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ABSTRACT This paper develops a state space decomposition method for a class of discrete-time singular
systems. The singular matrix in this system is allowed to vary not only in the value but also in the dimension.
An orthogonal factorization is used to rewrite the original space as a direct sum of its two subspaces.
Correspondingly, the singular system is replaced by two reduced-order systems, whose states are then
calculated respectively. Based on this construction, the prediction of part of the state, optimal filtering result,
an optimal one step smoothing result is proposed. Lastly, a numerical example is presented to demonstrate
the effectiveness of the new method.

INDEX TERMS Singular systems, space decomposition, state estimation, Kalman filter.

I. INTRODUCTION
Recently, a rich and growing literature has emerged on
dynamic state estimation and widely applied in signal pro-
cessing and control engineering [12]–[14]. However, only a
small fraction has been concerned with the estimation prob-
lem for singular systems (Sometimes called implicit system
or descriptor systems). Singular formulation arises naturally
in most problems of non-causal phenomena and should be
considered in many fields. Applications involving singular
models have included image modeling, economical systems,
electronic network model, robotics, and two manipulators
grasping object model [10]. The filtering problem for singu-
lar systemwas first proposed by [8]. Dai considers the system
with square singular matrix and presents the result by reduc-
ing the original system to a standard linear system [3]. Then,
the research area was extended to some more general and
complex cases. The various approaches taken to these sys-
tems mainly contain augmentation and least square methods
for the systemwith rectangle singular matrix [6], a ‘‘9-block’’
form method for state noises and measurement noises being
correlated system [7], a stochastic shuffle method for general
singular system [9], and polynomial filtering methods for
stochastic non-Gaussian system [4]. In [16], the stabilization
of a class of fuzzy singular system is discussed by using of
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sliding-mode control. In [2], the stability of continuous-time
positive singular systems subject to time-varying delays is
discussed.

It should be pointed out that only a few works mentioned
above argue the prediction of the state (or part of the state)
and the smoothing problem. The major difficulty for the pre-
diction problem lies in the fact that the coefficient matrix of
current state is singular. Ishihara et al. presents the prediction
of singular system [7]. However, the results are under the
assumption that the singular matrix has full column rank,
which limits its application. Zhang et al. turn singular system
into a nonsingular one and develops the predictor by adding
the measurement equation to the state equation [15]. The
main shortcomings of this prediction algorithm are the need
of using measurement, which means the plant cannot work if
the measurement is delay or even missing. As for the smooth-
ing problem, the difficulty in which is to find an equation that
describes the relation between current measurement and the
state at former instant.

In this paper, a new state space decomposition method
for adapting the Kalman filter [1] algorithm is developed
to solve the prediction and filtering problem without the
assumption of singular matrix being full column rank. The
filtering process is easily understood since it is similar to
the standard Kalman filter. For the same singular system,
we also establish the relation equation bridging the current
measurement and the state at former instant to solve the one

50372
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2391-8888


C. Wen, X. Cheng: State Space Decomposition Filtering Method for a Class of Discrete-Time Singular Systems

step smoothing problem. The space spanned by the singu-
lar matrix can be viewed as a subspace of the state space,
which enables us to decompose the full state space into two
parts and estimate two components respectively. The singu-
lar dynamic system then has a new framework, resulting in
two nonsingular state space estimation problem of reduced
dimension. When the state space is decomposed in this man-
ner, one component is solved by using the singular dynamic
equation, the other component is given by combining the
system equation and measurement equation, and the initial
parameterization can be recovered at any time.

The remainder of this paper is organized as follows.
Section II formulates the singular systems and the problems
to be solved. Section III contains description of state space
decomposition, predictor of part of the state, and a new
filtering approach. In section IV, a smoothing result based
on space decomposition is developed. a numerical example
is presented to illustrate the new method performance in
section V and a conclusion is offered in Section VI.

II. PROBLEM FORMULATION
Consider a linear discrete-time stochastic singular system
described by following model:

M (k) x (k) = A (k − 1) x (k − 1)+ w (k − 1) (1)

z(k) = H (k)x(k)+ v(k) (2)

where x(k) ∈ Rn, z(k) ∈ Rm, represent the state, measurement
output, respectively. w(k) is the system noise, and v(k) is the
measurement noise. M (k), A(k − 1), H (k) are real matrices
with appropriated dimensions.
Assumption 1: M (k) ∈ Rr(k)×n is a rectangular matrix, and

Rank [M (k)] = s(k) < r(k) ≤ n.
Assumption 2: System is observable, i.e.

