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ABSTRACT This study investigates an adaptive estimation and hybrid parallel distribution compensation for
non-Gaussian stochastic systems with actuator-sensor compound faults. Type-II fuzzy theory approximates
nonlinear dynamical systems with non-Gaussian stochastic outputs and inconsistent response under harsh
environments. An estimation observer using fuzzy and improved adaptive laws is proposed to accurately
estimate different amplitudes of an actuator fault. In a fault-tolerant controller, the indirect passive com-
pensation factors shield the sensor from the initial fault; therefore, the controller actively compensates for
the actuator fault using the estimated information. The output probability density functions then match the
expected values. Finally, the Lyapunov functions prove the robust stability and the simulation results indicate
the effectiveness of these hybrid methods.

INDEX TERMS Non-Gaussian stochastic systems, nonlinear dynamical systems, compound faults, adaptive
estimation, fault-tolerant control, robust stability.

I. INTRODUCTION
Fault diagnosis (FD) and fault-tolerant control (FTC) for
complex faults in complex environments can significantly
improve system reliability, thereby improving the applica-
bility of the related technologies [1]–[4]. We are committed
to studying these key technologies considering compound
faults including actuator and sensor faults, system singularity,
external disturbance, and output non-Gaussian uncertainty
due to harsh environments.

There has been visible progress in the research on FD and
FTC of multiple fault types, particularly compound faults.
In [5], the problem of diagnosing compound faults over
time was solved using a coupled factorial hidden Markov
model-based framework. In [6], a frequency blind decon-
volution algorithm based on an adaptive generalized mor-
phological filter was proposed for extracting useful signals
from the signals contaminated by the compound faults. In [7],
the nonlinear FTC and sensor multiple FD for longitudi-
nal dynamics of hypersonic vehicles were designed. In [8],
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a composite-loop for the FTC under the compound faults
was subsequently developed, where newly developed multi-
variable integral sliding-mode control was integrated. In [9],
an improved fast spectral kurtosis method combined with the
variational mode decomposition was proposed to improve
the tracking accuracy for the compound fault. In [10], an
exponentially weighted moving average control chart was
constructed to diagnose the compound faults at an early stage.
In [11], a low-complexity state feedback FTC scheme that
guarantees the prescribed performance was designed for the
actuator and component compound faults. In [12], an FTC
scheme with higher-order sliding mode-based observers was
proposed to provide a continuous drive operation, regard-
less of any sensor faults. In [13], the robust adaptive FTC
addressed the tracking control problem with the prescribed
performance to guarantee a rigid system subject to unknown
inertia properties, disturbances, actuator faults, and saturation
nonlinearities. In [14]–[16], the actuator and sensor com-
pound faults were considered simultaneously when designing
controllers, and a similar approach was applied to the system
with multiple complex conditions. Even if there is no fault,
the parameter errors, singularity, and disturbances should
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be considered in the harsh environment. In [17], based on
the singular approach, the coupled model with parameter
errors was decomposed, and a nonlinear hybrid controller was
proposed for trajectory tracking and vibration suppression.
In [18], a robust sliding mode controller was designed for
stabilization of uncertain singular systems with input delay
and parameter deviation. In [19], two linear clearance criteria
based on structural singular value theory were proposed for
the control law. In [20], the cooperative output regulation
problem was studied for singular multi-agent systems subject
to connected switching networks. In [21]–[23], the inevitable
disturbances in the nonlinear systems were considered and
the robust controllers were designed to solve the problems of
tracking control, FD, and FTC.

Output probability density functions (PDFs) of a non-
Gaussian stochastic model can display the distribution infor-
mation of inaccurate outputs, thereby showing the output
distribution laws that regular signals cannot exhibit [24].
By tracing the ideal PDF shapes, the stochastic models can
achieve more accurate FTC than the classical models. In [25],
a square-root-based algorithm was presented to approximate
the output PDF in order to guarantee that PDF was posi-
tive. In [26], the Takagi-Sugeno (T-S) theory linearized non-
Gaussian nonlinear stochastic systems and a sliding-mode
tolerant algorithm compensated for the fault impact on the
output PDF. In [27], a reconfigured tolerant controller gen-
erated the output when the post-fault stochastic distribution
systems had minimum entropy. In [28], a robust, adaptive
observer-based FD method was proposed for non-Gaussian
uncertain stochastic distribution systems based on the linear
B-spline. In [29], an effective FTC strategy with an adaptive
distribution compensation control law was proposed in the
non-Gaussian systems. This study will use similar compen-
sation methods.

The main contributions of this work can be summarized as
follows:

1) Constructing the multi-input multi-output (MIMO)
Type II fuzzy non-Gaussian stochastic systems with the sin-
gularity and disturbance.

2) Designing an improved adaptive estimation algorithm
by integrating actuator fault and fuzzy precondition variable
information, which is consistent with the animal predation
behavior.

3) Designing the active-passive hybrid FTC for the com-
pound faults: active repair the estimated actuator faults with
simultaneously shield the sensor fault without acquiring its
information.

A non-Gaussian nonlinear singular stochastic model with
external disturbance and compound faults is established using
Type-II fuzzy theory in Section II. In Section III, an improved
adaptive estimation observer is designed for the actuator fault
and the robust stability is proved. In Section IV, an adaptive
parallel distribution compensation (PDC) FTC is designed
and the robust stability is proved. The novel features of adap-
tive estimation and FTC in Sections III and IV, namely, fuzzy-
prey fusion adaptive strategies, are clarified. In Section V,

a three-input three-output non-Gaussian stochastic system
that can describe an aeroengine or a stochastic attitude vehi-
cle is employed as the controlled object, and the effective-
ness of the FTC under the different fault amplitudes are
examined.

