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ABSTRACT Slow feature analysis (SFA) has been adopted for control performance monitoring (CPM)
recently. However, due to the selection criterion of the dominant slow features (SFs) and the perfor-
mance monitoring statistics, the traditional SFA-based CPM method has certain limitations in monitoring
model predictive control (MPC) performance and fails to distinguish the direction of performance change,
i.e., whether the performance becomes better or worse. In order to solve the above problems, an MPC
performance monitoring and grading strategy based on improved SFA is proposed in this paper. First, a new
criterion for selecting dominant SFs is proposed. On this basis, two combined monitoring indices are built
to monitor steady-state and dynamic characteristics of MPC systems, respectively. Besides, an SFA-based
predictable performance assessment index is proposed to indicate the direction of performance change.
Finally, a performance grading strategy based on improved SFA is established to classify current MPC
performance to four levels. Two simulation examples demonstrate the effectiveness and superiority of the
proposed method.

INDEX TERMS Performance monitoring, performance grading, model predictive control, slow feature
analysis, predictable performance assessment index.

I. INTRODUCTION
Process control is a pivotal integral part of modern pro-
cess industries, and a large number of process loops oper-
ate under the different controllers to satisfy various control
requirements. In order to control processes with constraints,
multi-interacting variables and complex dynamics, model
predictive control (MPC) has been developed and widely
applied to a range of complex industrial processes such as
automotive, medicine, aerospace, refining and petrochemical
industries [1]. Due to the advanced nature of MPC algo-
rithm, it can save resources and energy, increase production
safety, improve product quality, and ultimately maximize the
economic profit of the factory [2], [3]. Although most MPC
controllers operate well because of controller tuning at the
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commissioning stage, their control performance deteriorates
after a period of production due to various factors, includ-
ing plant process model-mismatch, disturbance fluctuation,
variation of raw material property, fault of sensor/actuator,
and change of constraint sets [4], [5]. This directly affects the
safety, efficiency, and product quality of plants. Therefore,
the control performance assessment (CPA) or control per-
formance monitoring (CPM) technology has attracted wide
attention from academia to industry over the past thirty
years [6].

The purpose of CPA/CPM is to detect performance degra-
dation by analyzing routine closed-loop operating data,
which is a precondition for improving control performance.
The research on CPA/CPM can be traced back to the
work of Harris in 1989, in which the minimum variance
control (MVC) benchmark was proposed for univariate
processes [7]. Since then, further studies on CPA/CPM have
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been extended to performance assessment of multiple-input
multiple-output processes, feedback/forward controllers, cas-
cade controllers, and MPC controllers [8]–[11]. Several
monographs [12]–[14] and review articles [15]–[19], [21]
have been published to summarize the academic develop-
ments and industrial applications of CPA/CPM in recent
years. In general, CPA/CPM technologies are mainly divided
into three categories: theoretical optimal benchmarks, user-
specified benchmarks, and historical benchmarks. As the
earliest proposed performance benchmark, theoretical opti-
mal benchmarks, such as the MVC benchmark [7] and the
linear-quadratic Gaussian (LQG) control benchmark [22],
rely on sufficiently accurate prior knowledge of the pro-
cess model. However, it is often difficult to accurately
establish the process and disturbance model in practi-
cal industrial applications. Furthermore, for MPC systems,
the performance bound in the theoretical case is difficult
to achieve in the industrial case due to the restrictions
of the controller structure and the existence of model-
mismatch. By contrast, user-specified benchmarks, such as
internal model control (IMC) benchmark [23] and achievable
proportional-integral-derivative benchmark [24], can avoid
the ideal assumptions about the process and be more realistic
because of taking into account the user’s demand preferences
and the constraints on controller structure. These methods
may be useful in many situations. However, there are no
general guidelines for how to select a custom performance
reference for such methods. Which performance reference
scheme is most suitable is still determined by experienced
users or control engineers [14].

As data-driven methods, historical benchmarks do not
require process/model knowledge and can be calculated using
historical operational data with the desired control perfor-
mance. Therefore, they are suitable for evaluating or moni-
toring the control performance of various types and scales,
including MPC. Inspired by the MVC benchmark, Yu and
Qin [25], [26] defined statistical covariance-based perfor-
mance index, which utilizes only historical output data. After
that, several improved covariance-based methods were pro-
posed. Li et al. [27] proposed a method based on dissimilarity
analysis to detect changes in the distribution characteristics
of controlled variables (CVs). Yan et al. [28] conducted a
hypothesis test on the equality of the output covariance matri-
ces to monitor control performance, and this method can
make full use of the information in the entire covariance
matrices. The aforementioned covariance-based CPM meth-
ods only fasten on the information in CVs of the process
and ignore the potential information in other process vari-
ables such as manipulated variables (MVs) and disturbance
variables. Tian et al. [4] suggested that all types of process
variables are provided to indicate current control performance
and built a 2-norm based covariance index to assessMPC per-
formance. Shang et al. [29] constructed a partial least squares
(PLS) cross-product matrix which contains the information
of MVs and CVs and this cross-product matrix can extract
the maximum dissimilarity information between the current

matrix and the benchmark matrix to assess MPC perfor-
mance. In addition, multivariate statistical methods, such as
principal component analysis (PCA) [30], [31] and PLS [32],
are introduced to assess MPC performance, respectively.
However, a limitation of traditional historical benchmark
methods is that only the steady-state information of process
data is retained and the temporal dynamic information is not
considered.

Recently, a novel multivariate statistical technology, slow
feature analysis (SFA) [33], was proposed to separate tem-
poral slow features (SFs) from process variables and was
first used for nonlinear process fault diagnosis [34]. In recent
years, SFA-based methods have been successfully adopted
in monitoring industrial processes [35]–[37] and control
performance [38]. In order to monitor the distributions of
both the steady-state and temporal dynamic characteristics
of process variables simultaneously, two pairs of monitoring
statistics based on the SFA were designed innovatively by
Shang et al. [35]. Then, an SFA method based on dynamic
statistics of CVs is used to capture the changes of process
dynamics caused by the feedback compensation of the con-
troller and to monitor control performance [38]. However,
The existing SFA-based performance monitoring method has
the following problems when they are used for MPC perfor-
mance monitoring. Firstly, for traditional SFA-based CPM
method, slower SFs are selected as the dominant SFs and
the faster SFs are ignored. Nevertheless, when control per-
formance changes, abnormal process dynamics may cover
both increased and decreased temporal variations [39], and
the abnormal information may exist in the slower SF or in
the faster SF. Therefore, the traditional criterion for select-
ing dominant SFs may lead to poor performance. Secondly,
traditional SFA-based CPM method uses dynamic informa-
tion of CVs to monitor performance and ignores the steady-
state information and other valuable process variables, this
makes it difficult to achieve satisfactory results for monitor-
ing MPC performance. Furthermore, although the traditional
SFA-based method can detect performance change, it cannot
distinguish the direction of performance change, i.e., whether
the performance becomes better or worse [38]. Finally, as an
important prerequisite for performing performance mainte-
nance and improved work, the CPA method should have the
capability of performance grading. However, to date, there
have been few reports on control performance grading (CPG)
studies.

