database of
all devices and reflect frequent changes in a huge number of
devices. Management must be automated.

To solve the above problems, we previously proposed a
method to identify devices in the network [5]. In this paper,
wewill describe its implementation and evaluation in a device
identification system. This device identifier automatically
determines the type and model of the device by passive com-
munication analysis. In particular, we focus on IoT devices
that have one specific function, because conventional identi-
fication methods cannot be applied to most of these simple
devices. We will describe the experiments with many models
of devices of the same type and also describe the experiments
with devices in a simulated factory environment.

The rest of this paper is organized as follows. Section II
surveys the conventional device identification. Section III
describes our approach for device identification and related
research. Section IV presents the developed device identi-
fier. Section V shows the results of experiments. Section VI
describes the discussion and future tasks. Finally, Section VII
concludes the paper.

II. CONVENTIONAL DEVICE IDENTIFICATION
There have been some prior research and technologies for
identifying devices.

Universal Plug and Play (UPnP) [6] is a protocol for
connecting devices to a network. It handles descriptions
describing the product and manufacturer name of the device.
Although it is effectively grasps the types of devices, UPnP is
not applicable to all IoT devices. Also, details of descriptions
such as a device name are manufacturer-specific. There is
a method for managing resource-constrained devices using
management protocols such as SNMP and NETCONF [7].
It utilizes IP-based protocols on devices with limited central
processing units (CPUs) and memory. However, an operating
system (OS) must be able to handle these protocols. There is
technology to identify the user of a device and its hardware
configuration from web fingerprints [8], [9]. It finds the
characteristics of users and devices and identifies them with
high accuracy by investigating the behaviors of the browser.
However, it can only be applied to devices that can operate
browsers. These are only applicable to a few types of IoT
devices because many IoT devices are resource-constrained
devices such as primitive sensors. Since we are aiming at
managing a wide variety of devices in various environments
for IoT, we have to take another way.

There are methods for identifying devices from hard-
ware fingerprints such as radiometric fingerprints [10]. These
methods are effective for identifying a Network Interface
Card (NIC), but they need special equipment such as a radio
sensor. Thus, they are not suitable for managing a large
number of devices at low cost.

There is research to identify the OS and applications
by analyzing network traffic. Matsunaka et al. [11] and

Chang et al. [12] tried to identify an OS from a unique domain
name and transmission cycle of domain name system (DNS)
queries. They are general methods and are not dependent on
the type of the device. However, these methods are intended
only for identifying the OS, not the device type or model.

Thus, there is no device identification method suitable for
various kinds of devices in various environments that does not
require special measurement equipment.We propose a device
identification method that meets these requirements.

III. APPROACH AND RELATED RESEARCH
Our device identification method uses network information
as common information that does not depend on the type of
devices and can be acquired without special measurement
equipment. Naturally, all IoT devices are connected to the
network and communicate differently depending on the type
and usage of devices. For example, a camera continues to
continuously transmit large video data at all times, whereas
primitive miniature sensors such as temperature sensors peri-
odically send sensor values with small data size. Furthermore,
even with the same camera, transmitted data size and the
information differ depending on models. In other words,
we believe that by looking at the communication information
of the device, the type of device and individual device can be
specified.

In addition, since communication information can be
obtained via a general network switch, it is unnecessary to
set a special device into the existing environment or install
software on the device. Therefore, our method is low cost and
can be commonly used for various kinds of devices.

Our proposed method identifies the type of device and
individual device by comparing the communication of the
identification target device with the communication stored in
the database. The database stores communication information
of devices existing in the network from past to the present.
By looking at the similarity of communications among these
devices, we can determine which devices match. This method
also features automatic database management. The commu-
nication data of the devices are always stored while the device
is operating. As a result, communication information specific
to each model and type is automatically accumulated, and
identification performance improves over time.

