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ABSTRACT Machine translation refers to a fully automated process that translates a user’s input text into a
target language. To improve the accuracy of machine translation, studies usually exploit not only the input
text itself but also various background knowledge related to the text, such as visual information or prior
knowledge. Herein, in this paper, we propose a multimodal neural machine translation system that uses both
texts and their related images to translate Korean image captions into English. The data in the experiment
is a set of unlabeled images only containing bilingual captions. To train the system with a supervised
learning approach, we propose a weak-labeling method that selects a keyword from an image caption
using feature selection methods. The keywords are used to roughly determine an image label. We also
introduce an improved feature selection method using sentence clustering to select keywords that reflect
the characteristics of the image captions more accurately. We found that our multimodal system achieves an
improved performance compared to a text-only neural machine translation system (baseline). Furthermore,
the additional images have positive impacts on addressing the issue of under-translation, where some words
in a source sentence are falsely translated or not translated at all.

INDEX TERMS Human–computer interaction, multi-layer neural network, natural language processing,
image classification, multimodal neural machine translation, weak label.

I. INTRODUCTION
Recent advances in deep learning have made it possible to
handle a number of artificial intelligence-related tasks such
as natural language processing (NLP), computer vision, and
signal processing. Machine translation, commonly known as
MT, is one of the most challenging NLP tasks and is best
addressed with a deep-learning approach. MT usually refers
to automatic translation for texts from a source (original)
language into a target language without human intervention.
Traditional approaches to MT are generally divided into two
categories: rule-based approaches and statistical approaches.

The rule-based approach was the very first solution devel-
oped in the field. A rule-based MT system [1], [2] strongly
depends on human-generated linguistic knowledge and there-
fore can precisely translate the input sentence if the prede-
fined rules are exactly applied to it. The key limitations of the
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approach are the necessity of the expertise needed to create
the rules and the vast number of rules and linguistic resources
required for the system.

On the other hand, the statistical approach [3]–[6] is data-
driven, requiring only a large bilingual corpus. This means
that linguists are not required to develop the translation rules.
In addition, the statistical model can generate various types
of translations for one sentence. However, certain core issues
still need to be addressed: data sparseness and an inability
to capture the overall semantic information contained in a
sentence.

However, several neural approaches [7]–[11] to MT are
good at learning semantic representations and modeling
a wide context without severe data sparseness. At first,
the translation task can be formulated in a sequence-to-
sequence framework [12], [13] consisting of two neural net-
works called an encoder and a decoder. An input sentence
is represented by a single vector using the encoder. This
vector, called the ‘‘context vector,’’ is considered to imply the
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overall meaning of the sentence. Then, for every decoding
step, the decoder determines a word based on the context
vector and the words that were generated in the previous step,
ultimately generating one translated sentence. Furthermore,
since the neural-based approach considers the whole context
of the sentence, it can solve the problem of word reorder-
ing that occurs frequently in translation of sentences with
complicated structures. The performance of this approach
with regards to long sentences has proven to be robust if the
encoder and the decoder consist of recurrent neural networks
(RNNs) using long short term memory (LSTM) [14] or a
gated recurrent unit (GRU) [15].

However, serious problems remain in neural-based
MT (NMT) systems, such as over-translation and under-
translation [16]. Over-translation refers to when some words
are duplicated in the translation of the source sentence. In
contrast, under-translation occurs when words in the source
sentence aremistakenly or falsely translated. Error analysis of
the translations generated from conventional attention-based
NMT models [17], [18] has shown that the occurrences of
under-translation are comparatively higher than those of over-
translation [16]. Therefore, we have studied amultimodalMT
system that utilizes supplementary resources in the form of
images, going beyond the existing text-only MT studies to
overcome under-translation issues and to improve the quality
of the translations. Recent studies have appliedmultimodality
to MT and can be found in the Workshop on Statistical
Machine Translation 2016 (WMT16) shared task [19]. The
task uses data that extends the Flickr30KEntities dataset [20],
where the entities in the image are labeled. Each image has
its own caption, each of which is a source sentence (e.g.,
in Korean) and a target sentence (e.g., in English) that a
person translated.

However, the WMT shared task is constrained by the fact
that each image must have its own label concerning the
object that appears in the image. Labels are necessary to train
the model to generate feature representations for the image
with a supervised learning approach. For resource-poor lan-
guages likeKorean, bilingual caption datawith object-labeled
images are scarce. Therefore, in this paper, we propose a
multimodal NMT system that translates Korean captions
into English using unlabeled images. The main contributions
are as follows: To the best of our knowledge, we are the
first to propose a multimodal MT from Korean to English.
In addition, we propose a weak-labeling method to roughly
determine a label on the image as a keyword chosen from
its caption using a feature selection methodology to train
the convolution neural network (CNN) used to obtain infor-
mation from images with a supervised learning approach.
Moreover, we also propose an improved feature selection
method using a K-means algorithm to select keywords that
can distinguish the semantic differences between captions as
much as possible.

The remainder of this paper is as follows. Section II
briefly discusses the multimodal NMT and the two feature
selection methods. Section III describes the methodology for

determining weak labels. Section IV introduces our proposed
multimodal NMT system. Section V discusses our exper-
imental setup and analyzes our results. Finally, we draw
conclusions in Section VI.