In response to these problems, an MPC monitoring and
grading strategy based on improved SFA is established.
A new selection criterion is proposed based on an expression
degree of original variables on SFs and the selected domi-
nant SFs can more fully express the information of original
variables. The expression degree is designed by the map-
ping relationship between the lag-1 autocorrelations of SFs
and the lag-1 autocorrelations of original variables, which is
derived from the objective function of SFA. Aiming at the
problem that the steady-state information of process vari-
ables is ignored in performance monitoring, two combined
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monitoring indices are established to monitor the steady-
state and dynamic variations of process variables in MPC
performance. In addition, an SFA-based predictable perfor-
mance assessment index (PPAI) is constructed by the gener-
alized eigenvalue corresponding to the slowest SF and used
to indicate the direction of MPC performance change. The
PPAI is based on the intrinsic relationship between the pre-
dictability of the process closed-loop output and the control
performance [39], [40], so it has the ability to assess whether
the MPC performance becomes better or worse. Finally,
in order to achieve the purpose of grading the current MPC
performance, a performance grading strategy is proposed by
incorporating the SFA-basedmonitoring indices and the SFA-
based PPAI. The performance grading strategy can classify
current MPC performance into four levels: improved perfor-
mance, normal performance, degraded performance, and the
worst performance.

The remainder of the article is presented as follows.
Section II introduces the basic SFA algorithm and perfor-
mance monitoring statistics based on the statistical properties
of SFA. In section III, the MPC performance monitoring
and grading strategy based on improved SFA is presented.
Case studies and discussions are provided in section IV.
Finally, the conclusion is drawn in section V.

II. TRADITIONAL PERFORMANCE MONITORING METHOD
BASED ON SLOW FEATURE ANALYSIS
A. SLOW FEATURE ANALYSIS
The idea of slow feature analysis is to seek transfor-
mation functions of which output signals vary as slowly
as possible [33]. For m-dimensional temporal input series
x(t) = [x1(t), · · · , xm(t)]T, the objective of SFA is to find
a transformation function gj(x)(j = 1, · · · ,m) that generates
the output slow feature series sj(t) = gj(x(t)) such that

1(sj) = 〈ṡ2j 〉t (1)

is minimized under the constraints

〈sj〉t = 0, (2)

〈s2j 〉t = 1, (3)

∀i 6= j, 〈sisj〉t = 0, (4)

where ṡj(t) = sj(t) − sj(t − 1) represents the first-order
derivative of sj, and 1(sj) denotes a measure of the slowness
of sj, The symbol 〈·〉t is the temporal average and can be
defined as

〈f (t)〉t =
1

t1 − t0

∫ t1

t0
f (t)dt. (5)

Here, the primary objective in (1) is to minimize the temporal
variations of SFs. The rationale of constraints in (2) and (3)
can be interpreted as each SF has zero mean and unit variance
in order to avoid the trivial solution sj ≡ const. The constraint
in (4) ensures that SFs are independent of each other and
contain different information. Furthermore, {sj}mj=1 can be

arranged in descending order such that the first SF is the
slowest, the second SF is the second slowest, etc.

For linear cases, the linear mapping from x(t) to SF sj(t) is
written as

sj(t) = wT
j x(t) =

m∑
i=1

wjixi(t), (6)

and this can be further concisely formulated as

s(t) = Wx(t), (7)

where wj(j = 1, · · · ,m) denotes coefficient vector, and
W = [w1, · · · ,wm]T is the coefficient matrix. Then the
optimization problem in (1) is equivalent to the following
generalized eigenvalue problem [33]:

AW = BW�, (8)

where A = 〈ẋẋT〉t denotes the covariance matrix of the first-
order derivative of x, and B = 〈xxT〉t denotes the covariance
matrix of x. � = diag{ω1, · · · , ωm} is a diagonal matrix of
generalized eigenvalues

ωj = 1(sj) = 〈ṡ2j 〉t . (9)

The SF corresponding to the smallest generalized eigenvalue
has the greatest slowness.

B. STATISTICAL PROPERTIES FOR SLOW FEATURE
ANALYSIS
The optimization problem (1) can also be solved by singular
value decomposition (SVD), and the statistical properties of
SFA can be further clarified. On the basis of the statistical
properties, the performance monitoring statistics are finally
constructed. Therefore, this intuitive SVD solution is shown
in the next analysis. First, the covariance matrix B is decom-
posed by SVD method:

B = U3UT. (10)

In order to remove crosscorrelations, x can be sphered as
follows:

z = 3−1/2UTx (11)

and 〈zzT〉t = I . Then the optimization problem (1) is trans-
formed into finding a matrix L that satisfies

s = Lz (12)

and

〈ssT〉t = I, (13)

Substituting (12) into (13) leads to

LLT = I, (14)

which indicates that L = [l1, · · · , lm]T is an orthogonal
matrix.

In the next step, the SVD is performed on the covariance
matrix of the first-order derivative of z:

〈żżT〉t = LT�L. (15)
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By (12) and (15), it is obtained that 〈ṡṡT〉t = �, and the
slowness of the SF sj is derived from1(sj) = ωj, where ωj is
the j-th diagonal element of the matrix �.
Finally,W can be computed as:

W = L3−1/2UT. (16)

Based on the above analysis, SFs have the following sta-
tistical characteristics [35]:

〈s〉t = 0, 〈ssT〉t = I, (17)

〈ṡ〉t = 0, 〈ṡṡT〉t = �, (18)

that is,

〈x〉t = 0, 〈xxT〉t = U3UT, (19)

〈ẋ〉t = 0, 〈ẋẋT〉t = U31/2TL�L31/2UT, (20)

From (19) and (20), it can be seen that the SFA algorithm
presents process data information in two dimensions: the
steady-state distribution P(x) by (19) and the temporal dis-
tribution P(ẋ) by (20). Compared with multivariate statistical
methods such as PCA, SFA can provide more abundant mon-
itoring information.