II. MODEL
Using the Type-II fuzzy method and considering the
singularity, the state equations and weight output equations
of non-Gaussian stochastic systems with actuator faults are
established as

Rule i: if f1(x1(t)) is ξi1 is . . . fs(xs(t)) is ξis, THEN

Eẋ(t) = Aix(t)+ Biu(t)+ HiFtvs(t)+ Jid(t)

V (t) = Dix(t) (1)

where: ξij(i = 1, 2, . . . , p; j = 1, 2, . . . , s) is interval type II
fuzzy set, x(t) ∈ Rn×1 is the state vector, u(t) ∈ Rm×1 is
the control input vector,Ftvs(t) ∈ Rm×1 is the actuator fault
vector, V (t) ∈ Rn−1×1 is the weight vector obtained by
multiplying the dimensionality reduction matrix and the state
vector, and d(t) ∈ Rm×1 is the cascade deviation disturbance.
Ai ∈ Rn×n, Bi ∈ Rn×m, Hi ∈ Rn×m, Ji ∈ Rn×m and
Di ∈ Rn−1×n are the parameter matrices, where Di is a
dimensionality reduction matrix, E ∈ Rn×n is the singular
matrix and satisfies rank(E) = r < n. The triggering strength
of each fuzzy rule can be expressed as

ωi(x(t)) = [ωi,low(x(t)), ωi,up(x(t))] (2)

ωi,up(x(t)) =
s∏
j=1

µξij,up(xj(t)) (3)

ωi,low(x(t)) =
s∏
j=1

µξij,low(xj(t)) (4)

where ωi,up(x(t)) ≥ ωi,low(x(t)) ≥ 0. ωi,up(x(t)) represents
the upper membership, and ωi,low(x(t)) is the lower mem-
bership. The upper and lower membership functions are rep-
resented by µξij,up(xj(t)) and µξij,low(xj(t)), respectively. The
global Type-II fuzzy model of non-Gaussian stochastic sys-
tems with actuator and sensor initial faults can be expressed
as

Eẋ(t) =
p∑
i=1

(ϕi,low + ϕi,up)[Aix(t)+ Biu(t)

+HiFtvs(t)+ Jid(t)] (5)

V (t) =
p∑
i=1

(ϕi,low + ϕi,up)Dix(t)

γ (ρ + c, u(t)) = C(ρ + c)V (t)+ T (ρ + c) (6)

where

ϕi,low = ϕi,low(x(t))

=
νi(x(t))ωi,low(x(t))

p∑
i=1

(νi(x(t))ωi,low(x(t))+ (1− νi(x(t)))ωi,up(x(t)))

(7)
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ϕi,up = ϕi,up(x(t))

=
(1− νi(x(t)))ωi,up(x(t))

r∑
i=1

(νi(x(t))ωi,low(x(t))+ (1− νi(x(t)))ωi,up(x(t)))

(8)

where νi(x(t)) is the weight coefficient and satisfies 0 ≤
νi(x(t)) ≤ 1; (6) is the output PDFs generated by the linear
B-spline equations with C(ρ+c) ∈ Rι×n−1, T (ρ+c) ∈ Rι×1,
and γ (ρ + c, u(t)) ∈ Rι×1; ρ = [ρ1, . . . , ρl, . . . , ρι]T is
the output real-time measurement without fault; and c =
[c1, . . . , cl, . . . , cι]T is the sensor initial fault. l = 1, 2, . . . , ι,
ι ∈ Z+, and

ρc

= ρ + c

= [ρc1, . . . , ρ
c
l , . . . , ρ

c
ι ]
T

= [ρ1 + c1, . . . , ρl + cl, . . . , ρι + cι]T (9)

T (ρc)

= [φ1n(ρc1)/b1n, . . . , φιn(ρ
c
ι )/bιn] (10)

C(ρc)

=


φ11(ρc1)−

φ1n(ρc1)b11
b1n

, . . . , φ1(n−1)(ρc1)−
φ1n(ρc1)b1(n−1)

b1n
...

φι1(ρcι )−
φιn(ρcι )bι1

bιn
, . . . , φι(n−1)(ρcι )−

φιn(ρcι )bι(n−1)
bιn


(11)

V (t)

= [ω1, ω2, . . . , ωn−1]T (12)
ω1b11 + ω2b12 + . . .+ ωnb1n = 1
...

ω1bι1 + ω2bι2 + . . .+ ωnbιn = 1

(13)

blβ

=

∫ b

a
φlβ (ρcl )dρ

c
l (14)

where φlβ (ρcl ) is the β-th basis function of the l-th output,
yc is the output real-time measurement with the sensor initial
fault. The actuator fault is defined as

Ftvs(t) =

{
Fσ (t), t ∈ (tσ1, tσ2]
0, otherwise

(15)

Fσ (t) =

{
Fσ,inc(t), t ∈ (tσ1, tσ3]
Fσ,non−inc(t), t ∈ (tσ3, tσ2]

(16){∥∥Fσ,inc(t)/x(t)∥∥2 ≤ 10%∥∥Fσ,non−inc(t)/x(t)∥∥2 > 10%
(17)

where Ftvs(t) is the intermittent fault with step-varying char-
acteristics, Fσ (t) is the value in the fault time interval,
Fσ,inc(t) is the value in the incipient amplitude interval, and
Fσ,non−inc(t) is the value in the residual amplitude interval.