There is related research taking a similar approach to spec-
ify the device type from the communication information of
the device. Meidan et al. [13] proposed a method for identify-
ing the device type with features extracted from transmission
control protocol (TCP) packets. In their experiment, their
method classified data from nine types of devices including
a printer, television, and smart watch. However, it does not
identify each model. Kawai et al. [14] proposed a method for
identifying the device type and model with only two factors:
packet size and packet inter-arrival time (IAT). Since it does
not depend on a specific protocol, it is very effective for
identifying various IoT devices. However, only experiments
with a few identical models are mentioned, and further exper-
iments with many devices of the same type are worth doing.
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FIGURE 1. Components of device identifier.

Dalai and Jena [15] proposed a method for specifying a
device type for identifying and isolating vulnerable device
types for wireless devices. Their method calculates similarity
of devices from communication information. However, the
method deals with the probe request frames sent by the
devices during network scanning for availability. It is only
applicable to wireless devices, and the device identifier must
be in the same WiFi area to capture data. Markus et al. [16]
also adopted a similar approach to isolate vulnerable devices.
They proposed a total system including a security gateway.
Twenty-three kinds of features from 16 protocols are chosen.
However, features for identification need to be refined, and
the method needs to be made more independent of specific
protocols.

Different from the above related research, we aim to
identify models frommany devices of the same type. Further-
more, we focus on devices specialized for specific functions
such as factory-used devices and network cameras. Many
such single-function devices will be in IoT, and they are
effective targets of our proposed method. In the experiment
section, we will analyze them in detail. Since the execution
application software of these devices does not change like
that of a smartphone, communication characteristics change
little in accordance with the usage situation. Therefore, the
experimental results of this paper are highly reproducible in
different environments.

IV. IMPLEMENTATION
This section describes our system, a device identifier, which
embodies the device identification method. Fig. 1 shows the
overall image of the device identifier.

A. DEVICE IDENTIFICATION PROCEDURE
We designed a system in which the processing is divided into
several steps in order for the device identifier to be extensible
to various kinds of devices. Details will be described below
in accordance with the process order.

1) ACQUISITION OF COMMUNICATION INFORMATION
The first step for determining the similarity of communica-
tion information is to extract header information from the
communication packet. We consider the header information
of the communication packet to be the minimum unit that
expresses the nature of communication. The header infor-
mation has attributes such as packet length and a TCP port

FIGURE 2. Network packet capture by device identifier.

FIGURE 3. Procedure for extracting communication features.

number, which express characteristics of devices. The system
stores this header information separately for each device in
the network. This process does not affect the operation or ser-
vice of the devices since the system acquires packets from
the mirror port of the network switch. Fig. 2 shows how to
apply the device identifier to the network. Communication
from the same device is distinguished by a temporary unique
header, which is arbitrarily chosen from headers that change
less frequently.

Since this system is based on the assumption that here is
that a device has no persistent unique header, the correspon-
dence between the value of this temporary unique header and
each device is cleared in a fixed time. That is, even if the
MAC or IP address is temporarily handled as a unique header
and associated with the device, it is reset after a certain period
of time and the communication including the same MAC or
IP is re-identified. In this way, even if the correspondence
between the device and MAC or IP changes in the network, it
is possible to identify whether a device is the same device or a
different device.

2) EXTRACTION OF COMMUNICATION FEATURES
The device identifier obtains the header information accumu-
lated for each device at a constant cycle and extracts commu-
nication features. Fig. 3 illustrates the process of extraction.
Communication features include fluctuation trends in packet
length within a certain period, occurrence of burst, periodicity
of change of used port number, and the like. By adding
an element of time, single header information becomes
more effective for device identification. The device identifier
uses the communication features generated in these certain
periods as a minimum unit for determining the similarity
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FIGURE 4. Procedure for calculating similarity of communication feature.

of communication. We digitized all the header information
for extracting the features and calculating their similarity.
We use several features: the maximum value, the minimum
value, the average value within each certain period, and slope
and intercept of the primary approximate curve within each
certain period. The maximum, minimum, and average values
express the existence or absence of the burst of the commu-
nication packet transmitted and received.

Also, the slope and intercept of the primary approximation
curve express the fluctuation trend within a certain period.