C. PERFORMANCE MONITORING STATISTICS BASED ON
SLOW FEATURE ANALYSIS
In the conventional SFA-based CPM method, only the CVs
are used to build the SFA model and all SFs are partitioned
into dominant subspace sd and residual subspace se. The
SFs that are slower than input average slowness 1(xi) are
specified as the dominant SFs, whereas the others in residual
subspace are faster than 1(xi) and appear to manifest fast
noise-like behaviors [35]. Input average slowness 1(xi) is
expressed as

1(xi) =
m∑
j=1

aij1(sj),
m∑
j=1

aij = 1, aij ≥ 0. (21)

Then based on the goal of monitoring process dynamics and
the statistical properties of sd and se, performance monitoring
statistics in traditional SFA-based CPM method are defined
as [38]

S2 = ṡTd�−1d ṡd (22)

S2e = ṡTe�−1e ṡe (23)

where �d and �e are diagonal matrices composed of gener-
alized eigenvalues corresponding to SFs in sd and se.
The traditional SFA-based CPM method is based on

dynamic statistics of the process closed-loop output and is
used to capture the changes of process dynamics caused by
the feedback compensation of the controller. It is effective
for monitoring the performance of regular control loops.
Whereas, as an advanced controller, theMPC performs online
model modifications to compensate for model-mismatch and
external interference, which makes it difficult to obtain sat-
isfactory results using only dynamic statistics of CVs to
monitor MPC performance.

FIGURE 1. Schematic diagram of the IMC structure for MPC.

III. AN MPC PERFORMANCE MONITORING AND
GRADING STRATEGY WITH IMPROVED SLOW FEATURE
ANALYSIS
In this section, firstly, the selection and the data preprocessing
of the monitored variables for MPC systems are introduced.
Then, performance monitoring indices are established based
on a new criterion for selecting dominant SFs. Besides,
a performance grading strategy is proposed after building the
predictable performance assessment index. Finally, a perfor-
mance monitoring and grading strategy is demonstrated.

A. SELECTION AND PREPROCESSING OF THE
MONITORED VARIABLES FOR MPC
With the spread of industrial measurement technology and the
development of distributed control system (DCS) technology,
it is easy to acquire and store rich plant process data. These
data include valuable information on processes that is not
fully utilized. Therefore, it is necessary to select and mine
the monitored variables when applying CPM technology.

Based on the information of the current process model,
MPC calculates the future control actions by minimizing the
quadratic objective function

J (k) = E{(y(k + 1)− yr(k + 1))TQ(y(k + 1)− yr(k + 1))

+1uT(k)R1u(k)} (24)

where y(k+1) and yr(k+1) represent the output variables and
reference variables, respectively, 1u(k) denotes the incre-
ment of MVs, Q and R are weighting matrices. From (24),
it can be seen that J (k) is related to both the covariance matrix
of CVs and the covariancematrix ofMVs. Thus, both y(k) and
u(k) are selected into the monitored variable set. In addition,
according to the IMC structure for MPC in Fig. 1, the model
prediction error can be derived as [4]:

ep(z) = (I + (Gp(z)− Gm(z))Gc(z))−1(Gp(z)

−Gm(z))Gc(z)yr(z)

+ (I + (Gp(z)− Gm(z))Gc(z))−1Gd(z)d(z) (25)

where z denotes the Z-transform variable. Gp(z), Gm(z),
Gc(z), and Gd(z) are the transfer functions of the plant, pro-
cess model, controller, and disturbance, respectively. From
(25), we can see that both process model-mismatch and dis-
turbance can affect the model prediction error. Therefore,
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the model prediction error contains performance deteriora-
tion information of MPC due to process and/or disturbance
variations. Based on the above analysis, model prediction
error also should be selected into the monitored variable set
for performance monitoring. Finally, the following variable
set

x = [u, y, ep] ∈ RN×m (26)

is used for monitoring MPC performance.
Due to the inherent physical dynamics of the chemical

process and the feedback actions of the controller, the current
process data is related to past process data in a period of time.
With this in mind, each input vector is augmented by using
d lag samples and the data matrix is stacked as follows

Xd =


x(t)T x(t − 1)T · · · x(t − d)T

x(t+1) x(t)T · · · x(t−d+1)T
...

...
. . .

...

x(t+N−1) x(t+N−2)T · · · x(t+N−d−1)T


(27)

whereN is the number of samples of the monitored variables.
Thus, the input dimension of the SFA model is expanded as
ms = m(d + 1).

B. SELECTION CRITERION OF DOMINANT SLOW
FEATURES
In traditional SFA method, the SFs that are slower than1(xj)
are considered more important and selected as the domi-
nant SFs, while SFs with faster slowness are considered to
be noise-like behaviors and ignored. However, since perfor-
mance information is complicated, the SFs with slower slow-
ness may not change significantly when control performance
changes, that is, the information reflecting the performance
change may be mainly divided into the residual subspace
or evenly divided into two subspaces. This would lead to
missed detection of deterioration in control performance.
Because the traditional criterion for selecting dominant SFs
ignores the expression degree of original process variables,
the expression information of some process variables on the
dominant SFs may be too small [42]. Therefore, a more rea-
sonable selection criterion of dominant SFs is proposed in this
subsection.

In the case of discrete input signals, the objective func-
tion (1) can be further deduced as [43]:

minwj1(sj) = 〈ṡ2j 〉t

= 〈(sj(t + 1)− sj(t))2〉t
= 〈sj(t + 1)sj(t + 1)〉t + 〈sj(t)sj(t)〉t
−〈sj(t)sj(t + 1)〉t − 〈sj(t + 1)sj(t)〉t

= 2〈sj(t)2〉t − 2〈sj(t + 1)sj(t)〉t
= 2− 2〈sj(t + 1)sj(t)〉t
= 2− 2Rsj (1) (28)

where Rsj (1) is lag-1 autocorrelation of output signal sj and
Rsj (1) ∈ [−1, 1]. Therefore, the objective function (28) can

be equivalent to:

max
wj
1̄(sj)=1−

1
2
1(sj) = Rsj (1), (29)

From (29), it can be seen that the goal of SFA can also be
interpreted as finding mapping functions of which output
signals with the largest lag-1 autocorrelation, that is to say,
the slowest SF has the largest lag-1 autocorrelation.