σ = 1, . . . , σ0 is the number of fault windows. ‖ · ‖2 is the
second-order norm.
d(t) is the mean deviation disturbance defined as

d(t) = [d1(t), . . . , dm(t)]T (18)

dg(t) = kg ‖c‖2 + white(t) (19)

where white(t) is the white noise, g = 1, . . . ,m.kg is the
deviation cascade factor.
Remark 1: The initial sensor fault already exists while

being bought. The engineering background of (15)∼(17) is
the deformation and interference of the internal electrome-
chanical systems, intermittent fluid resistance, and electro-
magnetic interference of the environment. The long-time fault
occurrence windows are mostly caused by the environment,
and different environmental factors lead to different ampli-
tudes (Finc(t) and Fnon−inc(t)).
Assumption 1: The faults and disturbance are bounded, that

is M1, M2, M3 ∈ R satisfy ‖Ftvs(t)‖2 ≤ M1, ‖c‖2 ≤ M2, and
‖d(t)‖2 ≤ M3.
Assumption 2: System (5) is regular and pulseless, i.e.

det(sE −
p∑
i=1

(ϕi,low + ϕi,up)Ai) 6= 0, ∀t ≥ 0 (20)

rankE = deg(sE −
p∑
i=1

(ϕi,low + ϕi,up)Ai), ∀t ≥ 0 (21)

The simplified global Type-II fuzzy model can be
expressed as

Eẋ(t) = A(t)x(t)+ B(t)u(t)+ H (t)Ftvs(t)+ J (t)d(t)

V (t) = D(t)x(t)

γ (ρc, u(t)) = C(ρc)V (t)+ T (ρc) (22)

where

A(t) =
p∑
i=1

(ϕi,low + ϕi,up)Ai,

B(t) =
p∑
i=1

(ϕi,low + ϕi,up)Bi,

H (t) =
p∑
i=1

(ϕi,low + ϕi,up)Hi,

J (t) =
p∑
i=1

(ϕi,low + ϕi,up)Ji,

D(t) =
p∑
i=1

(ϕi,low + ϕi,up)Di.

And γ (ρc, u(t)) satisfies

γ (ρc, u(t)) = (C(ρ)+ C̄(ρ, c))V (t)+ T (ρ)+ T̄ (ρ, c)

= C(ρ)V (t)+ C̄(ρ, c)V (t)+ T (ρ)+ T̄ (ρ, c)

= γ (ρ, u(t))+1γ (ρc, u(t)) (23)

where γ (ρ, u(t)) is the PDFs when the sensor initial
fault is not considered, and 1γ (ρc, u(t)) are the errors
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owing to the sensor initial fault. γ (ρc, u(t)) is the actual
output PDFs.

III. ACTUATOR FAULT ESTIMATION
Industrial designs show that the initial sensor amplitude is
small, and it usually does not require an estimation algorithm.
However, if the actuator fault has a large amplitude and com-
plex time-varying characteristics, it is necessary to design an
actuator fault estimation strategy. we design a Type-II fuzzy
estimation observer as

Rule i: if f1(x1(t)) is ξi1 is . . . fs(xs(t)) is ξis, THEN

E ˙̂x(t) = Aix̂(t)+ Biu(t)+ HiF̂tvs(t)+ Liεsum(t)

V̂ (t) = Dix̂(t)

γ̂ (ρc, u(t)) = C(ρc)V̂ (t)+ T (ρc)

εsum(t) =
∫ b

a
σmag(ρc)(γ̂ (ρc, u(t))− γ (ρc, u(t)))dρ

˙̂Ftvs(t) = −prey{0i1}F̂tvs(t)+ prey{0i2}εsum(t) (24)

where x̂(t) is the state estimation, εsum(t) is the residual,
F̂tvs(t) is the actuator fault estimation, Li is the observer gain
matrix, prey {0i1} and prey {0i2} are the estimation learning
rates consistent with the improved predation strategy and are
determined by Theorem 1. σmag(·) is a linear magnification
function that provides an accurate feedback signal to the
observer. εsum(t) satisfies

εsum(t) = ε(t)+1ε(t) (25)

ε(t) =
∫ b

a
σmag(ρ)(γ̂ (ρ, u(t))− γ (ρ, u(t)))dρ (26)

1ε(t) =
∫ b

a
σmag(ρ)(1γ̂ (ρ + c, u(t))−1γ (ρ + c, u(t)))

+ σmag(c)(γ̂ (ρ, u(t))− γ (ρ, u(t))

+1γ̂ (ρ + c, u(t))−1γ (ρ + c, u(t)))dρ (27)

where ε(t) and1ε(t) cannot be separated directly. ε(t) repre-
sents the residual without the measurement errors. Let

ex(t) = x̂(t)− x(t) (28)

etvs(t) = F̂tvs(t)− Ftvs(t) (29)

According to equations (22) and (28), the observation error
system is obtained as

Eėx(t) =
p∑
i=1

(ϕi,low + ϕi,up)[Aiex(t)+ Hietvs(t)

+Li(6 +16)Diex(t)− Jid(t)]

=

p∑
i=1

(ϕi,low + ϕi,up){[Ai + Li(6 +16)Di]ex(t)

+Hietvs(t)− Jid(t)}

=

p∑
i=1

(ϕi,low + ϕi,up){[Ai + Li6Di + Li16Di]ex(t)

+Hietvs(t)− Jid(t)} (30)

where

6 +16 =

∫ b

a
σmag(ρ + c)C(ρ + c)dρ

=

∫ b

a
(σmag(ρ)+ σmag(c))C(ρ + c)dρ

=

∫ b

a
(σmag(ρ)C(ρ + c)+ σmag(c)C(ρ + c))dρ

=

∫ b

a
σmag(ρ)C(ρ)dρ +

∫ b

a
(σmag(ρ)C̄(ρ, c)

+ σmag(c)C(ρ)+ σmag(c)C̄(ρ, c))dρ (31)

6 =

∫ b

a
σmag(ρ)C(ρ)dρ (32)

16 =

∫ b

a
(σmag(ρ)C̄(ρ, c)

+ σmag(c)C(ρ)+ σmag(c)C̄(ρ, c))dρ (33)

6 is the basis function integral matrix when the sensor initial
fault is not considered.