II. RELATED WORK
This section consists of two parts. The first briefly introduces
themultimodal NMT and the second describes the two feature
selection methods, bag-of-words (BoW) and term frequency
and inverse document frequency(TF-IDF).

A. MULTIMODAL NEURAL MACHINE TRANSLATION
Motivation to combine multimodality with translation tasks
arises from a considerable amount of work on visual recogni-
tion and image caption generation. Visual recognition detects
an object in an image, and it has been actively studied with
research efforts like the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [21]. In this challenge, deep
CNNs such as VGG19 [22] and ResNet [23] showed con-
siderable performances for obtaining effective visual features
from images.

Image caption generation refers to research on how
to generate a description of an image from the image
itself [24], [25]. The task is generally approached with a
sequence-to-sequence framework. The encoder mainly uses
VGG19, which demonstrated a state-of-the-art performance
in ILSVRC for extracting information from input images.
The decoder usually consists of an RNN with an attention
mechanism. These two types of studies provide a sufficient
foundation for combining multimodality with MT.

Based on the results of the aforementioned studies,
there have been several research efforts that incorporated
text-based MT with visual information. First, there is a
WMT shared task [19], which is a competition focused
on multimodal MT that analyzes how image functions
improve translation quality. Huang et al. [26] proposed an
attention-based multimodal MT model that can incorporate
two types of visual features extracted from VGG19 and
region-based CNN [27]. Calixto et al. [28] proposed an
attentive encoder-decoder variant with a conditional GRU
https://github.com/nyu-dl/ dl4mt-tutorial/blob/master/docs/
cgru.pdf. The system in this study adds an attention mech-
anism to the image, whereas the standard NMT model only
includes an attention structure for text. In previous WMT
tasks, purely neural-based multimodal systems did not show
improvement compared with text-only NMT or statistical
MT models. Notably, visual information could not fully con-
tribute to the translation quality. However, this study showed
reasonable performance improvement for multimodal NMT
for the first time.

Nonetheless, the method in this study is still constrained by
its strong reliance on a large-scale parallel corpuswith labeled
images. CNNs are widely used to learn meaningful represen-
tation of the images with object labels to obtain meaningful
information [22], [29]. However, according to a study by [30],
not all images have labels that can be determined to be explic-

VOLUME 7, 2019 54043



Y. Heo et al.: Multimodal Neural Machine Translation With Weakly Labeled Images

itly true, even if the images used in the benchmark set are
human-annotated. The image labels tend to be determined by
objects within the image with high importance. The images
in this work have no proper labels. Therefore, we define a
‘‘weak label’’ on the image as a keyword chosen from its cap-
tion and propose a weak-labeling method using two feature
selection methods, BoW and TF-IDF, which are described in
the following subsection.

B. FEATURE SELECTION TECHNIQUES IN NATURAL
LANGUAGE PROCESSING
The quality of features for data representation has a critical
impact on the performance of machine-learning-based mod-
els. Even for different kinds of tasks that use the same data,
the types of feature must be designed to suit the specific
task’s purpose. Also, a large number of features that repre-
sent the data does not necessarily guarantee a high model
performance, and it can sometimes even cause performance
degradation. Therefore, selecting which features will repre-
sent the data and which features are suitable for solving a
given task has always been an important research topic in
machine learning. In this section, we introduce the BoW and
TF-IDF techniques, which are frequently used in the NLP
domain.

The BoW method is a way of representing a text (sen-
tence or document) based on frequency. A text can be defined
as a set of frequencies of words within the text, or a so-
called ‘‘bag-of-words.’’ Then, the degree of occurrences of
each word is used as a feature. This technique assumes that
the more frequently a word appears in a text, the more infor-
mation it represents. Therefore, the high-frequency words are
selected as features that characterize the document. With its
ease of understanding, this method has seen great success in
NLP tasks such as document classification [31] and email
filtering [32].

Although term frequency has its strengths, its premise can
also be regarded as a significant weakness. For example,
common words like articles or pronouns are almost always
terms with the highest frequencies in the text. Consequently,
the method comes to an inappropriate conclusion that such
words are the features that principally characterize the text.
To address this issue, a new approach called TF-IDF [33]
has been proposed that integrates term frequency (TF) with
an additional factor called the inverse-document frequency
(IDF).

III. WEAKLY LABELED IMAGES FOR TRAINING A
CONVOLUTIONAL NEURAL NETWORK
The proposed model consists of two parts, as shown
in Fig. 1: a CNN and an attention-based sequence-to-
sequence (Seq2Seq) network [17]. The CNN is used to
obtain visual features from the input images. Specifically,
we use a 19-layer VGG network (VGG19) [22], which dis-
played a considerable performance in the ImageNet challenge
in 2014. The attention-based Seq2Seq model incorporates
a source sentence with visual information extracted from

FIGURE 1. Abstract description of the proposed model.

the VGG19 and generates a target sentence. In this section,
we only concentrate on the VGG19.