According to the linear transformation (6), the correlation
function of SFs are derived by

Rspq(τ ) = 〈sp(t + τ )sq(t)〉t

= 〈wT
px(t + τ )w

T
qx(t)〉t

= 〈(
m∑
j=1

wpjxj(t + τ ))(
m∑
i=1

wqixi(t))〉t

=

m∑
p=1

m∑
q=1

wpjwqi〈xj(t + τ )xi(t)〉t

=

m∑
i=1

wpiwqiRxi (τ )1 ≤ p ≤ m, 1 ≤ q ≤ m, (30)

where Rspq(τ ) denotes the lag-τ correlation between sp and sq,
and Rxi (τ ) denotes the lag-τ autocorrelation of the i-th input
signal xi. Let p = q = j, τ = 1, eq.(30) can be rewritten into:

Rsj (1) =
m∑
i=1

w2
jiR

x
i (1)

= w2
j1R

x
1(1)+ w

2
j2R

x
2(1)+. . .+w

2
jmR

x
m(1). (31)

where Rsj (1) denotes the lag-1 autocorrelation of the j-th
output SF sj.
Based on (31), it shows that lag-1 autocorrelation of sj is

a linear mapping of lag-1 autocorrelations of input variables
xi(i = 1, · · · ,m), and mapping weights are the squares of the
elements in the coefficientmatrix. According to (29) and (31),
the target of SFA algorithm is to extract and accumulate the
lag-1 autocorrelation information of original input variables,
this is different from the PCA algorithm, whose idea is to
extract the variance information of original input variables.

For an original variable xi, the greater the value of weight
coefficient w2

ji, the more information is expressed on SF sj.
The weights {w2

1i,w
2
2i, · · · ,w

2
mi} of the lag-1 autocorrelation

Rxi (1) in all SFs are different, it is possible that the weights in
these dominant SFs are small. In this assuming case, if the
original variable xi contains much information on perfor-
mance change, the SFA-based statistics may not reflect the
abnormal information because the information in the variable
xi is less expressed. Therefore, it is essential to centralize the
information of original process variables into a specific low-
dimensional space as evenly as possible.

In light of (31), an information expression weight matrix
can be obtained as

W̃ = [w̃1T1
, w̃2T , · · · , w̃mT ], (32)

w̃i = [w2
1i,w

2
2i, · · · ,w

2
mi]. (33)
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Since every element is positive in W̃ , the coefficient w2
ji

can be seen as an effective measure of the expression degree
of the i-th original variable xi on the j-th SFsj.
According to the above analysis, for each original variable

xi, the SF sjimax
corresponding to the largest weight in w̃i

is selected as the dominant SF, thereby ensuring that the
dominant SF has the maximum expression of the original
variable xi. jimax is obtained as follows

jimax = argmax{w2
ji}
m
j=1, i = 1, · · · ,m. (34)

Considering that the same SF may be the maximum
expression of different original variables, ignoring repetition,
the dominant subspace can be a low-dimensional space of the
original variable space. For the selected dominant subspace,
the cumulative expression information for each original vari-
able can be calculated as

Cumw = [cum1, · · · , cumm], (35)

where, cum1 =
∑m

i=1 {w
2
jimax1
}/
∑m

i=1 {w
2
j1}, . . . , cumm =∑m

i=1 {w
2
jimaxm
}/
∑m

i=1 {w
2
jm}.

The feature information in the dominant SFs balances
every original variable, which solves the problem of insuf-
ficient information expression of a certain original variable.
The degree of information balance of the original variables
can be measured by calculating the variance of the cumi:

σ 2
Cum =

∑m

i=1
(cumi − µCum)2/m. (36)

where µCum =
∑m

i=1 cumi/m.The smaller the value of σ 2
Cum,

the more balanced the dominant SFs can express all the
original variables, and the performance monitoring is more
efficient and reliable.

C. TWO COMBINED PERFORMANCE MONITORING
INDICES
In this subsection, two combined performance monitoring
indices are built to monitor steady-state and dynamic changes
in MPC performance, respectively. Based on the criterion
proposed in the previous subsection, SFs can be divided into
dominant subspace s̄d = [sj1max

, · · · sjmmax
]T ∈ RMd and residual

subspace s̄e = {sj|sj ∈ s and sj /∈ sd}, s̄e ∈ RMe , where
Md is the number of dominant SFs, and Me is the number of
residual SFs. Then, on the basic of the statistical properties of
s̄d and s̄e, the first pair of performance monitoring statistics
for monitoring steady variations of x(t) can be defined as:

T̄ 2
= s̄Td s̄d (37)

T̄ 2
e = s̄Te s̄e (38)

Meantime, the second pair of performance monitoring statis-
tics for monitoring dynamic variations of x(t) is designed as:

S̄2 = ˙̄sTd�−1d
˙̄sd (39)

S̄2e = ˙̄s
T
e�−1e

˙̄se (40)

where, �d and �e are diagonal matrices composed of gener-
alized eigenvalues corresponding to SFs in s̄d and s̄e.

In traditional SFA-based CPM method, only monitoring
statistics S2 and S2e are used to focus on the impact of process
dynamics of CVs. However, this method has its limitation
when used for monitoring MPC performance due to the com-
pensation of online model modification of MPC. In order to
better utilize the steady-state and dynamic information of the
process, we combine the two pairs of performancemonitoring
statistics into two monitoring indices as follow

ϕ =
T̄ 2

T̄ 2
α

+
T̄ 2
e

δ̄2α
(41)

ψ =
S̄2

S̄2α
+
S̄2e
ξ̄2α

(42)

where, T̄ 2
α and δ̄2α indicate the confidence limits of T̄ 2 and

T̄ 2
e with a confidence limit ofn α, S̄2α and ξ̄2α are the con-

fidence limits of S̄2 and S̄2e with a confidence limit of α.
These two combined indices in (41) and (42) are constructed
with different physical meanings. The statistic ϕ measures
the consistency of the data point x with the steady-state
distribution P(x), and the statisticψ evaluates the consistency
with the temporal distribution P(ẋ). To inspect if performance
changes, the corresponding confidence limits of monitoring
statistics ϕ and ψ are needed.

