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ABSTRACT In this paper, we discuss machine learning methods for classifying gross kicking activity for the
term and preterm infants. We examine different combinations of sensors to determine the relative importance
of each sensor to gross activity detection. In addition, we discuss methods to correlate infant age to the
amount of time an infant performs unilateral vs bilateral kicking and time an infant is at rest. For preterm
infants, we examine this same relationship using birth age and adjusted age. From this comparison, we aim
to determine which age is a better predictor for movement breakdown. For gross activity recognition, it was
determined that a sensor placed on the thigh was less important to overall recognition than a sensor placed
on the foot or shin. In addition, a sensor placed on the foot tended to be the most accurate on its own while
the thigh sensor tended to be the least accurate. For the relationship between infant age and movement
breakdown, it was determined that the amount of time spent at rest increases as age increases. Furthermore,
the amount of time spent performing bilateral kicking decreases at a more rapid rate than unilateral kicking
as age increases. Finally, we examine how this relationship changes over time for infants observed over
multiple months.

INDEX TERMS Activity recognition, clustering methods, medical robotics, rehabilitation robotics, sensor
fusion, wearable sensors.

I. INTRODUCTION
According to the Center for Disease Control and Preven-
tion (CDC), one out of every ten births in the United States
is considered premature (infants with a gestation period
of 37 weeks or less). Despite the improved neonatal care,
which has led to an increase in the number of surviving
preterm infants, preterm infants are at an increased risk of
developing neuro-developmental disorders. The most com-
mon of these motor disorders among children is cerebral
palsy (CP) which affects approximately 2 to 2.5 per 1000 live
births [1].

CP is a spectrum disorder that encompasses various cat-
egories of motor function disorders and varies in severity
across individuals. Research has shown that interventions
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may improve the overall quality of life of affected individuals
if CP can be reliably detected early in life [2], [3].
However, due to the variability between individual cases of
CP, it is difficult to design a diagnostic test to encompass all
patients [4]. Currently, detecting the development of CP in
infancy requires clinical observation and documentation of
functional motor milestones in combination with neurolog-
ical assessments [5]. These approaches are not appropriate
for the detection of CP early in life as such milestones are
not typically exhibited in the first few months. Additionally,
the observation of infant motor ability is typically confined to
a clinical setting which limits the amount of time an infant can
be observed [6]. Moreover, these approaches are subjective
by nature due to their dependence on infant cooperation
during the observation time and opinion of the clinician.
To date, an objective method for the extended observation of

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

51357

https://orcid.org/0000-0003-0208-5557


K. E. Fry et al.: Discriminative Models of Spontaneous Kicking Movement Patterns for Term and Preterm Infants

infant motor development and the early detection of CP is not
available.

Spontaneous kicking is one of the earliest displays of
motor skills and is an important precursor to later voluntary
motor control [7]. Abnormal neuromotor function later in
life is indicated by abnormal neuromotor function displayed
through spontaneous kicking [8], [9]. The direct observation
of an infant’s spontaneous kicking early in life can be used
to detect the development of neurodevelopmental disorders
like cerebral palsy (CP). However, abnormalities in sponta-
neous movements are not well defined and are not readily
observable through traditional functional motor milestone
assessments.

FIGURE 1. Example of sensor placement for infant’s left leg.

Our research aims to develop a system for the early detec-
tion of delays in infant motor development and developing
CP through the extended observation of infant spontaneous
kicking outside of the clinical setting. Infant kicking kine-
matic data is gathered over long periods of time using sensors
attached to the limb segments of the infant’s legs (Figure 1).
This data is used to compute kicking kinematics and deter-
mine various features of infant spontaneous kicking. These
features are used to determine a kinematic suite that describes
the characteristics of typical spontaneous kicking at different
months of development. With this suite, an infant is con-
sidered motor developmentally delayed if their spontaneous
kicking displays characteristics typical of a younger infant.

In this work, we focus on detecting periods of rest, unilat-
eral activity, and bilateral activity. We examine the ability of
different machine learning algorithms to identify periods of
kicking activity when different combinations of sensors are
present. From this, we determine the most accurate classifier
for this application and determine the ability of different
combinations of sensors to determine kicking activity. Addi-
tionally, we relate infant age to the movement breakdown.
A simple linear regression is fit to this relationship to develop
a discriminative model to predict infant developmental age
from movement breakdown.

II. RELATED WORK
A. AUTOMATED ANALYSIS OF INFANT
MOTOR DEVELOPMENT
Numerous techniques have been developed to observe and
analyze various aspects of infant motor development. Mul-
tiple approaches involve the use of specialized equipment
like depth cameras and motion tracking systems to gather
infant movement data. Depth cameras have been used to
gather infant movement data for analyzing kinematic motion
and for infant pose estimation [10]–[12]. Olsen et al. used
motion capture to gather infant pose data and track infant
movement [13]. Karch et al. used electromagnetic tracking
to examine upper and lower limb motions of infants [14].
Electromagnetic tracking was also used in [15] to track
fidgety movements in 3D space. The methods that utilize
this specialized equipment provide precise spatial tracking
of infant spontaneous movement. However, such approaches
and others like them require a controlled environment and
expensive equipment, making these approaches unsuitable
for use outside of a laboratory or clinical setting.