The primary purpose of the VGG19 is to classify an
object appearing in the image. However, the overall training
procedure for the model is to calculate the cross-entropy loss
function between the output from the decoder and its corre-
sponding human-translated sentence. If the CNN is trained
using the calculated loss from the translated result, the infor-
mation of the propagated loss can be considered ambiguous
from the viewpoint of the CNN, which must generate the
features fully implying the input image. This is because the
errors both in the translation process and in the image feature
generation are mixed. In order to generate better features
from the image, the VGG19 is pre-trained with a supervised
learning approach for object classification.

However, the images in the dataset have no proper object
labels. Instead, the data is composed of a set of images,
each of which has only two pairs of captions, one in Korean
and one in English. Therefore, we propose a weak-labeling
method, wherein the label on an image is roughly determined
by a keyword from its caption. The keyword is defined as
the best descriptive word in the current caption compared to
other captions. The keyword is chosen by the feature selection
techniques in the NLP. The following sections describe this
weak-labeling method, which uses the two feature selec-
tion techniques described previously, BoW and TF-IDF. In
addition, we further propose an improved feature selection
technique using a K-means clustering algorithm to select
keywords by maximizing the semantic differences between
different image captions.

A. WEAK LABELING METHOD WITH FEATURE SELECTION
A label for an image is generally determined by the object
within the image that contains the largest amount of infor-
mation. Taking Fig.2 as an example, the objects in the image
can include ‘‘giraffe,’’ ‘‘tree,’’ and, to some extent, ‘‘forest’’
when bound to a set of trees. Between these three objects,
the representative object in the image is ‘‘giraffe,’’ since it
represents the largest amount of information in the image.
Therefore, the label for the image in Fig.2 can be determined
as ‘‘giraffe.’’ The image annotation becomes clearer upon
considering the English captions. The key subject that the
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FIGURE 2. An example of image annotations.

two English captions share is ‘‘giraffe,’’ which is the most
important keyword in each caption.

However, for all images, it is not possible to select one
representative object from the image as the label, like it was
possible to do in Fig.2. According to [30], some of the human-
annotated labels used in the benchmark set have considerable
ambiguity depending on the subjectivity of the person. There-
fore, when determining a label from any of the objects in
an image, the global visual feature obtained from CNN can
still be considered as representing the entire image if it can
guarantee the validity to some degree.

In this paper, the keyword from the image caption is
determined to be the label of the image. Since captions
typically describe the most represented object in an image,
it can be assumed that the keyword of the caption is gen-
erally a representative object of the image. The method for
selecting the keyword from all the words in the caption
is based on BoW and TF-IDF, the two kinds of feature-
selection methodologies used in NLP. Likewise, a label that
is heuristically generated and not human-annotated is called
a ‘‘weak label,’’ and an image that has a weak label is called
a ‘‘weakly labeled image.’’ Next, to understand the weak-
labelingmethod, wemust understand how to select a keyword
among all the terms in a caption using feature selection.

Prior to the introduction of the methodology, we must
first define a feature set that expresses a caption to apply
the feature selection method. One of the critical indicators
for deciding the quality of caption translation is whether the
objects in the image described in the caption are completely
represented or not. Thus, the keyword of the caption is very
likely to be one of the objects in the image. In this case,
objects are mostly nouns. Therefore, in this paper, we define
a feature set representing a caption as all the nouns in all
the captions in the training data. In addition, the label on the
image is defined as the keyword of the target sentence of the
caption, not of the source sentence. The reason for this is to
learn very direct information related to the translation itself,
whose anticipated result is the target language caption.

The following sections describe the weak labeling method
using BoW and TF-IDF for feature selection.

1) KEYWORD SELECTION USING BAG-OF-WORDS
BoW is a feature selection method based on the frequency of
each feature. Thus, the weight of each feature is determined
by the frequency of the feature, where the feature with the
highest frequency is evaluated as a crucial factor. Using BoW
to label an object on an image proceeds as follows.

First, among the entire feature sets, the frequency of noun
words(features) appearing in the target description is calcu-
lated. Then, the term with the highest frequency is set as a
keyword representing the caption, and finally, the keyword is
set as a weak label on the image. It is very rare in this field
to find a word appearing more than once in a caption, except
in compound sentences containing various modifiers. In other
words, most features exist only once. Therefore, in this paper,
we concatenate two target captions for one image and then
calculate the feature vector using BoW.

Suppose that a feature set is defined as a 5-dimensional
vector consisting of ‘‘giraffe,’’ ‘‘forest,’’ ‘‘trees,’’ ‘‘sky,’’ and
‘‘water.’’ Then, if the feature vector has the following ele-
ments: ‘‘giraffe’’: 2, ‘‘forest’’: 1, ‘‘trees’’: 2, and ‘‘sky’’ and
‘‘water’’: 0, then either ‘‘giraffe’’ or ‘‘trees’’ can be used as
the label on the image under a uniform distribution.

2) KEYWORD SELECTION USING TERM
FREQUENCY-INVERSE DOCUMENT FREQUENCY
TF-IDF is a feature selection method widely used in the
information retrieval domain, such as for document classi-
fication [34], [35], and is generally used to calculate the
weights of the words constituting a document. The TF-IDF of
a word is defined as the product of term frequency and inverse
document frequency of a word, which takes into account
both the frequency of its occurrence in the document and the
amount of information that theword containswithin the entire
document set. In this paper, TF-IDF is used as a method for
selecting keywords from captions.