Rank
[
zM (k)− A(k)

H (k)

]
, Rank

[
M (k)
H (k)

]
= n

where z is an arbitrary complex.
Assumption 3: w(k) and v(k) are independent with zero

mean and positive covariance matrixW (k) and V (k), respec-
tively, i.e.

E
{[

w(k)
v(k)

] [
wT (j)vT (j)

]}
=

[
W (k) 0
0 V (k)

]
δk,j

Assumption 4: The initial state x(0) with mean x0 and
covariance p0 is independent of w(k) and v(k).
In Assumption 1, we explicitly allow the singular

matrix M (k) to vary with time. In this framework, we even
allow the variation not only in the value of M (k), but in the
dimension. However, change in the singular matrix requires
matrix factorizations and state space decomposition to be
computed at each step, at a potentially computation cost.
Some of the cost and performance effects are reduced in
the time-invariant system, i.e. M (k) = M , A(k) = A, and
H (k) = H for any k .

As we all know, whenM (k) is a nonsingular square matrix,
the prediction x̂(k|k − 1) of the state x(k) based on mea-
surement z(1), z(2), · · · , z(k − 1) can be obtained [1]. Thus,
the optimal estimate result can be obtained by using the stan-
dard Kalman filtering. However, with singular matrix M (k),
can we still gain some information about x(k) from the same
measurements? If the answer is yes, with measurement z(k),
can we still formulate the estimate process being similar to
Kalman filtering? In this paper, we will give the answer to
above two questions, and find the optimal filter and smoother
of original state.

III. PREDICTION AND FILTERING
Singular dynamic equations (1) illustrates that only a part of
the state x(k) is related with the state x(k − 1), which means
that it is impossible to solve the prediction problem of x(k)
based on z(1), z(2), · · · , z(k − 1). In this section, we will
decompose the state space into two parts according to the
construction ofM (k), and put the estimate problem into these
two subspaces. One part, which also can be treated as the
prediction of part of the state, is estimated from the singular
dynamic systems and measurements z(1), z(2), · · · , z(k − 1).
The other part will be estimated based on the measure-
ment z(k). Provided both the two components of the state
estimate in two subspaces are determined, they can always be
summed to produce an estimate in the original full state space.
Next, we will turn to a classical idea of QR factorization to
decompose the state space.

A. STATE SPACE DECOMPOSITION
Let us first consider the solution of an equation

Gx = b (3)

where G is a m× n matrix and b is a m -dimensional vector.
We assume that G has full row rank and that m < n. The
solution of this equation is not unique, and we will use state
space decomposition method to discuss the solution set.
Lemma 1 [11]: For an k×n full column rankmatrix B with

k > n, the QR factorization of B yields an k × k orthogonal
matrix Q and an k × n upper triangular matrix R such that.

B = QR =
[
Q1 Q2

] [R1
0

]
where Q1 is a k × n matrix, Q2 is a k × (k − n) matrix, and
R1 is a n× n, nonsingular, upper triangular matrix.
From lemma 1, the QR factorization of GT can be

written as

GT =
[
Q1 Q2

] [R1
0

]
(4)

where Q1 is a n× m matrix, Q2 is a n× (n− m) matrix, and
R1 is a m× m, nonsingular, upper triangular matrix.
In addition, since the columns ofQ are a orthogonal vector

bundle, the spaces respectively spanned by Q, Q1, and Q2,
satisfy

span (Q) = span (Q1)
⊕

span (Q2)
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If x ∈ span (Q) is a solution of (3), there will exist x1 ∈
span (Q1) and x2 ∈ span (Q2), satisfying

x = x1 + x2

On the other hand, if the value range of x1 and x2 are
known, the solution set of (3) will be found. Even better, since
Q1 is a basis for span (Q1) and Q2 is a basis for span (Q2),
the solution can be written as

x = Q1ξ + Q2η (5)

and the problem is changed into searching for two reduced
dimension vector ξ and η.

Substituting (4) and (5) into (3) gives(
[Q1 Q2]

[
R1
0

])T
[Q1ξ + Q2η]

=

[
RT1 0

] [QT1
QT2

]
[Q1ξ + Q2η]

= RT1Q
T
1 [Q1ξ + Q2η]

= RT1Q
T
1Q1ξ + RT1Q

T
1Q2η

= RT1 ξ

= b

i.e.