Traditional methods are based on statistical mechanisms
to determine confidence limits and require certain speci-
fied assumptions, for example, the process variables need
to follow a Gaussian distribution. Due to the complexity
of the industrial process, it is difficult to ensure that the
process variables meet a specific distribution assumption.
In order to resolve this limitation, a nonparametric empiri-
cal density estimation technique, data-driven kernel density
estimation (KDE) method was used to calculate confidence
limits [44].

Given the samples {f1, f2, · · · fn}, a univariate kernel den-
sity estimator is defined by

P̂(f ) =
1
nh

n∑
i=1

ker{
f − fi
h
}, (43)

where ker is the kernel function which is a symmetric density
function and h is the bandwidth of the estimator. In this
work, a widely used kernel function, the Gaussian kernel is
selected [45]. The confidence limits of the indices ϕ and ψ
can be obtained using the KDEmethod through the following
three steps. First, the values of indices T̄ 2, T̄ 2

e and S̄2, S̄2e
in the benchmark period are calculated. Second, the density
functions of those four indices in the benchmark period are
estimated by using the KDE method, and the confidence
limits T̄ 2

α , δ̄
2
α and S̄2α , ξ̄

2
α can be obtained by calculating the

point occupying the area percentage of the density functions.
Third, the values of indices ϕ and ψ in the benchmark period
are computed. Lastly, the density functions of ϕ and ψ can
be estimated, and the confidence limits CLϕ and CLψ are
obtained.

After determining the confidence limits CLϕ and CLψ ,
the corresponding performance monitoring strategy can be
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summarized as follows. If ψ return normal when ϕ vio-
lates its confidence limit, it indicates that current steady-state
deviates from design operating point. This situation occurs
because the compensation of the MPC controller counteracts
the effects of model-mismatch or external disturbances on
the process. Therefore, although the control performance has
changed at this time, it is still within the adjustment range of
the MPC controller, which makes the process dynamic not
greatly affected. If ϕ goes beyond the confidence limit when
a steady deviation is detected, it indicates that the process
dynamics are affected, so the MPC performance is severely
deteriorated and further maintenance actions should be taken.
Two monitoring indices are used simultaneously to provide
alert information.

D. MPC PERFORMANCE GRADING STRATEGY
For a multi-loop process control system, it is necessary
to grade the control performance status to different levels.
On the one hand, from a security perspective, the state with
the worst performance degradation should be first concerned
and maintained to prevent the control system from moving
toward a fault. On the other hand, from an economic point of
view, prioritizing the worst performance state can reduce the
workload of performance maintenance and achieve greater
economic returns. However, there are few studies on con-
trol performance grading. In this subsection, a performance
grading strategy is presented to divide the current MPC
performance state into four levels: improved performance,
normal performance, degraded performance, and the worst
performance. The worst performance status requires the high-
est priority for maintenance. When performing performance
grading, not only performance monitoring information for
detecting performance changes but also information for indi-
cating the direction of performance change is required. The
traditional SFA-based CPM method cannot give the direc-
tion of performance change [38]. To solve this problem, an
SFA-based predictable performance assessment index is
proposed.

As pointed out in ref. [40], if the predictability of an MPC
controller increases, the performance of this controller is
worse, and vice versa. From the equivalent objective function
of SFA in (29), it can be seen that the slowest SF has the
largest lag-1 autocorrelation. By substituting (9) into (29),

ωj = 2− 2Rsj (1), (44)

where Rsj (1) ∈ [−1, 1], and ωj ∈ [0, 4]. For a time series
signal, if the lag-1 autocorrelation is large, it means that
the current value has a strong correlation with the value of
the previous moment, i.e. the current value is significantly
affected by the value of the previous moment. In this case,
the accuracy of predicting the current value based on the
value of the previous moment is high, that is, the time series
has high predictability. From (44), we can get the following
conclusions, if the value of Rsj (1) is close to −1 or 1, ωj is
close to 1 and 4 respectively, and the predictability of sj is

FIGURE 2. The relationship between generalized eigenvalues ωmin and
predictable indexInpre.

high. Conversely, if the value of Rsj (1) is close to 0, ωj is close
to 2, and the predictability of sj is low.
It has been proved by (31) that if lag-1 autocorrelation of

every original variable is close to 0, the lag-1 autocorrelation
of sj is close to 0. That is to say, if the overall predictability of
original variables is low, the predictability of sj will also be
low, and vice versa. Thus, the predictability of original vari-
ables can be reflected by the distance between the generalized
eigenvalue corresponding to the slowest SF and the value
2. According to this connection, the SFA-based predictable
index is constructed as

Inpre = 1−
(
ωmin − 2

2

)2

, (45)

where ωmin is the generalized eigenvalue corresponding to
the slowest SF. If Inpre is close to 1, the original variables
is non-predictable, and this means control performance is
good. If Inpre is close to 0, the original variables is highly
predictable, and this means control performance is poor. This
relationship is shown in Fig.2.

According to (9) and (45), the SFA-based predictable
index reveals one-step predictable information of the orig-
inal variables and is used to performance assessment. This
is different from the static and dynamic information of the
original variables extracted by (41) and (42) for performance
monitoring. In order to use the historical benchmark data,
we further designed the predictable performance assessment
index (PPAI) based on historical data:

ηpre =
Inactpre

Inbenpre
(46)

where Inbenpre and Inactpre are predictable indices of the bench-
mark data and the current monitored data, respectively. If ηpre
is less than 1 significantly, the current monitored performance
is deteriorated. If ηpre is close to 1, the current performance
is as good as that of the benchmark. If ηpre is larger than
1 significantly, the current performance is better than the
benchmark performance. In this paper, the 3σ criterion is
used to determine whether PPAI is significantly greater than
1 or less than 1. In order to obtain the mean and standard
deviation of PPAI, a series of PPAIs under the benchmark
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FIGURE 3. Schematic diagram of performance monitoring and grading strategy for MPC based on SFA.

data are calculated using the sliding window technique [29].
The length of the sliding window can be determined using
the benchmark data. If the length of the sliding window is too
large, the fluctuation of PPAI is small, and the response to
the dynamic change of the process is slow. If the length of the
sliding window is too small, the fluctuation of PPAI is large,
whichmay cause false alarms due to inaccuracy or sensitivity.
The selection of the window length should be a compromise
between the fluctuation and the dynamic response of PPAI.