3) CALCULATION OF SIMILARITY BY COMMUNICATION
FEATURES
The device identifier compares the communication features
of the identification target device and other devices that
were connected to the network and determines whether they
match or not. If a device has connected to the network at least
once, its communication features are stored in the database.
Fig. 4 illustrates the similarity calculation process. The device
identifier calculates the similarity of the features of the target
devices and features in the database. Then, if a type or model
has similarity higher than a certain threshold, the device iden-
tifier determines that it is the same as the target device. If no
type or model has similarity higher than the certain threshold,
the device identifier determines that the target device is a new
device in the network. The similarity is calculated by using
the Euclidean distance of each feature and is normalized to a
value range of 0 to 100. Equations 1 and 2 show the formulas
of similarity calculation.

ci = 1− (1xi/max(1x)) . (1)

C =
∑

kici. (2)

c is the degree of similarity for each feature, C is the com-
prehensive degree of similarity, and x is a digitized feature. c
and C take a value in the range of 0 to 100. k is the weight of
each feature.

We will describe the details of feature weight. Unique
features in the network should be reflected more strongly
for identification. For example, in an environment containing
many HTTP client terminals, the destination port number
of the transmit packet overlaps with many devices. If the
destination port number is used to calculate similarity, all
HTTP client terminals have uniformly high similarity, and
a new device cannot be correctly identified. We solved this
problem by setting an appropriate weight to each feature.

Additionally, although we are aiming to identify various
kinds of devices in various IoT environments, it is difficult

FIGURE 5. Hierarchy of feature database.

to set the weight manually in every environment. Therefore,
the device identifier determines the uniqueness from the fea-
tures in the environment and dynamically sets the appropriate
weight. Equation 3 shows the formula for calculating the
weight.

ki = vi/
∑

v (3)

v is a variance value of similarity for all features. k is cal-
culated in accordance with the ratio of variance value. When
comparing features, the device identifier also calculates the
variance of all digitized features. Then the ratio of the sum of
variance of all devices is taken as the weight. In other words,
the sum of the weight of all the headers is 1, and the higher the
variance, the greater weight given to the header with higher
uniqueness.

B. ACCUMULATION METHOD OF COMMUNICATION
FEATURES
The device identifier manages communication feature data
of devices hierarchically to identify information of multiple
devices. The hierarchy is shown in Fig. 5. When feature
data are stored in the database, corresponding attributes are
set. Attributes indicate to which clusters the data belong.
In the device similarity calculation, feature data correspond-
ing to identification target information are retrieved from the
database using these attributes. Since clusters are not pre-
pared for information of each identification target, the amount
of data can be minimized.

1) DEVICE MODEL CLUSTER
A device model means information that specifies a device
such as the device manufacturer or model number. By cal-
culating similarity to communication features in this cluster,
the device identifier identifies the device model of the target
device. At least one sample feature needs to be prepared in the
device model cluster. Alternatively, some devices can specify
a device model from a combination of information such as
user agent information and an MAC address contained in the
packet without extracting features.

2) DEVICE TYPE CLUSTER
A device type means the classification of the devices in
accordance with their functions, such as a camera, speaker,
and smartphone. By calculating similarity to communication
features in this cluster, the device identifier identifies the
device type of the target device. At least one sample feature
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TABLE 1. Specifications of network cameras.

needs to be prepared in the device type cluster, but as identi-
fication is performed, features in the cluster are added.

V. EXPERIMENTS
To evaluate the effectiveness of the proposedmethod, we con-
ducted three kinds of experiments using the device identifier.
The first used several types of network cameras to check
which header information is useful for identification. The sec-
ond used more network cameras to evaluate identification
accuracy. The third used a simulated factory environment to
assess the device identifier’s feasibility in a real environment.

A. CAMERA IDENTIFICATION FOR HEADER INFORMATION
ANALYSIS
We conducted experiments using four types of network cam-
eras made by different manufacturers as shown in Table 1.
All are connected by an Ethernet, and their resolutions can
be set by the user. The video compression format is motion
JPEG, and the transmit packet length of the network camera
fluctuates in accordance with the recorded video. We turned
these cameras on and accumulated communication packets
and identified devices in parallel. The time period of the com-
munication feature extraction and device identification was
30 seconds in all experiments. As described in the previous
section, the device identifier calculates the similarity for each
device in the network on the basis of the features extracted
from the communication for a certain period. In the experi-
ment, if the similarity of the correct device was calculated as
the highest value, the identification was successful. Regard-
ing the accumulation of device feature quantities, in the actual
operation of this system, the storage destination cluster of the
feature is determined on the basis of the identification result
each time. In this experiment, however, the feature is always
stored in the correct cluster irrespective of the identification
result.