ξ = R−T1 b

From above discussion, we find that ξ is determined and η
is without any constraint. The solution set of equation (3) can
be written as

x = Q1R
−T
1 b+ Q2η

where η is arbitrary.

B. PREDICTION OF PART OF THE STATE
The decomposition method defined in previous subsection
can be used to create a new state space model on which to
operate. Consider the singular system (1) and (2). For each
time index k , since M (k) in (1) is not full row rank, there
exist a nonsingular matrix D(k) ∈ Rr(k)×r(k), such that

D(k)M (k) =
[
M1(k)
0

]
(6)

where M1(k) is a s(k) × n full row matrix, and 0 is a (n −
s(k))× n zero matrix.
With the QR factorization of MT

1 (k) and equation (5),
the state x(k) can be written as

x(k) = Q1(k)ξ (k)+ Q2(k)η(k) (7)

where ξ (k) ∈ Rs(k) and η(k) ∈ Rn−s(k) are two new and
reduced vectors. We can see that if both the estimate of ξ (k)
and η(k) can be found, the estimate of x(k) also will be given.

Combining (6) and (7) gives[
M1(k)
0

]
x(k) = D(k)A(k − 1)x(k − 1)+ D(k)w(k − 1)[

RT1 (k)Q
T
1 (k)

0

]
[Q1(k)ξ (k)+ Q2(k)η(k)]

= Ā(k − 1)x(k − 1)+ D(k)w(k − 1)[
RT1 (k)
0

]
ξ (k) = Ā(k − 1)x(k − 1)+ D(k)w(k − 1) (8)

where Ā(k − 1) = D(k)A(k − 1)

Since Rank
[
RT1 (k)
0

]
= Rank

[
RT1 (k)

]
= s(k) =

dim[ξ (k)], the minimum-norm least squares solution, i.e. the
prediction of ξ (k) is

ξ̂ (k|k − 1) = 0(k)Ā(k − 1)x̂(k − 1|k − 1) (9)

where

0(k) =
(
[R1(k) 0] W̄−1(k)

[
RT1 (k)
0

])−1
× [R1(k) 0] W̄−1(k)

W̄ (k) = D(k)W (k − 1)DT (k)

+ Ā(k − 1)P(k − 1|k − 1)ĀT (k − 1)

The prediction error covariance is

Pξ (k|k − 1)

= E
{[
ξ (k)− ξ̂ (k|k − 1)

] [
ξ (k)− ξ̂ (k|k − 1)

]T}
=

(
[R1(k) 0] W̄−1(k)

[
RT1 (k)
0

])−1
(10)

The prediction and prediction error covariance of ξ (k) are
presented by (9) and (10), respectively. Next, we will esti-
mate based on measurement z(k). It should be point out that,
despite prediction contains only part of the full state, it is
also important in some cases. For example, consider a vehicle
moving on a road, whose state is 2-dimension composed of
position and velocity, and the singular parameter is M (k) =[
1 0
0 0

]
. If the measurement at instant k is delay or even

missing, most existing methods will cannot work. With our
method, as expressed in (9) and (10), the prediction and
corresponding covariance of position can be computed, which
is critical to judge the position of the vehicle.

C. OPTIMAL FILTERING
Next, we will use the measurement equation to give the
estimate result of η(k) and update ξ̂ (k|k − 1). With the
assumption 2 andRank [M (k)] = s(k), therewill exist n−s(k)
rows of H (k), denoted as H1(k), is full row rank and satisfies

Rank
[
M (k)
H1(k)

]
= n.