Similarly, the estimation error equation is obtained as

ėtvs(t) =
˙̂Ftvs(t)− Ḟtvs(t)

=

p∑
i=1

(ϕi,low + ϕi,up)[−prey{0i1}(etvs(t)+ Ftvs(t))

+ prey{0i2}(6 +16)Diex(t)]

=

p∑
i=1

(ϕi,low + ϕi,up)[−prey{0i1}etvs(t)

+ prey{0i2}(6 +16)Diex(t)− prey{0i1}Ftvs(t)]
(34)

Definition 1: The reference control input is defined as

m1(t) =
p∑
i=1

(ϕi,low + ϕi,up)[Ci1ex(t)+ Ci2etvs(t)] (35)

Theorem 1: When the proper dimension parameters Ci1,
Ci2, Ri, prey{0i1}, prey{0i2}, and λµ > 0(µ = 1, 2) are
determined, there exists a symmetric matrix P for all i =
1, . . . , q that satisfies

ETP = PTE ≥ 0 (36)
θ11 θ12 0 −PT Ji CT

i1

∗ −2prey{0i1} −prey{0i1} 0 CT
i2

∗ ∗ −λ21I 0 0
∗ ∗ ∗ −λ22I 0
∗ ∗ ∗ ∗ −I

 < 0 (37)

and the fuzzy observer gain is Li = PTRi, then error observa-
tion system (30) is robust stable and satisfies

‖m1(t)‖22 < λ21 ‖Ftvs(t)‖
2
2 + λ

2
2 ‖d(t)‖

2
2 (38)

where θ11 and θ12 are given by

θ11 =

p∑
i=1

(ϕi,low + ϕi,up)(AiP+ PTAi + DTi 6
TRTi

+DTi 16
TRTi + Ri6Di + Ri16Di) (39)
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θ12 =

p∑
i=1

(ϕi,low + ϕi,up)(PTHi + DTi 6
T prey{0Ti2}

+DTi 16
T prey{0Ti2}) (40)

Proof: Select the Lyapunov function candidate as

V1(t) = eTx (t)E
TPex(t)+ eTtvs(t)etvs(t) (41)

Assume V1(0) = 0 and combine (30)(34), the first deriva-
tive of V1(t) can be expressed as

V̇1(t)
= ėTx (t)E

TPex(t)+ eTx (t)E
TPėx(t)+ 2eTtvs(t)ėtvs(t)

=

p∑
i=1

(ϕi,low + ϕi,up){[(Ai + Li(6 +16)Di)ex(t)

+Hietvs(t)− Jid(t)]TPex(t)+ eTx (t)P
T [(Ai + Li(6

+16)Di)ex(t)+ Hietvs(t)− Jid(t)]+ 2eTtvs(t)ėtvs(t)

=

p∑
i=1

(ϕi,low + ϕi,up){eTx (t)[(Ai + Li(6 +16)Di)TP

+PT (Ai + Li(6 +16)Di)]ex(t)+ 2eTx (t)P
THietvs(t)

− 2eTx (t)P
T Jid(t)+ 2eTtvs(t)ėtvs(t)} (42)

Substitute (34) to (42), (43) can be derived as

V̇1(t)

=

p∑
i=1

(ϕi,low + ϕi,up){eTx (t)[(Ai + Li(6 +16)Di)TP

+PT (Ai + Li(6 +16)Di)]ex(t)+ 2eTx (t)P
THietvs(t)

− 2eTx (t)P
T Jid(t)+ 2eTtvs(t)[−prey{0i1}etvs(t)

+ prey{0i2}(6 +16)Diex(t)− prey{0i1}Ftvs(t)]}

=

p∑
i=1

(ϕi,low + ϕi,up){eTx (t)[(Ai + Li6Di + Li16Di)
TP

+PT (Ai + Li6Di + Li16Di)]ex(t)+ 2eTx (t)P
THietvs(t)

− 2eTx (t)P
T Jid(t)− 2eTtvs(t)prey{0i1}etvs(t)

+ 2eTtvs(t)prey{0i2}6Diex(t)

+ 2eTtvs(t)prey{0i2}16Diex(t)− 2eTtvs(t)prey{0i1}Ftvs(t)}

(43)

Based on (43), the robust performance indicator is derived
as

‖m1(t)‖22 − λ
2
1 ‖Ftvs(t)‖

2
2 − λ

2
2 ‖d(t)‖

2
2 + V̇1(t)

=

p∑
i=1

(ϕi,low + ϕi,up){[Ci1ex(t)+ Ci2etvs(t)]T [Ci1ex(t)

+Ci2etvs(t)]} − λ21F
T
tvs(t)Ftvs(t)− λ

2
2d

T (t)d(t)+ V̇1(t)

=

p∑
i=1

(ϕi,low + ϕi,up){eTx (t)C
T
i1Ci1ex(t)+ e

T
x (t)C

T
i1Ci2etvs(t)

+ eTtvs(t)C
T
i2Ci1ex(t)+ e

T
tvs(t)C

T
i2Ci2etvs(t)}

− λ21F
T
tvs(t)Ftvs(t)− λ

2
2d

T (t)d(t)+ V̇1(t)

=

p∑
i=1

(ϕi,low + ϕi,up)qT (t)81q(t) (44)

where

qT (t)

= [ eTx (t) eTtvs(t) FTtvs(t) dT (t) ] (45)

81=


311+CT

i1Ci1 312 + CT
i1Ci2 0 −PTJi

∗ −2prey{0i1}+CT
i2Ci2 −prey{0i1} 0

∗ ∗ −λ21I 0
∗ ∗ ∗ −λ22I



+


311 312 0 −PT Ji
∗ −2prey{0i1} −prey{0i1} 0
∗ ∗ −λ21I 0
∗ ∗ ∗ −λ22I

+CT
i3Ci3

(46)

In (46), Ci3, 311, and 312 satisfy

Ci3 = [Ci1 Ci2 0 0 ] (47)