1) ANALYSIS OF HEADER INFORMATION FOR
IDENTIFICATION
We selected the header information used for identifica-
tion from the viewpoint of uniqueness and reproducibility.
In these experiments, we used packet length and time to live
(TTL) of the network layer, the TCP window size of the
transport layer, and the HTTP header of the application layer.
The HTTP header fields shown in Table 2 were used as the

TABLE 2. Experiment configuration headers.

TABLE 3. Experiment configuration.

packets of the network camera. To analyze the header used for
device identification for each network layer, we measured the
success or failure of identification for the three experimental
conditions shown in Table 3. One condition is using only the
IP header, another is using the TCP header and a layer header
lower than it, and the other is using the HTTP header and a
layer header lower than it. In this experiment, the resolution
of the network cameras was unified to the minimum size, and
the cameras shot the same object. A packet to be transmitted
from the device to the viewing client was identified as a
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TABLE 4. Success or failure of identification s: success, F: failure, m:
success but marked.

FIGURE 6. Similarity of transmitted packets of AXIS camera for each
experiment.

transmitted packet (TX), and a signal transmitted from the
viewing client to the device was identified as a received
packet (RX). Table 4 shows the results.

We gathered the experimental results for identifying
devices on the basis of packets they transmitted and received.
In the case of using only the IP header, the identification
success rate was 75%. However, in the case of using the TCP
header and a layer header lower than it or using the HTTP
header and a layer header lower than it, the identification
success rate was 89%. This shows that the identification
success rate was increased by increasing the amount of used
features. Fig. 6 shows the similarity of the transmitted packets
of the AXIS camera for each experiment. The vertical axis
represents similarity, the horizontal axis represents elapsed
time, and the plot shows similarity for each feature extracted
in units of 30 seconds. With the IP header alone, similarity
does not stabilize to the highest value and the device cannot
be identified, but by using a header of TCP or higher, the sim-
ilarity shows the highest value stably.

In the case of received packets of VSTARCAM, the device
could not be identified correctly under any experimen-
tal conditions. Analyzing the captured packet, we found
that AXIS and VSTARCAM periodically receive similar
HTTP response packets, but only VSTARCAM received the
icslap packets, which are a protocol originally developed by
Microsoft, at a time interval longer than the feature extraction

FIGURE 7. Results when similarity of correct device is not the highest in a
small part.

time period. Therefore, this foreign feature was mixed in the
database of VSTARCAM, so the similarity to the usual HTTP
response packet became low and the similarity to accumu-
lated features of AXIS became higher than for VSTARCAM.
This caused erroneous identification.

In addition, some results of experiments showed that the
similarity of the correct device is not the highest at a certain
time when similarity is calculated in 30-second intervals.
Fig. 7 shows the transition of the similarity of the correspond-
ing experimental results.

This phenomenon did not occur in the case of using the
VSTARCAM transmit packet and only the IP header or using
Canon transit packets, a TCP header, and layer header lower
than it.

Therefore, the results show that using low uniqueness and
a low reproducibility parameter for identification negatively
affected the calculation of similarity. In this way, simply
increasing the number of features used for identification does
not improve the accuracy of identification, and features need
to be appropriately selected in terms of uniqueness and repro-
ducibility.

2) EFFECTIVENESS OF DYNAMIC WEIGHTING FOR HEADER
We evaluated the effectiveness of dynamic weighting by
measuring the similarity calculated with and without weight.
In this experiment, the packet length of the IP header, TTL,
window size of the TCP header, and HTTP header were used
for calculating similarity. Fig. 8 shows the results. Weighting
made the difference in similarity of each device clearer. The
results demonstrate that dynamic weighting is effective to
clarify the distinction between devices and determine the
correct device even if there are many similar devices.