Without loss generalization, H1(k) is assumed to be com-
posed of the first n− s(k) rows of H (k), which can be written
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as H (k) =
[
H1(k)
H2(k)

]
. The initial measurement equation

becomes

z1(k) = H1(k)x(k)+ v1(k) (11)

z2(k) = H2(k)x(k)+ v2(k) (12)

With (5), equation (11) can be written as

z1(k) = H1(k) [Q1(k)ξ (k)+ Q2(k)η(k)]+ v1(k)

= H̄12(k)η(k)+ H̄11(k)ξ (k)+ v1(k) (13)

where H̄11(k) = H1(k)Q1(k), H̄12(k) = H1(k)Q2(k)
From the appendix, we know that Rank

[
H̄12(k)

]
=

n−s(k).With (9) and (13), the estimate value of η(k), denoted
as η̂1(k|k), is

η̂1(k|k) = H̄−112 (k)
[
z1(k)− H̄11(k)ξ̂ (k|k − 1)

]
(14)

whose error covariance is

Pη,1(k|k)

= E
{[
η(k)− η̂1(k|k)

] [
η(k)− η̂1(k|k)

]T}
= H̄−112 (k)

{
H̄11(k)Pξ (k|k − 1)H̄T

11(k)+ V1(k)
}
H̄−T12 (k)

where V1(k) = E
{
v1(k)vT1 (k)

}
.

We can see that the prediction of ξ (k) and estimate of η(k)
are described as (9) and (14), respectively. The corresponding
error covariance is

Pξ,η,1(k|k) = E
{[
ξ (k)− ξ̂ (k|k − 1)
η(k)− η̂1(k|k)

]
×

[
ξ (k)− ξ̂ (k|k − 1)
η(k)− η̂1(k|k)

]T}

=

[
Pξ (k|k − 1) Covξ,η,1(k|k)
Covη,ξ,1(k|k) Pη,1(k|k)

]
(15)

where

Covξ,η,1(k|k) = Pξ (k|k − 1)H̄T
11(k)H̄

−T
12 (k)

and

Covη,ξ,1(k|k) = CovTξ,η,1(k|k)

Next, we use z2(k) to update ξ̂ (k|k − 1) and η̂1(k|k), from
(7) and (12), we have

z2(k) = H̄21(k)ξ (k)+ H̄22(k)η(k)+ v2(k) (16)

where H̄21(k) = H2(k)Q1(k), H̄22(k) = H2(k)Q2(k).
Using the well-known projection theory [1], the update

equation is[
ξ̂ (k|k)
η̂(k|k)

]
=

[
ξ̂ (k|k − 1)
η̂1(k|k)

]
+ K (k) {z2(k)

−
[
H̄21(k), H̄22(k)

] [ ξ̂ (k|k − 1)
η̂1(k|k)

]}
(17)

where

K (k) = Pξ,η,1(k|k)
[
H̄21(k), H̄22(k)

]T
×
{[
H̄21(k), H̄22(k)

]
× Pξ,η,1(k|k)

[
H̄21(k), H̄22(k)

]T
+ V2(k)

}−1
V2(k) = E

{
v2(k)vT2 (k)

}
The estimate error covariance is

Pξ,η(k|k) =
{
I (k)− K (k)

[
H̄21(k), H̄22(k)

]}
Pξ,η,1(k|k)

(18)

Equations (9), (14), (15), (17) and (18) construct the esti-

mate process of
[
ξ̂ (k)
η̂(k)

]
, which is similar to the standard

Kalman fitler. With equation (7), the estimate result of initial
state is

x̂(k|k) = [Q1(k) Q2(k)]
[
ξ̂ (k|k)
η̂(k|k)

]
and the corresponding estimate error covariance is

P(k|k) = [Q1(k) Q2(k)]Pξ,η(k|k)
[
QT1 (k)
QT2 (k)

]
Remark 1:WhenM (k) is a full rank square matrix, the sys-

tem will be nonsingular. There is no need to decompose the
state space, since Q1(k) = In, ξ (k) = x(k),Q2(k) and η(k)
will disappear. Similarly, z2(k) = z(k), H2(k) = H (k),
z1(k) andH1(k) will disappear. In this situation, the prediction
will contain full state, and the singular filter collapses to the
standard Kalman filter.

IV. OPTIMAL ONE STEP SMOOTHER
The key to solve a smoothing problem is to find an equation to
describe the relation between current measurement z(k + 1)
and the former instant state x(k). Using the state space decom-
position method, we will present the desired relation and
develop the optimal one step smoother of the singular system
in this subsection. At instant k + 1, state equation (8) can be
written as following two new equations.

RT1 (k + 1)ξ (k + 1) = Ā1(k)x(k)+ D1(k + 1)w(k)

i.e.