For a general controller, only the process closed-loop out-
put data y is used to calculate the PPAI. Whereas, for the
MPC controller, (25) shows that the prediction error ep also
contains predictable information. Therefore, the PPAI is com-
puted by using the variable set x̃

x̃ = [y, ep] ∈ RN×mp (47)

and this variable set data is augmented by using matrix stack-
ing techniques with d-lag samples in (27).
By using performance monitoring indices and PPAI index,

the SFA-based performance grading strategy can rank the cur-
rent MPC performance as follows: if both performance mon-
itoring indices ϕ andψ do not exceed their confidence limits,
currentMPC performance is unchanged and graded as normal
performance. If only the index ϕ exceeds the confidence limit
and the value of PPAI is greater than 1 significantly, it means
current MPC performance changes towards better direction
and is graded as improved performance. If only the index ϕ
exceeds the confidence limit and the value of PPAI is less than
1 significantly, it means the dynamic of the MPC system has
not been significantly affected and current MPC performance
is graded as degraded performance. If both performance
monitoring indices ϕ and ψ exceed their confidence limits
and the value of PPAI is less than 1 significantly, it means
that the dynamic of the MPC system has been significantly
affected and current MPC performance is graded as the worst
performance.

E. MPC PERFORMANCE MONITORING AND GRADING
STRATEGY
The SFA-based performance monitoring and grading strategy
include an offline modeling stage and an online monitor-
ing and grading stage, as shown in Fig. 3 and Fig. 4. The
detailed performance monitoring and grading procedure can
be described in detail as follows:
The offline modeling stage:

1) Select appropriate benchmark data for MPC systems
from historical process data contained in the DCS
database.

2) Based on the benchmark data and variable set x =
[u, y, ep] ∈ RN×m, obtain the extended data X and
build the SFA model.

3) Select dominant subspace s̄d and residual subspace s̄e
by the new criterion of selecting dominant SFs pro-
posed in (34).

4) Calculate the performance monitoring indices ϕ and
ψ of the benchmark data using (41) and (42), and
determine the confidence limits CLϕ and CLψ using
(43).

5) Calculate the SFA-based predictable index Inbenpre using
the stacked data of variable set x̃ = [y, ep] ∈ RN×mp ,
and calculate a series of PPAI under the benchmark data
by sliding window technology [29]. Then, obtain the
mean η̄benpre and standard deviation σ of PPAI.

The online monitoring and grading stage:

1) Current monitored data xnew is collected from theMPC
process.

2) Use the data xnew to obtain the extended data Xnew and
compute the current SFs based on built SFA model.

3) Calculate the current performance monitoring indices
ϕ and ψ using (41) and (42).

4) If both performance monitoring indices ϕ and
ψ are within their confidence limits, current
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FIGURE 4. SFA-based performance monitoring and grading strategy flow chart.

MPC performance does not change and is graded as
normal performance.

5) If steady-state monitoring index ϕ exceeds the confi-
dence limit, then collect real-time process data x̃new of
a sliding window after the current sample time to cal-
culate the current predictable index Inactpre, and calculate
the mean of ψ in the same window. Then continue to
step 6).

6) Calculate the current PPAI ηactpre. If η
act
pre > η̄benpre + 3σ ,

current MPC performance is better than benchmark
performance and graded as improved performance.
If ηactpre < η̄benpre − 3σ , continue to step 7)

7) When ϕ exceeds the confidence limit and ηactpre < η̄benpre −

3σ , if the average value of ψ is within the confidence
limit, current MPC performance is deteriorated and
graded as degraded performance. If the average value
of ψ exceeds the confidence limit, the dynamic of the
MPC system has been significantly affected. Current
MPC performance is seriously degraded and graded as
the worst performance.

IV. CASE STUDIES
In this section, two MPC control processes are used to eval-
uate the proposed SFA-based performance monitoring and

grading method. The first one is a numerical simulation
process, the other one is a well-known benchmark Wood-
Berry distillation column. Performance monitoring and grad-
ing method proposed in this paper is compared with the
traditional SFA-based CPM method.

A. A NUMERICAL SIMULATION PROCESS
In this section, two experimental cases are implemented on a
2× 2 numerical simulation process, which is used in ref. [6]
and ref. [27]. This process is given by

y(k) = Gpu(k)+ Gda(k), (48)

where the process transfer functionGp and disturbance trans-
fer function Gd are given by

Gp =


q−1

1− 0.4q−1
K12q−1

1− 0.4q−1

0.3q−1

1−0.1q−1
q−2

1− 0.8q−1

 , (49)

Gd =


1

1− 0.5q−1
−0.6

1− 0.5q−1
0.5

1− 0.5q−1
1

1− 0.5q−1

 . (50)

The noise a(k) follows a standard Gaussian distribution
with the covariance 6a = diag{0.01, 0.01}. The process is
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FIGURE 5. The trajectory of the predictable performance assessment
index.

controlled by an MPC controller and the controller parame-
ters are P = 20, M = 1, Q = I , and R = 0.1I . The set
points of y1 and y2 are set to 1 and 0.5, respectively. The
parameter K12 is constant and can be adjusted to alter the
process model. When K12 = 0, the MPC control system
operates in optimal control state. In order to verify that the
proposed PPAI can indicate the direction of performance
change, 2000 samples with model parameter K12 = 3 are
set as performance benchmark data. The stacked data X̃ of
variable set x̃ = [y, ep] is with one lagged sample and used
to calculate the benchmark predictable index Inbenpre .
Firstly, the relationship between the PPAI value ηpre and

the MPC performance is shown in this case study. As K12
increases from 0 to 12, the performance of the MPC system
will change. 2000 samples are collected to calculate the
predictable index Inactpre and the PPAI ηpre. Fig. 5 shows the
trajectory of the PPAI ηpre while K12 varies from 0 to 12.
WhenK12 < 3, the value of PPAI is greater than 1, this means
the current MPC performance is better than the benchmark
performance and can be graded as improved performance.
When K12 > 3, the value of PPAI is less than 1, this means
the current MPC performance is worse than the benchmark
performance and can be graded as degraded performance or
the worst performance. When K12 = 3, the value of PPAI
is equal to 1, this means the current MPC performance is
the same as the benchmark performance and can be graded
as normal performance. Thus, the PPAI ηpre is effective in
assessing the direction of performance change.