3) TRANSMITTED PACKET LENGTH RANGE
The packet length of network cameras varies in accordance
with the color of the shot image even if the cameras are the
same model and have the same settings. Therefore, if the cap-
tured image is changed by changing the usage environment,
the feature of the packet length may change and then the
camera cannot be correctly identified. Wemeasured the value
range of the transmitted packet length by variously changing
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FIGURE 8. Similarity of devices with weight.

FIGURE 9. Value range of packet length in various settings.

the color of the photographed image with respect to the nine
pattern conditions that consist of a combination of a model
and resolution.

Fig. 9 shows the results. Comparing the value range of the
packet length of the same model with different resolutions,
duplication of range is seen in Canon’s VGA and QVGA, but
other combinations have almost no overlap. Therefore, even
if a packet length changes in accordance with the shot image,
the same model with different resolutions can be identified
by using the packet length. Also, when comparing the value
ranges of all nine patterns, even the combination with the
most overlapping ranges is four patterns. Even if there is
a change in the packet length in accordance with the shot
image, the device can be narrowed down from the packet
length by at least half. Thus, the packet length of the network
camera is effective for identifying the device even if it is
affected by the shot image.

FIGURE 10. Ratio of correct identification for 11 types.

FIGURE 11. Average of similarity for 11 types.

FIGURE 12. Devices and network configuration of experimental
environment.

B. IDENTIFICATION ACCURACY FOR NETWORK CAMERAS
We measured the identification accuracy of the proposed
system using 11models of network cameras. As experimental
conditions, only transmitted packets were used. The time
period of the communication feature extraction and device
identification was 30 seconds. Packet length, TTL of the IP
header, and the window size of the TCP header are used for
identification. The settings of devices were left in default.
We prepared 20 training feature data and test feature data
per model, and the device identifier identified test data one
by one. Fig. 10 shows the percentage of test data classified
as the correct device. We treated this value as identification
accuracy. Fig. 11 shows the average of the similarity with
the correct device only for the case of successful identifica-
tion. Fig. 10 shows that 9 out of 11 devices were correctly
identified with accuracy equal to and over 90%. If multiple
test feature data are used to determine the same device, all
these nine devices can be identified. On the other hand, the
accuracy was poor for IO DATA_Wrlp and IO DATA_Wrlpe.
According to the experimental data, they were sometimes
mutually misidentified. Since they are of the same series from
the same manufacturer, their specifications are presumed to
be similar. When the device identifier is operated in a real
environment, it will not be able to identify each model of the
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FIGURE 13. Similarity of devices based on extracted features per 10 seconds.

same series, but it may possibly be able to identify the series
to which the model belongs.

C. IDENTIFICATION IN SIMULATED FACTORY
ENVIRONMENT
To assess the feasibility of the proposed method in a real
environment, we conducted an experiment in a simulated
factory environment. Fig. 12 shows the network configuration
of an experimental environment simulating a production line
of a factory. The network contains a programmable logic
controller (PLC), lamp, network camera (AXIS M1034-W
EUR), a personal computer (PC) for controlling the PLC,
a PC for controlling the lamp, and camera viewing client PC.
These devices were operated in the normal operation state
on the production line, and the device identifier accumulated
communication packets and identified devices in parallel.
In this experiment, we treated each PC as a different device
because it has only one specific function in its factory use.

The device identifier acquired transmitted packets of each
device from the mirror port of the network switch. In this
experiment, we used the packet length, TTL, and the TCP
window size for identification. The time period of the
communication feature extraction was set to 10 seconds.
Fig. 13 shows the results. The vertical axis represents the
similarity, the horizontal axis represents the elapsed time,
and the plot shows the similarity for each feature extracted
in units of 10 seconds. The title of each graph shows the
identification target device. The results show that the devices

other than the camera client PC have the highest similarity as
the correct device. However, as several noticeable phenomena
were discovered, we analyzed them.