311 = (Ai + Li6Di + Li16Di)TP+ PT (Ai
+Li6Di + Li16Di) (48)

312 = PTHi + DTi 6
T prey{0Ti2} + D

T
i 16

T prey{0Ti2} (49)

Applying the Schur lemma to inequality (37), we obtain
81 < 0. Therefore, the following inequality is obtained:

‖m1(t)‖22 − λ
2
1 ‖Ftvs(t)‖

2
2 − λ

2
2 ‖d(t)‖

2
2 + V̇1(t) < 0 (50)

Integrate both sides of inequality (50) over the interval
[0, T ]:∫ T

0
(‖m1(t)‖22 − λ

2
1 ‖Ftvs(t)‖

2
2 − λ

2
2 ‖d(t)‖

2
2 + V̇1(t))dt

=

∫ T

0
‖m1(t)‖22dt −

∫ T

0
λ21 ‖Ftvs(t)‖

2
2dt −

∫ T

0
λ22 ‖d(t)‖

2
2 dt

+V1(T )− V1(0) < 0 (51)

When T → ∞ and V1(T ) ≥ 0, inequality (51) can be
expressed as

‖m1(t)‖22 − λ
2
1 ‖Ftvs(t)‖

2
2 − λ

2
2 ‖d(t)‖

2
2 − V1(0) < 0 (52)

Therefore, the following conclusion can be obtained:

‖m1(t)‖22 < λ21 ‖Ftvs(t)‖
2
2 + λ

2
2 ‖d(t)‖

2
2 (53)

Theorem 1 is proved. �
Therefore, the designed observer can effectively estimate

actuator faults under the disturbance and sensor initial fault,
which create conditions for active FTC.

IV. COMPOUND FTC AND PREY STRATEGY
Based on the characteristics of compound faults with actuator
and sensor initial faults, an improved fusion variable param-
eter compensation algorithm is used to repair the systems.
Remark 2: The expected PDFs are generated by ground

tests without considering the sensor initial fault, but to sim-
plify the model, we use uniform basis function matrices and
compensate for the impact of this simplification by adjusting
the expected weights. The effect of the sensor initial fault on
the PDFs using B-spline functions is replaced by the effect
of expected weight adjustment on PDFs. The correspondence
between the two effects can be obtained through ground tests.
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When the B-spline functions are determined, according to
Remark 2, the output angle PDF shapes only depend on the
weights, so the PDFs tracking is converted into the weights
tracking. The expected PDFs are expressed as

γexpe = C(ρc)Vexpe + T (ρc) (54)

where Vexpe is the expected weight vector. The tracking errors
of PDFs E(ρc, u(t)) are defined as

E(ρc, u(t)) = Eftc = γ (ρc, u(t))− γexpe
= C(ρ + c)V (t)+ T (ρ + c)

−C(ρ + c)Vexpe − T (ρ + c)

= C(ρ + c)ev(t) (55)

where ev(t) = V (t)-Vexpe is the weight error vector. Obvi-
ously, if ev(t) converges to a sufficiently small constant, E(ρc,
u(t)) will have a similar convergence.
When faults exist, the designed controller ensures that

systems achieve the performance without fault and the output
PDFs accurately track the given distributions. System (22)
can be represented as

Ē ż(t)=
p∑
i=1

(ϕi,low+ϕi,up)(Āiz(t)+B̄iu(t)+H̄iFtvs(t)+d1(t))

(56)

where:

Ēi =
[
E 0
0 I

]
, Āi =

[
Ai 0
Di 0

]
, B̄i =

[
Bi
0

]
,

H̄i =
[
Hi
0

]
, d1(t) =

[
Jid(t)
−Vg

]
,

z(t) = [ xT (t) (
∫ t
0 (V (t)− Vexpe)dτ )

T ]T .

Assumption 3: A suitable dimension matrix M satisfies
B̄(t)M = H̄ (t).

The PDC fuzzy-prey adaptive FTC in the fault environment
is

u1(t) =
p∑
i=1

(ϕi,low + ϕi,up)(prey{�i} + 0i3eftc0i4)z(t)

− MFtvs(t) (57)

where: prey{�i} is the gain matrix that obeys the prey adap-
tive rules, and 0i3 and 0i4 are the compensation factors.
eftcsatisfies

eftc =
∫ b

a
σmag(ρc)Eftcdρ (58)

eftc contains the influence of the sensor initial fault on the
tracking errors of the output PDFs. 0i3 and 0i4 are introduced
to shield this effect. From the closed-loop dynamic systems
(56) and (57), (59) can be obtained as

Ē ż(t) =
p∑
i=1

(ϕi,low + ϕi,up){(Āi + B̄iprey{�i}

+0i3eftc0i4)z(t)+ H̃id2(t)} (59)

where H̃i = [−H̄i I ], d2(t) = [ eTtvs(t) d
T
1 (t) ]

T .

Definition 2: The system reference input is defined as

m3(t) =
p∑
i=1

(ϕi,low + ϕi,up)Ci6z(t) (60)

where Ci6 is a parameter matrix with proper dimensions.
Theorem 2:When λ4 > 0, proper dimension matrices Ci6

and Ni2 are determined, and there exists a matrix X2 > 0 for
all i = 1, 2, . . . , q that satisfies:

X2ĒT = ĒXT2 ≥ 0 (61)

4ii < 0, i = 1, 2, . . . , q (62)

4ij +4ji < 0, i < j ≤ q (63)

Then, the closed-loop system (59) is robust and stable and the
robust performance H∞ satisfies

‖m3(t)‖2 <
p∑
i=1

(ϕi,low + ϕi,up)λ4 ‖d2(t)‖2 (64)

where X2 = P−T2 , Ni2 = (prey{�i} + 0i3eftc0i4)XT2 , 4ij = ξ11 H̃i XCT
i4

∗ −λ23I 0
∗ ∗ −I

. In 4ij:

ξ11 = X2ĀTi + ĀiX
T
2 + N

T
j2 B̄

T
i + B̄iNj2 (65)

Proof: Select the generalized Lyapunov function candi-
date as

V2(t) = zT (t)ĒTP2z(t) (66)

Assume V2(0) = 0. Combining (59) and (61), the derivative
of V2(t) can be expressed as

V̇2(t)

= żT (t)ĒTP2z(t)+ zT (t)ĒTP2ż(t)

=

p∑
i=1

(ϕi,low + ϕi,up){[Āi + B̄i(prey{�i}

+0i3eftc0i4)]z(t)+ H̃id2(t)}TP2z(t)

+

p∑
i=1

(ϕi,low + ϕi,up)zT (t)PT2 {[Āi

+ B̄i(prey{�i} + 0i3eftc0i4)]z(t)+ H̃id1(t)}

=

p∑
i=1

(ϕi,low + ϕi,up)zT (t){[Āi + B̄i(prey{�i}

+0i3eftc0i4)]TP2 + PT2 [Āi + B̄i(prey{�i}

+0i3eftc0i4)]}z(t)+ 2zT (t)PT2

p∑
i=1

(ϕi,low + ϕi,up)H̃id2(t)

(67)
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When d2(t) = 0, it can be known from (62) and (63) that
the following inequality holds

p∑
i=1

(ϕi,low + ϕi,up){[Āi + B̄i(prey{�i} + 0i3eftc0i4)]TP2

+PT2 [Āi + B̄i(prey{�i} + 0i3eftc0i4)]} < 0 (68)

Hence V̇2(t) < 0. So, when d2(t) = 0, the closed-loop
system (59) has a large-scale asymptotic stability. If d2(t) 6=0,
(69) is obtained as

‖m3(t)‖2 − λ24 ‖d2(t)‖
2
+ V̇2(t)

=

p∑
i=1

(ϕi,low + ϕi,up)(zT (t)CT
i6Ci6z(t)

− λ24d
T
2 (t)d2(t))+ V̇2(t) = qT2 (t)S2q2(t) (69)

where

qT2 (t) = [ zT (t) dT2 (t) ] (70)

S2 =
p∑
i=1

(ϕi,low + ϕi,up)(
[
S̄11 PT2 H̃i
∗ −λ24I

]
+ CT

i7Ci7)

=

p∑
i=1

(ϕi,low + ϕi,up)
[
S̄11 + CT

i6Ci6 PT2 H̃i
∗ −λ24I

]
(71)

Ci7 = [Ci6 0 ] (72)

S̄11 = [Āi + B̄i(prey{�i} + 0i3eftc0i4)]TP2 + PT2 [Āi
+ B̄i(prey{�i} + 0i3eftc0i4)] (73)

Applying Schur’s lemma to inequalities (62) and (63),
we obtain: S2 < 0. Hence

‖m3(t)‖22 − λ
2
4 ‖d2(t)‖

2
2 + V̇2(t) < 0 (74)

Taking integral to both sides of the inequality (74):∫ T

0
(‖m3(t)‖22 − λ

2
4 ‖d2(t)‖

2
2 + V̇2(t))dt

=

∫ T

0
‖m3(t)‖22 dt −

∫ T

0
λ24 ‖d2(t)‖

2
2dt

+V2(t)− V2(0) < 0 (75)

Because T →∞⇒ V2(T ) ≥ 0, (75) can be written as

‖m3(t)‖22 − λ
2
4‖d2(t)‖

2
2 − V2(0) < 0 (76)

Finally the following conclusions can be obtained as

‖m3(t)‖2 < λ4‖d2(t)‖2 (77)

Theorem 2 is proved. �
Replacing x(t), eftc and Ftvs(t) in (57) with, and we can

obtain a practical PDC fuzzy-prey fusion adaptive tolerant
controller:

u1(t)
p∑
i=1

(ϕi,low+ϕi,up)(prey{�i}+0i3êftc0i4)ẑ(t)−MF̂tvs(t)

(78)

TABLE 1. Insensitive prey strategy.

TABLE 2. Ftc insensitive prey algorithm.

where

ẑ(t) = [x̂T (t)(
∫ t

0
(V̂ (τ )− Vg)dτ )T ]T ,

êftc =
∫ b

a
(γ̂ (ρc, u(t))− γexpe)dρ,

V̂ (t) =
p∑
i=1

(ϕi,low + ϕi,up)Di(x̂(t)+1x̂(t)).

The idea of prey strategy originates from the animal
hunting process on the grassland. Taking cheetah/antelope
as an example, there are three correspondences in the
predation process: cheetah (progressive, far) → antelope
(safe, static); cheetah (progressive, close)→ antelope (safe,
static) or (threat, run); cheetah (run, close) → antelope
(threat, run). The antelope can easily and efficiently copewith
the complex predation state in two ways. So the prey strategy
is a simple adaptive strategy. Replace cheetah with fault,
antelope with controller, Table 1 gives the corresponding
relationship in the insensitive prey strategy. Where �i1, �i2,
0i11, 0i21, 0i12, 0i22 are the LMI-compliant adaptive learning
rates, is a threshold that is approximately zero.
Remark 3: According to the characteristics of prey strat-

egy, the boundary state of judging threat from cheetah (slow
approach, close) corresponds to the boundary state inter-
val in which the controller determines the fault magnitude,
as shown in Table 1 and 2. The insensitive prey controller
determines that the faults in the interval have little effect and
hence do not change the learning rates. The sensitive prey
controller is the opposite.