ξ (k+1)=R−T1 (k+1)
[
Ā1(k)x(k)+D1(k+1)w(k)

]
(19)

and

0 = Ā2(k)x(k)+ D2(k + 1)w(k) (20)

where Ā1(k) and Ā2(k) are the first s(k) rows of Ā(k) and the
last n− s(k) rows of Ā(k), respectively. D1(k + 1) is the first
s(k) rows of D1(k+ 1) and D2(k+ 1) is the last n− s(k) rows
of D1(k + 1).
At instant k + 1, equation (13) gives

η(k + 1) = H̄−112 (k + 1) [z1(k + 1)

− H̄11(k + 1)ξ (k + 1)− v1(k + 1)
]

(21)
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FIGURE 1. True value, filtering result and smoothing result of x1(k).

Substituting (21) into (16), we have

z2(k + 1)

=
[
H̄21(k + 1) H̄22(k + 1)

] [ ξ (k + 1)
η(k + 1)

]
+ v2(k + 1)

= H̄22(k + 1)H̄−112 (k + 1)z1(k + 1)+
[
H̄21(k + 1)

− H̄22(k + 1)H̄−112 (k + 1)H̄11(k + 1)
]
ξ (k + 1)

− H̄22(k + 1)H̄−112 (k + 1)v1(k + 1)+ v2(k + 1)

i.e.

z2(k + 1)− H̄22(k + 1)H̄−112 (k + 1)z1(k + 1)

=

[
H̄21(k + 1)− H̄22(k + 1)H̄−112 (k + 1)H̄11(k + 1)

]
× ξ (k + 1)− H̄22(k + 1)H̄−112 (k + 1)v1(k + 1)

+ v2(k + 1) (22)

Substituting (19) into (22), we have

z2(k + 1)− H̄22(k + 1)H̄−112 (k + 1)z1(k + 1)

=

[
H̄21(k + 1)− H̄22(k + 1)H̄−112 (k + 1)

× H̄11(k + 1)
]
R−T1 (k + 1)Ā1(k)x(k)

+

[
H̄21(k + 1)− H̄22(k + 1)H̄−112 (k + 1)

× H̄11(k + 1)
]
R−T1 (k + 1)D1(k + 1)w(k)

− H̄22(k + 1)H̄−112 (k + 1)v1(k + 1)+ v2(k + 1) (23)

Combing (20) and (23) together, we have a new measure-
ment equation

y(k + 1) = 9(k + 1)x(k)+1(k)
[
w(k)
v(k)

]
(24)

where

1(k) =
[
D2(k + 1) 0
3(k + 1) 4(k + 1)

]
4(k + 1) =

[
−H̄22(k + 1)H̄−112 (k + 1) I (k + 1)

]
y(k + 1) =

 0
z2(k + 1)− H̄22(k + 1)H̄−112 (k + 1)
×z1(k + 1)


3(k + 1) =

[
H̄21(k + 1)− H̄22(k + 1)H̄−112 (k + 1)

× H̄11(k + 1)
]
R−T1 (k + 1)D1(k + 1)

9(k + 1) =


Ā2(k)[

H̄21(k + 1)− H̄22(k + 1)H̄−112 (k + 1)

×H̄11(k + 1)
]
R−T1 (k + 1)Ā1(k)


Using well known projection theory, equation (24) is used

to update x̂(k|k) to obtain the one step smoothing result.

x̂(k|k+1)= x̂(k|k)+K (k|k+1)
[
y(k+1)−9(k+1)x̂(k|k)

]
50376 VOLUME 7, 2019
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FIGURE 2. True value, filtering result and smoothing result of x2(k).

where

K (k|k + 1)

= P(k|k)9T (k + 1)
{
9(k + 1)P(k|k)9T (k + 1)

+1(k)
[
W (k + 1) 0

0 V (k + 1)

]
1T (k)

}−1
Its smooth error covariance is

P(k|k + 1) = {I (k|k + 1)− K (k|k + 1)9(k + 1)} p(k|k)

Remark 2: When M (k + 1) is full rank, similar to the
situation discussed in Remark 1, the singular smoother will
collapses to the standard Kalman smoother.While ifM (k+1)
is a full row rank matrix, i.e. Rank[M (k+1)] = r(k+1) < n,
equation (20) will disappear, which means the singular
dynamic equation at time k + 1 does not affect its former
state x(k). In other words, the state equation will provide no
help to the smoother. With assumption 2, when the dimension
of z(k + 1) is equal to n − s(k + 1), from the derivation
of smoothing process, we can find that the measurement
can only be used to obtain the expression of η(k + 1), and
z2(k+1), which is important to smooth x̂(k|k), will disappear.
Furthermore, if both Rank[M (k + 1)] = r(k + 1) < n
and Dim[z(k + 1)] = n − s are satisfied, the update of step
smoother is 0, i.e. x̂(k|k + 1) = x̂(k|k).