Then, the proposed CPM method is compared with the
traditional SFA-based CPM method. 2000 samples under the
benchmark period are used to build the SFA model for per-
formance monitoring. The significance level of performance
monitoring indices is chosen as α = 0.95 and the extended
monitored data X is with one lagged sample throughout this
article. For the CPMmethod proposed in this paper, the infor-
mation expression weight matrix W̃ in (32) is calculated as
Based on the proposed criterion, the dominant SFs are

determined as s̄d = [s1, s3, s5, s6, s7, s9, s10, s11, s12]T.
The cumulative expression information for each original

FIGURE 6. Monitoring results of the numerical example. (a) SFA based on
dynamic statistics of CVs. (b) SFA method based on combined indices.

variable can be calculated as Cum1. Cum1 and the variance
of the values in Cum1 are listed in Table 1. The dominant
SFs selected by the traditional selection criterion are sd =
[s1, s2, s3, s4, s5, s6, s7, s8, s9]T, and the cumulative expres-
sion information Cum2 is obtained. Cum2 and the variance of
the values in Cum2 are also listed in Table 1.
From the Table 1, it can be seen that more than 60%

feature information of each original variable is expressed in
the dominant subspace selected by the proposed criterion.
While in the dominant subspace selected by the traditional
criterion, the feature information of original variables x4 and
x7 are less than 50%, in other words, the information in these
two variables is not fully expressed by the dominant subspace.
Therefore, the dominant subspace selected by the proposed
criterion can reflect the change of the original variables in
a more balanced manner. Their variance values can also
verify this conclusion. The variance of the values in Cum1 is
significantly smaller than the variance of the values in Cum2.

Immediately after building the SFA-based performance
monitoring model, the parameter K12 is adjusted to 8 at
the 2000th sample time in the monitored period, and the
performance monitoring results are shown in Fig. 6, in which
the monitoring indices are plotted as the solid blue line and
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W̃ =



0.0000 0.0009 0.9597 0.0297 0.0003 0.0015 0.0001 0.0007 0.0052 0.0001 0.0017 0.0000
0.0090 0.0002 0.0166 0.0378 0.0056 0.2335 0.0082 0.0952 0.3815 0.0017 0.2096 0.0010
0.0000 0.0216 0.0000 0.0056 0.1083 0.0031 0.2149 0.2306 0.0491 0.2969 0.0009 0.0690
0.0032 0.0867 0.0027 0.0779 0.1878 0.0845 0.1070 0.0003 0.0002 0.2413 0.0420 0.1664
0.0481 0.4046 0.0011 0.0064 0.0833 0.0384 0.0200 0.1682 0.0167 0.0032 0.1051 0.1050
0.5086 0.0642 0.0012 0.1104 0.0681 0.0074 0.0256 0.0904 0.0283 0.0027 0.0003 0.0930
0.0082 0.1227 0.0030 0.0858 0.2155 0.2317 0.0373 0.0153 0.0318 0.0492 0.1886 0.0110
0.3126 0.2587 0.0000 0.0205 0.0292 0.0733 0.0486 0.0911 0.0040 0.0108 0.0061 0.1452
0.0140 0.0013 0.0000 0.0011 0.0153 0.0714 0.0003 0.0033 0.4287 0.0024 0.4248 0.0375
0.0210 0.0010 0.0001 0.0017 0.0366 0.0001 0.2721 0.2874 0.0543 0.1876 0.0076 0.1306
0.0547 0.0294 0.0000 0.0115 0.1982 0.0029 0.2603 0.0014 0.0001 0.2041 0.0071 0.2305
0.0207 0.0088 0.0154 0.6116 0.0519 0.2522 0.0057 0.0163 0.0001 0.0002 0.0062 0.0109


(51)

TABLE 1. The values and variances of the cumulative amounts of expression information for original variables.

the confidence limit is plotted as dashed red line. From the
Fig. 6(a), it can be seen that after the 2000th sample time,
the statistic S2 almost no change and the fluctuation of the
statistic S2e becomes larger and the sample number of statistic
S2e exceeding the confidence limit increases. In Fig. 6(b),
the monitoring index ϕ exceeds the confidence limit after the
2000th sample time and the change of the monitoring indexψ
is similar to the statistic S2e . From the experimental results of
the two methods, it can be seen that compared with the tradi-
tional SFA-based CPM method, the method proposed in this
paper has a better effect on MPC performance monitoring.

B. WOOD BERRY DISTILLATION COLUMN
In this section, further experimental studies are performed on
the Wood Berry distillation column process, which separates
methanol from water. This process has been used in many
previous investigations for CPM, and the transfer function of
the process is as below [3], [27], [29]:

[
y1(s)
y2(s)

]
=


12.8e−s

16.7s+ 1
−K12 × 18.9e−3s

21.0s+ 1
6.6e−7s

10.9s+ 1
−19.4e−3s

14.4s+ 1

[ u1(s)u2(s)

]

+


3.8e−8s

14.9s+ 1
K2 × 4.9e−3s

13.2s+ 1

 a(s) (52)

where y1 and y2 are distillate and bottom products, respec-
tively, u1 and u2 are reflux and steam flow rates, respectively.
a is the feed flow rate and the standard deviation is 0.003.
The MPC controller parameters are P = 50, M = 2, Q = I ,
and R = 0.1I . The set points of y1 and y2 are set to 1 and

0.5, respectively, and the constraints of output variables are
−1.2 ≤ y1 ≤ 1.2, −1.2 ≤ y2 ≤ 1.2, respectively. K12
and K2 are the constants that can be adjusted to change the
process model and the disturbance model, respectively.When
K12 = 1 andK2 = 1,MPC control system operates in optimal
control state. In order to simulate four different performance
levels, 3000 data samples with model parameters K12 = 0.7,
K2 = 1 are chosen as performance benchmark data◦ They are
used to build the SFA-based performance monitoring model
and calculate a series of the SFA-based predictable index
Inbenpre by the sliding window technology, where windowwidth
is set to 2000 samples. Then, the mean η̄benpre = 1.0191,
standard deviation σ = 0.0089, and the confidence limits
CLϕ = 1.7076 and CL9 = 1.8649 under the benchmark
data. If 10 consecutive samples of the steady-state monitoring
index ϕ exceed the confidence limit, it is considered as a
performance change.