The algorithm steps are as follows:
Step 1: Fault amplitude is less than or equal to κ , no fault,

parameters are set to �i1/0i11/0i21.
Step 2: Fault amplitude is larger than κ and less

than or equal to 0.1
∥∥x̂(t)∥∥2, incipient fault, parameters are

insensitive and set to �i1/0i11/0i21.
Step 3: Fault amplitude is larger than 0.1

∥∥x̂(t)∥∥2, large
value fault, parameters are set to �i2/0i12/0i22.
Step 4: Return to Step 1 without modifying content.
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Based on Table 1 and 2, (24) and (57) are improved to the
fuzzy-prey fusion adaptive estimation and FTC:

˙̂Ftvs(t) =
p∑
i=1

(ϕi,low + ϕi,up)(−prey{0i1}F̂tvs(t)

+ prey{0i2}εsum(t)) (79)

u1(t) =
p∑
i=1

(ϕi,low + ϕi,up)(prey{�i} + 0i3êftc0i4)ẑ(t)

−MF̂tvs(t) (80)

where prey{·} is the fusion adaptive functions designed
according to the fuzzy and prey strategies that satisfy:

prey{�i, 0i1, 0i2}

=

�i1, 0i11, 0i21,

∥∥∥F̂tvs(t)∥∥∥
2
≤ 0.1

∥∥x̂(t)∥∥2
�i2, 0i12, 0i22,

∥∥∥F̂tvs(t)∥∥∥
2
> 0.1

∥∥x̂(t)∥∥2 (81)

V. SIMULATION
The MIMO non-Gaussian stochastic systems can express
the control process such as multi-axis vibration control of
parallel servo systems, and stochastic attitude aircraft con-
trol. Referring to the general hypersonic vehicle attitude
models, We select a 3-input 3-output non-Gaussian stochas-
tic system to verify the algorithms presented in this paper.
The B-spline functions are set as
φβ=1(ρ1)=φβ=2(ρ2)=φβ=3(ρ3) = Z1I1+Z4I2+Z7I3
φβ=2(ρ1)=φβ=1(ρ2)=φβ=1(ρ3) = Z2I2+Z5I3+Z8I4
φβ=3(ρ1)=φβ=3(ρ2)=φβ=2(ρ3) = Z3I3+Z6I4+Z9I5

(82)

where Z1 = 0.5(ρl + cl−2)2,Z2 = 0.5(ρl + cl − 3)2,Z3 =
0.5(ρl + cl −4)2,Z4 = −(ρl + cl)2+7(ρl + cl)−11.5,Z5 =
−(ρl + cl)2+ 9(ρl + cl)− 19.5,Z6 = −(ρl + cl)2+ 11(ρl +
cl)−29.5,Z7 = 0.5(ρl+cl−5)2,Z8 = 0.5(ρl+cl−6)2,Z9 =
0.5(ρl + cl − 7)2, cl satisfies: cl = 0.05, and IO satisfies:

IO =

{
1 ρl ∈ [O+ 1,O+ 2]
0 otherwise.

where O = 1, 2, 3, 4, 5. The ideal initial values are: xinitial =
[0.10.10.1]T . Referring to system (22) and adding the com-
pound faults with the actuator fault and the sensor fault,
the simulation system can be obtained. where the specific
values of parameter matrices are as follows:

E =

 1 0 0
0 1 0
0 0 0

 , A1 =

−1 2 0
0 −2 7
0 5 6

 ,
A2 =

−1 1 0
2 −1 0
0 0.6 2

 , B1 =

 1 1 −0.01
0 2 −0.02

0.002 0.005 0.1

 ,
B2 =

 1.9 1.9 −0.1
0 2 −0.2

0.01 0.01 0.1

 , H1 =

 0.001 1 0
1 0.2 0

0.001 0.003 1

 ,

FIGURE 1. Disturbance.

H2 =

 0.001 1 0.001
1 0.2 0.003
0 0 1

 , J1 =

 0.03 0.03 0.03
0 0 0

0.23 0.23 0.23

 ,
J2 =

 0.06 0.06 0.06
0 0 0

0.03 0.03 0.03

 , D1 = D2 =

[
0.1 0 0
0 0.1 −1

]
.

Setting the prerequisite variable of Type-II fuzzy system as
x2, the membership functions are:
µξi1,low(x2 = 0.2) = exp[−((x2 + 0.5)/0.44)2]
µξi1,up(x2 = 0.2) = exp[−((x2 + 0.5)/0.36)2]
µξi1,low(x2 = 0.8) = 1− exp[−((x2 + 0.5)/0.36)2]
µξi1,up(x2 = 0.8) = 1− exp[−((x2 + 0.5)/0.44)2]

Define two fuzzy rules: Rule 1: IF x2 is approximately
0.2, THEN: i = 1, {A1 B1 H1 J1 D1}; Rule 2: IF x2 is
approximately 0.8, THEN: i = 2, {A2 B2 H2 J2 D2}.
According to the definition of the actuator time-varying

step fault, the value of Ftvs(t) is

Ftvs(t) = [F1tvs(t) F2tvs(t) F3tvs(t)]T (83)

F1tvs(t) = F2tvs(t) = F3tvs(t) (84)

F1tvs(t) =

{
F1σ (t), t ∈ (tσ1, tσ2]
0, otherwise

(85)

Considering σ0 = 2, and set the fault window intervals,
the fault assignment is given as

F1tvs(t) =


F11(t), t ∈ (20s, 80s]
F12(t), t ∈ (100s, 160s]
0, otherwise

F11(t) =

{
F11,inc(t), t ∈ (20s, 40s]
F11,non−inc(t), t ∈ (40s, 80s]

F12(t) =

{
F12,inc(t), t ∈ (100s, 120s]
F12,non−inc(t), t ∈ (120s, 160s]

F11,inc(t) = F12,inc(t) = 0.2,
t ∈ (20s, 40s], (100s, 120s]

F11,non−inc(t) = F12,non−inc(t) = 1.2,
t ∈ (40s, 60s], (120s, 140s]

F11,non−inc(t) = F12,non−inc(t) = 1,
t ∈ (60s, 80s], (140s, 160s]
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FIGURE 2. Estimation for actuator faults. (a) F1tvs(t). (b) F2tvs(t).
(c) F3tvs(t).