In this work, images have two different captions, each of
which is represented bilingually. Like the document classifi-
cation task, an image is defined as a category and is assumed
to be a document composed of two captions. Then, an image
can be expressed as a set of TF-IDF values for the entire
feature set, which is defined as all the nouns of all the captions
in the training data. The TF for each feature is defined as
the frequency of its occurrence in the image. The IDF for
each feature is inversely proportional to the number of other
images containing the feature. Thus, the TF-IDF for each
value is defined by the below equations. The feature with the
highest TF-IDF is selected as a representative keyword, and
finally, it is defined as the weak label of the image.

TF− IDF (f,m) = TF (f ,m) ∗ IDF(f ,M ) (1)

TF (f,m)= log(1+freq of feat(f) in img(m)) (2)

IDF (f,M) = log(
|M |

1+ {m ∈ M | f ∈ m}|
) (3)

where f denotes the features representing the image, m
denotes an image, and |M | represents the number of all the
images in the training data.

The difference between BoW and TF-IDF comes from the
IDF. The IDF is defined by (3) and refers to the amount
of information that a feature contains within the whole
image set. If a feature occurs frequently over the whole
image set, the feature cannot be regarded as a key feature
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that characterizes the current image. That is, the amount of
information that the feature has is small over the entire set of
images, and its IDF value becomes small. Therefore, its TF-
IDF value is small if its TF value is similar to that of other
features. Likewise, a feature with a higher TF-IDF value can
be interpreted as a distinctive feature representing the current
image.

B. AN IMPROVED FEATURE SELECTION METHOD WITH
SENTENCE CLUSTERING BY K-MEANS ALGORITHM
In general, when using TF-IDF for tasks such as document
classification, the number of categories is only about a dozen.
However, in this paper, since one image is defined as one cate-
gory, the total number of categories is 7,500, which is extraor-
dinarily large compared with other tasks. Therefore, when
calculating the IDF using (3) in section III.A.2, the possibility
that a feature exists in other images is considerably high,
which causes the denominator of the IDF value to increase.
As a result, most of the features of the image have IDF values
of almost zero. Thus, the TF-IDF values become extremely
zero. That is, such features become meaningless, resulting in
a failure to select a differentiated keyword. Therefore, in this
paper, we propose an improved TF-IDF calculation method
by grouping semantically similar captions into one cluster
using a K-means algorithm [36] and redefining one cluster
as one category.

First, the TF value of each feature is defined as the fre-
quency of each feature in an image, as in the previousmethod.
However, the IDF value is defined to be inversely propor-
tional to the number of clusters containing the feature, not to
the number of images. The TF-IDF value of all the features
for an image can be calculated as shown in (4) below. Then,
the feature with the largest TF-IDF value is selected as the
representative keyword and defined as the weak label of the
image. The improved TF-IDF calculation method proposed
in this paper is as follows:

TF− IDF (f,m,C) = TF (f ,m) ∗ IDF(f ,C) (4)

TF (f,m)= log(1+freq of feat(f) in img(m))

(5)

IDF (f,C) = log(
|M |

1+ {m ∈ C| f ∈ c}|
) (6)

where f denotes the features representing the image, m
denotes an image, c denotes a cluster, and |M | is the number
of images in the entire clusters.

To apply the improved TF-IDF method, clusters between
semantically similar captions should be processed in advance.
First, a sentence embedding model is required to express
a caption as a single vector. The sentence embedding of a
caption is defined as the average word embeddings of each
word constituting the caption. Assuming a caption to be a set
of words with length T , a sentence-embedding vector (ES) for
the caption can be represented as follows:

ES =
1
T

T−1∑
i=0

Ewi =
1
T
( Ew0 + Ew1 + . . .+ EwT−1) (7)

where Ewi denotes a word-embedding vector for the ith word
in a caption and ES denotes the sentence-embedding vector for
the caption. The pre-trained Glove [37] is exploited for the
embedding of words.

Next, sentence-embedding vectors for each caption are
grouped into clusters with semantic similarity using a
K-means algorithm.We set the number of clusters to 20 since
the performance was robust. The experimental results are
shown in SectionV.C. Thus, captionswith semantic similarity
are grouped into one cluster, and eventually new categories
can be redefined in cluster units.

The improved IDF calculation using (6) preserves the
amount of information that each feature has over the whole
image set as in the conventional IDF calculation. In addition,
the number of categories to be classified is adjusted to the
number of clusters grouped together by semantically similar
captions to compensate for the problem of extremely small
IDF values, resulting in reasonable IDF values for features.
As a result, the improved TF-IDFmethod can select keywords
that better distinguish the characteristics of captions with
different meanings.

C. PRE-TRAINING
We obtained three supervised VGG models that were trained
independently with weakly labeled images generated by three
feature selection methods. The total numbers of weak labels
on the training images generated by each method were 163
(BoW), 757 (TF-IDF), and 1020 (improved). All the layers
in the VGG19 models, except the softmax layers, which are
dependent on the number of weak labels in the image, were
initialized with parameters trained by ImageNet. The softmax
layers were designed to match the number of weak labels in
the training data. Then, each of the VGG19 models can be
trained with a supervised learning approach to predict weak
labels for the input images.