Performance monitoring and grading method proposed in
this paper is compared with the traditional SFAmethod based
on dynamic statistics of CVs. Four different cases of perfor-
mance changes are studied, which are listed in Table 2. These
four cases are model-mismatch (PC1, PC2), the disturbance
perturbation (PC3), and the constraint saturation (PC4).

For PC1, the parameter K12 is adjusted to 1 at the 3000th
sample time in the monitored period, thereby incurring per-
formance change. Fig. 7 presents the monitoring results of
those two approaches. We can see that the statistics S2 and
S2e are within their confidence limits in Fig. 7(a) and the
SFA method based on dynamic statistics fails to detect the
performance change. In Fig. 7(b), at the 3031st sample time,
10 consecutive samples of the steady-state monitoring index
ϕ exceed the confidence limit. Then collect real-time process
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FIGURE 7. Monitoring results of wood berry distillation column of PC1.
(a) SFA method based on dynamic statistics of CVs. (b) SFA based on
combined indices.

TABLE 2. Parameter setting for performance change factors.

data x̃new of a window with 2000 samples after the 3031st
sample time to calculate the current PPAI, ηpre = 1.1325 >
η̄benpre + 3σ , and the mean of the dynamic monitoring index
ψ in the same window, E {ψ} = 1.0705 < CLψ . From the
result of the proposed method, we can see that the change
of process model makes the MPC control system reach a
new steady state without significantly changing the system
dynamic characteristics. Meantime, the current PPAI value
is significantly greater than that in the benchmark period,
this means current control performance is better than bench-
mark performance. This conclusion is consistent with prior
knowledge. Therefore, the current performance is classified
as improved performance according to the SFA-based perfor-
mance monitoring and grading strategy in Fig. 4.

For PC2, the parameter K12 is adjusted to 1.8 at the 3000th
sample time. From themonitoring results in Fig. 8, we can see

FIGURE 8. Monitoring results of wood berry distillation column of PC2.
(a) SFA method based on dynamic statistics of CVs. (b) SFA based on
combined indices.

that the statistics S2 and S2e do not exceed their confidence
limits in Fig. 8(a) and the SFA method based on dynamic
statistics fails to detect the performance change. In Fig. 8(b),
10 consecutive samples of ϕ are beyond the confidence limit
at the 3018th sample time. Then collect real-time process data
x̃new of a window with 2000 samples after the 3018th sample
time to calculate the current PPAI, ηpre = 0.8276 < η̄benpre −

3σ , that is, the current control performance is worse than
benchmark performance. The statistic ψ fluctuates around
the confidence limit, but its mean E {ψ} = 1.6003 < CLψ .
According to the SFA-based performance monitoring and
grading strategy, the current performance is classified as
degraded performance.

For PC3, the parameter K2 is increased to 2 at the 3000th
sample time. From the monitoring results in Fig.9, the fluc-
tuation amplitude of monitoring statistics S2 becomes sig-
nificantly larger and the performance change is detected by
the traditional SFA-based CPM method. In Fig. 9(b), steady-
state monitoring index ϕ overrun the confidence limit, and the
detection time is the 3023rd sample time. Then the current
PPAI ηpre=0.8959 < η̄benpre − 3σ , and E {ψ} = 3.4505>CLψ .
According to the result of the proposed method, the current
performance is classified as the worst performance.
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FIGURE 9. Monitoring results of wood berry distillation column of PC3.
(a) SFA method based on dynamic statistics of CVs. (b) SFA based on
combined indices.

TABLE 3. Performance grading results based on SFA FOR MPC.

For PC4, the output constraint saturation is adjusted to
0.97 at the 3000th sample time and the monitoring results
are shown in Fig. 10. From the Fig. 10, we can see that the
SFA method based on dynamic statistics does not detect per-
formance change, while the proposed method significantly
detects the performance change. In Fig. 10(b), 10 consecutive
samples of ϕ are beyond the confidence limit at the 3012th
sample time, the current PPAI ηpre = 0.0766 < η̄benpre − 3σ ,
and E {ψ} = 288.8160 > CLψ . According to the result of
the proposed method, the current performance is classified as
the worst performance.

FIGURE 10. Monitoring results of wood berry distillation column of PC4.
(a) SFA method based on dynamic statistics of CVs. (b) SFA based on
combined indices.

From the above experiments, it can be seen that the tradi-
tional SFAmethod based on dynamic statistics of CVs detects
the MPC performance changes in PC3, and cannot indi-
cate the direction of performance change. The performance
monitoring and grading methods proposed in this paper can
effectively detect MPC performance changes in PC1-PC4,
indicate the direction of performance change, and provide
more information to classify the current MPC performance
state to four levels, as shown in table 3.

V. CONCLUSIONS
In this article, a control performance monitoring and grading
strategy for MPC is established based on improved SFA.
The new criterion for selecting the dominant SFs and the
predictable performance assessment index are designed based
on the mapping relationship between the lag-1 autocorrela-
tions of SFs and the lag-1 autocorrelations of original vari-
ables. The dominant SFs selected using the new criterion can
more comprehensively express the original variables, thus
improving the monitoring effect. And then two combined
monitoring indices are established to monitor steady-state
and dynamic changes of MPC systems, respectively. Accord-
ing to the relationship between predictability and control
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performance, the SFA-based predictable performance assess-
ment index can effectively indicate the direction of change
in MPC performance. Finally, the SFA-based performance
grading strategy is established by combining two monitoring
indices and predictable performance assessment index. The
simulation results from the numerical system case study and
the benchmark Wood Berry distillation column process case
study demonstrate that the proposed performance monitoring
method outperforms conventional SFA-based CPM method
for MPC systems. In addition, it has performance grading
ability, which is very useful for subsequent performance
maintenance. In addition, MPC is a multi-step predictive
control algorithm, but the PPAI index only reflects one-step
predictable information of the original variables. In the future,
the PPAI index should be extended to multi-step predictable
information to better assess MPC performance.
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