V. NUMERICAL EXAMPLE
We consider an example described by equation (1) and (2),
with x(k) = [x1(k), x2(k), x3(k)]T . The singular matrix is
variant both in value and dimension, and the parameters are
given as follows.

M (k) =




1 0 0
√
2 1 0

1
√
2/2 0

 k = 1, 3, · · ·

[
1/2 0 1

1 0 1/2

]
k = 2, 4, · · ·

A(k) =



[
1/2 3/2 1/2

2 1 3/2

]
k = 1, 3, · · ·

1 1
√
2

0 1+
√
2 1

3/2
√
2/2

√
2

 k = 2, 4, · · ·

W (k) =



[
0.1 0

0 0.2

]
k = 1, 3, · · ·

0.1 0 0

0 0.2 0

0 0 0.1

 k = 2, 4, · · ·
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FIGURE 3. True value, filtering result and smoothing result of x3(k).

The measurement matrix and measurement noises covari-

ance are time-invariant, which are H (k) =

 1 0 1
0 0 1
1 1 0

,
R(k) =

 0.2 0 0
0 0.1 0
0 1 0.2

.
Figs.1-3 display the simulation results of true state, filter-

ing result, and the smoothing result.

VI. CONCLUSION
In this paper, we have developed a predictor of part of the
state and a filter of full state for singular systems. Differently
from previous methods, the key to our approach is to decom-
pose the original state space into two parts by analyzing the
singular matrix. The parameters in these two subspaces are
estimated separately. One component, i.e. the prediction of
part of the state, is given based on the state equation and
measurements z(1), z(2), · · · , z(k − 1) and the other com-
ponent is estimated by the former component and current
measurement z(k). Furthermore, the decomposition allows
for singular estimates to be reconstructed from the reduced
state space to the original state space. For the same dynamic
system, by establishing the relationship between measure-
ment z(k+1) and the state x(k), we also presented a one-step
smoother. Lastly, a numerical example is presented to show
the effectiveness of state space decomposition method.

APPENDIX
The following gives a proof of Rank

[
H̄12(k)

]
= n− s(k) Let

us first introduce a lemma.
Lemma 2: Let A ∈ Rm×n (m > n) be full column rank

matrix, and B ∈ Rn×r (n > r), We have the conclusion that
Rank[AB] = Rank[B].

Proof: Since Rank[A] = n, there exist n rows of A,
denoted as A1, such that Rank[A1] = n. Without loss of
generality, we may assume that A1 is composed of first n rows
of A and the last m− n rows are denoted as A2. then

Rank[AB] = Rank
[
A1B
A2B

]
≥ Rank[A1B] = Rank[B]

also because

Rank[AB] ≤ Rank[B]

We have that

Rank[AB] = Rank[B]

From assumption 2 and the definition of Q2(k), we have

Rank
[
M (k)
H1(k)

]
= n

and

Rank[Q2(k)] = n− s(k)

50378 VOLUME 7, 2019



C. Wen, X. Cheng: State Space Decomposition Filtering Method for a Class of Discrete-Time Singular Systems

From lemma 2, we have

Rank
{[

M (k)
H1(k)

]
Q2(k)

}
= n− s(k)

also because

M (k) = D−1(k)
[
M1(k)
0

]
= D−1(k)

[
RT1 (k)Q

T
1 (k)

0

]
Combining above two equations, we obtain

Rank

{[
M (k)

H1(k)

]
Q2(k)

}

= Rank


D−1(k)

(
M1(k)

0

)
H1(k)

Q2(k)


= Rank


D−1(k)

(
M1(k)

0

)
H1(k)

Q2(k)


= Rank


D−1(k)

(
RT1 (k)Q

T
1 (k)

0

)
H1(k)

Q2(k)


= Rank

D−1(k)
(
RT1 (k)Q

T
1 (k)

0

)
Q2(k)

H1(k)Q2(k)


= Rank

[
0

H̄12(k)

]
= n− s(k)

which means

Rank[H̄12(k)] = n− s(k)
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