IV. NETWORK ARCHITECTURE FOR MULTIMODAL
MACHINE TRANSLATION
In this section, we propose a multimodal NMT system
that exploits the information from the image as an addi-
tional resource when translating the source language cap-
tion into the target language caption. As shown in Fig.3,
the proposed model consists of two parts. One is a 19-layer
VGG network (VGG19) pre-trained with the weakly labeled
images mentioned in the previous section, which con-
tributes to the creation of additional resources from the
image needed for translation. The other is an attention-based
sequence-to-sequence model that includes an encoder with
two additional cells added to the conventional attention-based
models [17] to combine additional information generated
from the VGG19 with the text. One of the additional cells,
called the image encoding cell, integrates the global visual
features of the image with the encoder. The other, called the
object encoding cell, feeds into the model a set of words
that are highly anticipated to be generated when translat-
ing the source-language caption. As a result, the system
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FIGURE 3. Network architecture for multimodal neural machine translation. Attention mechanism in the decoder is omitted for clarity.

is more likely to capture the words that the existing NMT
model [17], [18] fails to generate, thereby improving the
quality of the translation. The following sections describe
the VGG19, the three encoding cells, and the attention-based
decoder.

A. CONVOLUTIONAL NEURAL NETWORK FOR
EXTRACTING INFORMATION FROM IMAGES
TheVGG19 in Fig.3 has two roles: one is to generate a feature
vector that represents the image, and the other is to generate
the label of the image to be directly used as the keyword for
the sentence to be translated.

The VGG19 is a deep CNN that includes 16 convolu-
tional layers, 5 max-pooling layers, and 2 fully connected
layers. It can effectively learn rich feature representations
from images [22]. In this work, the global visual features for
each image are represented by a 4096-sized feature vector
extracted from the so-called fc7 VGG19 layer. Then, this

vector is fed into the encoder, especially the image encoding
cell explained later.

Next, the label that the VGG19 generates for the image
is considered as the keyword of the target caption because
the VGG19 is trained with the weak labels, as described
in Section III. Therefore, the output of the VGG19 is the
most important word information for translation, which is
expected to improve the translation performance. Then, these
additional translation hints are fed into the encoder.

B. TEXT ENCODING
Korean sentences are generally embedded in the encoder
as one of three units: eojeol (Korean spacing unit), mor-
pheme, or syllable. Fig.3 includes a text encoding cell that
encodes the Korean caption tokenized into morpheme units.
Given an input X as a source sentence of length T , where each
token consists of a word-embedding vector with dimension
E , a bi-directional RNN produces the two final hidden states
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(
←

h1, EhT ) by iteratively reading the input sequence X in a
forward and backward fashion. Then, the final context state
( Ehe) in the text encoding is computed by the concatenation of
the two, followed by one projection layer to be compatible
with the hidden size (D) of the encoder.

Ehe = We

[
→

h T :
←

h 1

]
+ be (8)

where We and be are the weights and bias for the projection
layer, respectively.

C. IMAGE ENCODING
The final text encoding state ( Ehe) can be regarded as the
initial state of the image encoding cell, as shown in Fig.3. As
mentioned before, the global image features( Evim) are defined
as the 4096-size vector in the fc7 layer of VGG19. Then,
the cell reads the global visual features corresponding to the
current caption and incorporates them with the previously
encoded source caption per (9).

Ehe1 = f (Wim Evim, Ehe) (9)

where f is the RNN (e.g., LSTM or GRU) and Wim is a
transformation matrix to project image features into the same
dimensionality as the word-embedding vector.

D. OBJECT ENCODING CELL
In the previous two encoding steps, the encoder obtains infor-
mation about the text and the image as a whole. However,
the global visual information has a weakness. Since the global
visual features from the fc7 layer fully contain the informa-
tion from the image, it is reasonable to think that the features
could provide a better basis for solving under-translation than
solely relying on the text information. However, much of the
image information is implicitly used for translation, since
the image feature is expressed as a 4096-dimensional vector
and fed into the RNN cell at one time. This is considerable
compared with the fact that the information for each word in
the target caption is compactly stored into the RNN cell as a
300-dimensional vector representation. As a result, the effect
of the image information, which is necessary for the trans-
lation, is weakened, and in terms of translation, it becomes
noise, as can be shown in the experimental results.

However, let us consider the label that the VGG19 gener-
ates for the image. The label is reasonably related to the target
caption describing the image, as given in (10), as shown at
the bottom of this page. The label that the VGG19 generates
is the keyword of the target caption. This is because each
image has a weak label, which is defined as the keyword of
its target caption, and the VGG19 is trained with the weakly
labeled images. We assume in Section III that the feature
set is defined as all the nouns of the target captions in the
training data to select the keywords in the target captions.

FIGURE 4. Relation between terms in a target caption and candidates of a
label on an image (Figure 3).

The reason is that the feature that is mainly selected as a
keyword in the caption is an object in the image mentioned
in the source caption, and the object is usually a noun. Thus,
the predicted label from the VGG19 is a noun keyword in the
target caption, which in turn is expected to refer to one of the
objects appearing in the image. Thus, it can be concluded that
direct encoding of the image’s label increases the likelihood
of generating the keyword of the translated caption at the
decoding stage.