The similarity decreased at some points in the identifi-
cation of the PC for controlling the lamp. By checking the
communication packets at the corresponding time, Internet
Group Management Protocol (IGMP) packets were found
to be included only during this period. To deal with such
singular occurrences, it is effective to calculate similarity
multiple times and to determine the correct device from their
sum or average.

The camera client PC could not be correctly identified
since its similarity to different devices was always high. This
is due to the camera client PC sending two kinds of packets
at the same low frequency: RTSP and HTTP. Therefore, only
one is always included in the 10-second period and does not
match with nearly half of the accumulated features. To deal
with such low frequency packets, it is effective to sufficiently
lengthen the period of feature extraction and make the feature
amount homogeneous.

VI. DISUCUSSION
The results of experiments show that the proposed device
identifier can distinguish the devices from the communica-
tion information and determine the same model of devices
correctly. The devices and environment of this experiment are
one of the use cases, and further improvement is necessary to
apply the proposed device identifier to various devices in real
environments.

52910 VOLUME 7, 2019



H. Noguchi et al.: Device Identification Based on Communication Analysis for the IoTs

One task is setting an appropriate feature extraction period.
Cameras were constantly transmitting video data. However,
some types of devices do not communicate frequently or they
transmit or receive specific packets such as monitoring at
low frequency. In the experiment, since the period of feature
extraction is uniformly fixed, there was a difference in the
distribution of the communication packets contained in the
extraction period, so the identification accuracy was affected.
To apply the device identifier to various devices other than
cameras, the feature quantity needs to be extracted in an
appropriate time period in accordance with each environment
and device. In the future, we plan to consider a method
of dynamically adjusting the feature extraction period in
accordance with the communication characteristics during
the identification.

Another important task is selecting appropriate informa-
tion for identification. As the experimental results show,
unique and reproducible header information needs to be
selected and used for identification. To support various pro-
tocols and usage environments of IoT devices, useful head-
ers need to be automatically selected. The proposed device
identifier weights the headers dynamically, and the effect was
evaluated in the experiment. We think that the frequency of
transmission and reception for each packet type will also be
effective for identification and plan to incorporate it in the
future. For example, even if some packets such as monitoring
packets are similar on several devices, if the transmission
frequency differs from device to device, it can be used for
identification. To deal with packet transmission and reception
frequency, we plan to apply machine learning such as a naive
Bayes classifier or random forest [17]. We will apply these
algorithms to identification of types and models of various
devices.

Furthermore, for practical use, a device feature database
also needs to be designed. In the experimental software,
the data size was about 2.2 kB per feature data extracted
in 30 seconds. If feature data are accumulated for one
hour, the data size is about 264 kB per device, and even if
10,000 devices are managed, the storage size is only 2.6 TB.
In a local environment where limited kinds of devices are
connected, a smaller amount of storage is sufficient.

VII. CONCLUSION
Device management is going to be important for safe and
proper handling of an enormous number of IoT devices in
the future. In this paper, we proposed a device identifier that
identifies types and models of devices by analyzing com-
munication information. We also showed the device identi-
fier’s effectiveness in experiments. The experiment with four
types of network cameras revealed the relationship between
the packet header information used for identification and
the success of identification. The experiment with 11 types
of network cameras showed the device identifier correctly
identified 9 of them. In addition, the experiment in a simu-
lated factory environment showed the device identifier cor-
rectly identified six types of factory-used devices. We plan to

conduct experiments with various types of devices in various
network environments and improve the method of communi-
cation feature extraction in the future.

We also want to mention that the developed device identi-
fier can be utilized not only for visualizing devices but also
various services. Security is one of the candidate fields. The
device identifier will be able to find newly connected devices
and alert the relevant people. Also, it can detect strangely
behaving devices such as malware infected devices. We plan
to address such security applications in the future. Further-
more, we are considering the automatic construction of IoT
services as a prospective application of the device identifier.
We believe that devices in the living environment will be
shared for various purposes [18]. Under these circumstances,
services must find the necessary shared device from the
network every time the device is used. Device types such as
cameras and speakers are effective information for matching
services and devices. We will expand the device identifier
to determine the function, capability, and performance of the
devices connected to the network and use this information to
match devices and services.
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