TABLE 3. Tracking performance indicators for rudder faults.

The deviation disturbance d(t) satisfies: dg = 0.045+
randn (0.015, 2000), acquisition time: 0.1s. Fig. 1 shows the
curve.

In Theorem 1, setting C11 = C12 = [0.10.10.1],C21 =

C22 = 0.1 and λ1 = λ2 = 0.2, we can
obtain: P = [0.0587 − 0.04750;−0.04750.24190; 00 −
0.4375], L1 = [2.3495; 2.5783;−0.0664],L2 =

[3.1255; 2.9289;−0.0890]. The fuzzy-prey fusion adaptive
parameters are: 0111 = 0.0043, 0121 = 0.0055, 0211 =

TABLE 4. Tracking performance indicators for output pdfs.

FIGURE 3. Compensation for output PDFs. (a) γ1. (b) γ2. (c) γ3.

2.0135, 0221 = 2.0148, 0112 = 0.0043, 0122 =

0.0033, 0212 = 2.0135, 0222 = 2.0111. The system state
and its estimated initial values are [0.1 0.1 0.1]T . Setting
the desired weight vector Vexpe = [0.20.42], the switch-
ing threshold κ = 0.003, λ3 = 0.2, C14 = C24 =

[0.10.10.10.10.1]. Fig. 2 shows the fault estimation results.
The elements of the parameter matrices are not equal, and
the tracking curves of three angles are also different. The
time-varying step fault is divided into four time periods:
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FIGURE 4. Three-dimensional attitude angle PDFs. (a) γ1. (b) γ2. (c) γ3.

incipient amplitude time period T1 (20 s-40 s, 100 s-120 s),
large amplitude time periods T2 (40 s-60 s, 120 s-140 s)
and T3 (60 s-80 s, 140 s-160 s), intermediate fault-free
period T4 (80 s-100 s). Table 3 summarizes the tracking
performance indicators of the three actuator faults in four
periods, including static error ET1,fd , ET2,fd , ET3,fd and ET4,fd
and response time TT1,fd , TT2,fd , TT3,fd and TT4,fd .
Fig. 2 shows that the estimation algorithm can effectively

track the three elements of the actuator fault vector.
According to Theorem 2, the gain matrices can be deter-

mined including the parameters that are freely adaptable
and satisfy the calculation results: �11, �12, �21, �22,
0i3 and 0i4. The dimension choice of 0i3 and 0i4 can
solve dimensional matching problems. The gain matrices
are solved by LMI and continuous test as follows where
semicolon represents a new matrix row: �11 = [−2.1678 −
1.1623 − 1.7077 − 3.2486 − 3.2489;−2.1678 − 1.1623 −
1.7077 − 3.2486 − 3.2489;−2.1678 − 1.1623 − 1.7077 −
3.2486 − 3.2489], �12 = [1.6835 − 3.9531 − 0.2425 −
2.1978 − 2.0785; 1.6835 − 3.9531 − 0.2425 − 2.1978 −
2.0785; 1.6835 − 3.9531 − 0.2425 − 2.1978 − 2.0785],
�21 = [−2.1700 − 3.4030 − 4.7649 − 7.0740 −
7.0742;−2.1700 − 3.4030 − 4.7649 − 7.0740 − 7.0742;

−2.1700 − 3.4030 − 4.7649 − 7.0740 − 7.0742], �22 =

[1.1239 − 3.7655 − 0.3124 − 2.2248 − 2.1859; 1.1239 −
3.7655 − 0.3124 − 2.2248 − 2.1859; 1.1239 − 3.7655 −
0.3124 − 2.2248 − 2.1859], 0i3 = 1, 0i4 = [−0.8301 −
0.2044 − 1.1797 − 0.5332 − 0.5332]. Table 4 summarizes
the tracking performance indicators of three output PDFs in
four periods, including static error ET1,ftc, ET2,ftc, ET3,ftc and
ET4,ftc and response time TT1,ftc, TT2,ftc, TT3,ftc and TT4,ftc.
Static error: the maximum deviation of the actual three-
dimensional PDF surface from the ideal three-dimensional
PDF surface after stabilization, response time: the corre-
sponding time of the earliest time profile function that any
deviation between actual and ideal PDF values is in 3%.

Table 4 shows that the performance index of time period
T2 is the worst but still fast and accurate and remains within
the engineering allowable range. Fig. 3 shows the results of
FTC in T2.

Figs. 3(a)-(c) show the tracking results of the three output
PDFs at t = 55 s. Since the shape of the second fault
window is same as that of the first one, only the first one is
shown. In order to fully display the tracking results of PDFs,
Figs. 4(a)-(c) show the three-dimensional tracking results of
FTC. It is obvious that, regardless of whether there is a fault,
the output PDFs can accurately track the given PDFs at any
time.

VI. CONCLUSION
This paper considers systems with multiple stochastic out-
puts, singularity and disturbance to establish non-Gaussian
stochastic systems. An active-passive hybrid FTC scheme is
designed for the compound faults with actuator and sensor
initial faults. Using the improved adaptive PDC FTC strate-
gies to control the systems is a novel and practical strategy.
Both the estimation observer and FTC systems are proven to
be robust and stable. In the actuator fault estimation and com-
pound FTC algorithms, the adaptive learning rates fuse fault
amplitude and fuzzy premise variable information, ensure
reliable and flexible control. Simultaneously the passive com-
pensation factors effectively shield the sensor initial fault.
The effectiveness of fault estimation and FTC are verified by
the simulation. Finally, the output PDFs match the expected
PDFs. This technique can address the issues with control of
multiple stochastic output systems such as stochastic attitude
hypersonic flight vehicles and aeroengine plume.
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