Therefore, the encoder in the proposed model includes
an object encoding cell, as shown in Fig.3, which directly
encodes a word that refers to an object in the image, which
is expected to be used for translation. The input of the cell is
composed of K-labels having the upper Kth probability from
the softmax layer of the VGG19. This is not only the pre-
dicted label of the image with the highest probability, but also
candidate information for K-1 labels. This is to compensate
for the following two possible problems. First, there can be
more than one object in the image, and one or more may be
described in the image caption. Let us revisit the structural
meaning of the softmax layer in VGG19. The softmax layer
consists of the probability that each candidate can be an
image label. Among these candidates, some candidates above
a certain level of probability may be the objects included in
the image, and they may actually be described in the target
caption.

Take Fig.4 as an example. It is based on the example in
Fig.3. The left and middle parts of the Venn diagram, (1) and
(3), contain the nouns in the target caption of the image in
Fig.3. The middle and right parts, (2) and (3), contain the can-
didates for the label corresponding to the fifth highest prob-
ability from the softmax layer of the VGG19 for the image.
This is the object list that is used as the input to the object
encoding cell in Fig.3. The leftmost value in the object list
has the highest probability of occurrence in the softmax layer,
and its value is predicted as the label (giraffe) of the image.

In Fig.4, the words in (3) correspond to the label can-
didates with high probability in the softmax layer of the
VGG19 among the actual words comprising the translated

{ terms denoting objects in an image} 3 label := keywordinatargetcaption ∈ { all noun terms in a target caption} (10)
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caption. At the same time, these are objects that represent the
image and eventually are likely to be the words in the trans-
lated caption. Indeed, ‘‘giraffe’’ is the image label predicted
with the highest probability, and ‘‘tree’’ is the label candidate
with the next highest probability. These two labels are not
only included in the image but also in the actual caption.
Thus, this cell can contain explicit information needed for
translation, as opposed to the previous image encoding cell,
by encoding one or more objects described in the target
caption with the label candidates generated by VGG19.

The second reason for usingK-labels as the input of the cell
is that, even if the VGG19 predicts a label as an object that is
not included in the image (e.g., the words in (2) of the Fig.4),
one of the label candidates with the next highest probability
in the softmax layer will possibly be the correct label. If the
label predicted by theVGG19 is solely encoded in the cell, the
effect of addition of the cell is highly dependent on VGG19
performance. However, if the cell contains label candidates
with a certain probability or more, it is highly expected to
improve the recall of the translation quality.

Each of the K label candidates is represented as a vector
by sharing the target embedding used in the decoder. Each
embedding vector is concatenated and finally used as the
input to the cell. The final context vector of the encoder is
shown in (12).

EO = [ Eo1; Eo2; . . . ; EoK ] (11)

Ehe2 = f
(
WO

⇀

O,
⇀

h e1

)
(12)

where EO is a concatenation of K label candidates con-
sisting of target-embedding vectors, f is the RNN (e.g.,
LSTM or GRU), and Wo is a transformation matrix to
project EO into the same dimensionality as the source word-
embedding vector.

E. DECODER WITH ATTENTION MECHANISM
The proposed model is based on the standard attention mech-
anism [17] where, at each decoding time step, every word in
the target caption is generated considering both hidden state
information at the previous decoding step and the current
context vector that denotes the relevant information of the
source sentence. Compared with the existing mechanism,
the output of all the RNN cells in the encoder is not used
to derive the context vector generated in the attention layer.
Instead, the decoder is designed only to attend to the output
of the text-encoding part in the encoder, excluding the output
of the two cells associated with the image. This is because
when the text encoding is performed, the information may be
distorted or omitted due to the long-term dependency such
that the text information can be given a larger weight by
focusing only on the text information. According to a study
by [38], the influence of the attention vector is greater than
the previous hidden state of the RNN when generating words
for each decoding step. Therefore, to effectively use the text
information, which is the largest basis for the translation,
the decoder is designed to focus only on the text.

TABLE 1. Summary of dataset.

The decoder is a uni-directional RNN that generates the
target sentence Y. The conditional probability of choosing the
jth word (yj) is:

P(yj|y<j, x; θ ) = softmax (yj−1, sj, cj) (13)

where yj−1 is the previously generated word, sj is the current
RNN hidden state, and cj is a source-side context vector. The
attentionmechanism generates the context vector bymeans of
a weighted sum of the final annotation vectors in the encoder:

cj =
T∑
i=1

(αi,j ∗ hi) (14)

where αi,j denotes the attention weight, which is defined as

αi,j =
exp(ei,j)∑T
k=1 exp(ek,j)

(15)

ei,j = vTa tanh (Wasj + Uahi) (16)

where ei,j is an alignment model that calculates the degree of
the relevance between sj and hi. In addition, va, Wa, and Ua
are the weights for the matrix transformation.

V. EXPERIMENT
This section consists of three parts. Section V.A introduces
our new dataset and Section V.B describes the training details.
Lastly, we show the performance of our proposed model and
investigate the results at Section V.C.

A. DATASET
We developed a new dataset similar to the Multi30K
dataset [39] adopted as the primary data in theWMT16 shared
task [19]. Our dataset consists of 7,500 images, each with two
Korean descriptions and two corresponding human-translated
English descriptions. The specification of the image captions
is described in TABLE 1. Compared with the pre-existing
data, the main difference is that the images in our dataset
have no object labels, whereas all the images in the Multi30K
dataset have appropriate entity labels.

The training, validation, and test sets consist of 6000, 1000,
and 500 images, respectively, each containing two pairs of
sentences (the original Korean captions and their translations
into English). In addition, we use the entire English cap-
tions in the Multi30K dataset to produce high-quality sen-
tence embedding. Furthermore, we employed the pre-trained
VGG19 to better extract image features [22].

TheMoses Statistical MT Toolkit [40] is used to normalize
and tokenize the English captions. We also use the komoran

VOLUME 7, 2019 54049



Y. Heo et al.: Multimodal Neural Machine Translation With Weakly Labeled Images

TABLE 2. BLEU-4 score of the baseline model (NMT) on test set.

class in theKoNLPy package [41] to split Korean descriptions
into morphemes, which are the basic units of Korean words.
Moreover, we discard sentences longer than 50 words.

B. TRAINING DETAILS
We trained two Seq2Seq models: one for the text-based NMT
system as a baseline, and the other for the multimodal NMT
as a proposed model. Both encoders are bidirectional RNNs
with GRU cells and hidden sizes of 512, and both decoders
are unidirectional RNNs with GRU cells and hidden sizes
of 512. The basic attention mechanism comes from [17],
but its implementation is based on [18] due to its effec-
tiveness. The size of the source word embedding depends
on its input unit: eojeol(100), morpheme(200), syllable(50).
The size of target word embedding is 300. All the weights in
the models are initialized using a Xavier scheme [42], and the
biases are set to zero. Image features are extracted from the
fc7 layer of VGG19 pre-trained on the ImageNet and fine-
tuned on our dataset. The number of elements in the object
list is 5.

Both models are trained using a stochastic gradient descent
with Adam [43]. The learning rate is set to 0.001. The mini-
batch size is set to 80 for the NMT or 32 for the multimodal
NMT. We use early stopping by choosing the model where
the BLEU-4 [44] over the validation set does not improve for
20 epochs. The translation quality is automatically evaluated
by BLEU-4.

C. RESULTS
The performances of the baseline and multimodal NMT sys-
tems are presented in Table 2 and TABLE 3 using BLEU-4 as
an automatic evaluationmetric. The baseline is a conventional
attention-based Seq2Seq model (NMT), and two types of

multimodal NMT models are tested: one containing only the
image encoding cell and the other having both the image
encoding cell and the object encoding cell. Experiments were
carried out by learning three input units of Korean for each
model: eojeol (Korean spacing unit), morpheme, and syllable.

Multimodality, as in previous studies, has a notably pos-
itive impact on the MT results, even though the data in
this work is a set of bilingual unlabeled images com-
pared with the previous studies [26], [28] that used human-
annotated images. As shown in Table 2 and TABLE 3, the
model using only image features (MNMTimage) showed a
maximum improvement of +0.8 compared to the baseline
model (NMT). In addition, the image and object model
(MNMTimage+object), including the labels generated from the
image, showed up to a +1.0 BLEU performance improve-
ment when comparing the performance between models for
the same Korean input unit (morpheme).

The results can be analyzed considering three aspects:
the performance change corresponding to Korean input unit,
the effect of image features, and the effect of label candidates.
First, of the three input units, the morpheme is the Korean
input unit most suitable for multimodal NMT. When image
information is added, themodel with themorpheme unit tends
to have a higher performance. On the other hand, both the
eojeol and syllable unit input models in the baseline demon-
strated inadequate results in terms of multimodality. The
reason comes from the size of the image features. Unlike, the
word embeddingwhich delivers compact word information in
each time step, the image features broadly reflect the overall
characteristics of the image. Therefore, the information con-
tains somewhat redundant or unnecessary elements in terms
of translation, and thus it eventually acts as noise.

Next, we discuss the effectiveness of additional image
features. Considering the token of source sentences as the
morpheme, the MNMTimage system showed the best perfor-
mance (34.9) by adopting the weak-labeling method based
on TF-IDF with sentence clustering, which showed up to a
+1.0 BLEU performance improvement compared with the
BoW-based weak-labeling method. Therefore, it follows that
changes in translation performance due to the addition of
image features are dependent on the weak-labeling methods.

TABLE 3. BLEU-4 Scores of the proposed models (MNMT) on the test set. MNMTimage indicates the MNMT model containing only the image encoding
cell. MNMTimage+object denotes the MNMT model with both the image encoding cell and the object encoding cell.
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FIGURE 5. Examples of weak labels.

For example, the number of image labels determined by
the BoW method is 153 in total, and on average, one label
represents approximately 40 among all images in the training
data. On the other hand, the number of image labels deter-
mined by the TF-IDF is 757 in total, and one label includes
approximately 10 images. As a result, the model trained
with TF-IDF-based weakly labeled images may create more
discriminative image features compared with the one trained
with BoW-based weakly labeled images when it comes to
images with different characteristics, as long as the capacity
of the models is all the same.

Take Fig.5 as an example. In the case of the model
learned with BoW-based weakly labeled images, the labels
of both images in Fig.5 were created as ‘‘people.’’ How-
ever, the weights of the ‘‘people’’ in each picture are quite
different. In contrast, the model trained with TF-IDF based
weakly labeled images generates the labels for Fig.5 as
‘‘giraffe’’ and ‘‘ski.’’ Therefore, it is reasonable to judge that
the image features generated by the model trained with TF-
IDF based weakly labeled images are more sophisticated
than those with BoW-based weakly labeled images. This
inference can be proven based on the results in TABLE 3.
As shown in TABLE 3, the image features extracted from
the model trained with BoW-based weakly labeled images
caused noise in translation. On the other hand, when using
TF-IDF based weakly labeled images, the quality of trans-
lation improved, especially for the model using morpheme
units.

Let us now consider the effect of label candidates used
in the object encoding cell, which is the last cell in the
encoder. First, it was found that the labels generated by
the VGG19 using weakly labeled images with TF-IDF are
more suitable for resolving under-translation problems than
the labels using the BoW-based approach. For example,
Fig.6 shows the result of the predicted labels (e.g., 1, 3,
5) and 5-sized object lists (e.g., 2, 4, 6) generated by the
VGG19 independently trained with weakly labeled images
using three different weak-labeling methods. Also, the sen-
tences from (7) to (10) in Fig. 6 are the translation results of
the baseline model and each of three multimodal MT mod-
els trained with weakly labeled images using three different
weak-labeling methods.

For the image in Fig.6, the model trained with BoW-based
weakly labeled data generatedmostly the words in (2) that are
related to ‘‘people’’ of the target caption. This corresponds
to the word ‘‘ [salamdeul]’’ in the source caption.
Therefore, it seems to be advantageous to translate the source
caption with the additional information about label candi-
dates. However, syntactically explicit words in a sentence,
such as the subject, are generally translated sufficiently by
text alone, and there is no case where they are confirmed to
be useful in our actual experimental results. Therefore, label
candidates like (2) are not useful as additional resources in
translation, but rather serve as superfluous features.

However, the case of TF-IDF is different. Label candidates
such as ‘‘ski’’ (predicted label), ‘‘skier,’’ and ‘‘snow’’ as in (4)
of Fig.6 have no correspondingword in the target sentence but
are significantly semantically similar to ‘‘skiing’’ or ‘‘snow-
boarding.’’ As such related resources are encoded, it is found
that the term ‘‘skiing,’’ which both the multimodal NMT
model trained with weakly labeled images using BoW and
the baseline model cannot translate, is normally generated as
in (9) of Fig.6.

The final matter to address is the effect of weakly labeled
images using sentence clustering using the K-means algo-
rithm. For morpheme-basedmodels that have a positive effect
on combining with image information, MNMTimage+object
showed an improvement of +1.0 BLEU compared with
the baseline model. Specifically, the MNMTimage model
trained with weakly labeled images using improved TF-
IDF showed a +0.4 BLEU performance improvement com-
pared with that using the existing TF-IDF. The number of
labels that weakly labeled images with improved TF-IDF
is 1020, which, on average, means that one label contains
only approximately 8 images. This is less than the number of
labels of weakly labeled images using the existi1ng TF-IDF.
Therefore, it follows that the VGG19 trained with weakly
labeled images using the improved TF-IDF can produce
more accurate image features than that with the existing
TF-IDF.

In addition, when exploiting label candidates as an addi-
tional source from the VGG19, the MNMTimage+objectmodel
showed a +0.2 higher performance improvement, which is
the best score in this work. The translation result of (9)
in Fig.6 fails to generate the word ‘‘tree’’ corresponding to
the word ‘‘ [namu]’’ in the source caption. However,
if the model is trained with the data using improved TF-IDF,
then the model can generate an accurate sentence like (10)
in Fig.6, which reflects all the object information appearing
in the source caption. In fact, the VGG19 trained with weakly
labeled images using improved TF-IDF generated ‘‘tree’’ as
a label in (5). Additionally, the words ‘‘ski’’ and ‘‘skier,’’
which were also generated by the model trained with the data
using the existing TF-IDF method, are also included in the
object list. As a result, the MNMTimage+objectmodel correctly
generates the word ‘‘tree’’ that the model trained with weakly
labeled images using the existing TF-IDF failed to generate
and includes the word ‘‘skiing’’ that the baseline model could
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FIGURE 6. Translation examples with weak labeling by BoW, TF-IDF, and TF-IDF with sentence
clustering.

not generate. Thus, the translation quality can be improved by
addressing the under-translation issue via directly encoding
the word information likely to be generated in the translation
process.

VI. CONCLUSION
In this paper, we have introduced a multimodal MT system
that incorporates image information with the conventional
text-based NMT. To exploit visual information from images
without any object labels, we proposed a novel approach
that creates weak labels by selecting keywords from image
descriptions by means of feature selection methods in NLP.
Moreover, the quality of the translation proves to be valid
when the label candidates generated from the VGG19 are
directly encoded. As a result, our proposed model improved
the performance by +1.0 BLEU compared to the text-based
NMT model. This demonstrates that visual information from
the images can be effectively used to translate captions for
unlabeled images.

In the future, we will extend the architecture by incorpo-
rating both visual and keyword components with an attention
mechanism and explore more accurate ways to extract fea-
tures from images and descriptions.
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