Other approaches utilize optical devices like video cam-
eras to analyze infant motion data. Oftentimes, markers are
placed on the infant to aid in tracking the infant’s movements.
In [16], baseline data of early spontaneous movement in
preterm infants were established from the kinematic analy-
sis of video data with joint markers on the infants’ lower
limbs. Other approaches attempt to track infant motion and
identify at risk infants using marker-less video data [17].
Addeet al.utilized motiongrams to capture general movement
patterns without the need of markers [18]. Stahl et al.used
motion trajectories from markerless video data to analyze
spontaneous movements using optical flow and wavelet anal-
ysis [19]. Das et al.tracked infant kicking from video data to
collect kinematic data to identify periods of simultaneous and
non-simultaneous movements [20]. However, these meth-
ods often make assumptions about the position of the joints
and require a specific configuration between the camera
and the infant being filmed. Additionally, these methods are
oftentimes not robust to occlusions making these approaches
non-ideal for usage outside of a clinical or laboratory setting.

Other approaches use wearable technology or clothing
embedded with sensors to gather infant movement data.
Smith et al. determined the daily quantity of infant leg move-
ment from infant kicking data gathered over the course of
a full day to determine the daily kicking sequence [21].
Accelerometer data was used in [22] to identify motor mile-
stones in infants and identify at risk infants. Due to their
low cost and ability to be utilized in multiple settings, these
approaches are suitable for in-home usage. However, these
approaches are limited as they require a strict definition of
which movements qualify as a kick.

To enable the early detection of delays in infant motor
development and developing CP, a system must allow for a
longer observation time than typically allowed in a clinical
setting. In our methodology, we utilize the advantages of
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wearable technology to enable observation in the home and
thus maximize observation time. Additionally, we address
the shortcomings oftentimes associated with wearable tech-
nology in this space. Rather than restricting our analysis to
movements that follow a strict definition, our methodology
allows for the analysis of a multitude of spontaneous move-
ments. These movements could aid in the determination of
developmental age and would otherwise be discarded.

B. ACTIVITY DETECTION FROM MULTIPLE SENSORS
There are multiple approaches available to combine infor-
mation gathered from multiple sensors and derive an overall
decision. The first subset of these approaches is called sensor
fusion, in which features from the data of multiple sensors
are combined into a feature vector that is used to reach an
overall decision [23]. The second subset of these approaches
is called decision fusion, in which the decisions of multiple
sensors are combined to reach an overall decision. Traditional
sensor fusion methods assume that the feature vectors are
complete; that is, it is assumed that data is not missing.
Though there exist methods to estimate missing data to
form complete feature vectors, these methods can lead to
large errors in overall classification [24]. In comparison,
data fusion methods tend to be more robust to missing data.
To account for a missing sensor decision, the rule to reach an
overall decision can be easily adjusted. However, the optimal
rule to combine individual sensor decisions is not always
known.

Fry et al. used a Stance Hypothesis Optimal Detec-
tor (SHOD) with an automated thresholding method to deter-
mine instances of activity for term and low-risk preterm
infants. Identified periods of activity for the individual sen-
sors were then combined to determine overall activity for
the leg [25]. In that study, two methods were considered to
determine the overall activity for the leg. The first method,
OR, dictated an instance of activity if a single sensor detected
activity. This method tended to overestimate the instances of
activity and the activity detector had a relatively large number
of false positives which negatively impacted the overall clas-
sification accuracy. To address this issue, the second method,
MODE, dictated an instance of activity if two or more sensors
detected activity. The number of false positives decreased
using the second method, however there was no significant
difference between the accuracy of the two methods. From
this work, it was determined that a better understanding of
the importance of individual sensors to overall activity detec-
tion was needed. With this information, a smarter decision
fusion/sensor fusion approach could be determined to signif-
icantly improve the accuracy of the detector.

To push forward the state-of-the-art in this domain, our
current work discusses multiple machine learning assessment
methods for identifying periods of kicking activity extracted
from infant kicking data. Specifically, we aim to deter-
mine the relative importance of each sensor to gross activity
detection for data acquired from term and low-risk preterm
infants. Additionally, we discuss methods that correlate infant

age to the amount of time an infant performs unilateral vs
bilateral kicking. For preterm infants, we examine this same
relationship using birth age and adjusted age. Finally, we
examine how this relationship changes over time for infants
observed over multiple months.

III. METHODS
To enable the early detection of neuro-developmental motor
disorders in children, a system must:
• allow for a longer observation time than typically
allowed in a clinical setting

• be adaptable to variations in infant size and age
• provide an objective, quantifiable metric of infant motor
development.

The system proposed in this study uses an infant sensor suit
to gather motion data associated with an infant’s spontaneous
kicking patterns. Collected data is then analyzed to deter-
mine instances of kicking activity as the first measure for
calculating infant kicking kinematic data over long periods of
time. The experimental procedures involving human subjects
described in this section were approved by the Institutional
Review Boards of the Georgia Institute of Technology and
Georgia State University. Parents of the infants consented to
the experimental procedures.

A. INFANT SENSOR SUIT AND DATA COLLECTION APP
Our system couples a Bluetooth-connected infant sensor suit
with a data collection app, resident on a mobile device to
enable ease-of collection in the home. The infant sensor suit
pairs infant pants and rattle socks with six 6-axis IMU sensors
powered by a coin cell battery (MbientLab’s MetawearC).
The suit incorporates 3 sensors per leg, placed on the thigh,
shin, and foot to gather 3-axis acceleration and gyroscope
data for each of the limb segments (Fig. 1) [37]. These
sensors utilize Bluetooth Low Energy (BLE) technology for
data transfer to our custom app. The app allows clinicians or
parents to gather data from the sensor suit while monitoring
battery life and connectivity of each sensor.

B. DATA COLLECTION PROCEDURE
Six infants, one male and five females, aged between
2 and 8 months (0.5 and 8 months adjusted age) were
observed for this study (Table 1 and 2). Three of the eight
infants were born full term while the remaining three infants
were born premature but considered low risk. Low risk,
preterm infants were defined as infants born at a gestational
age between 32 to 37 weeks with no severe respiratory dis-
tress during birth and no existing Grade III or IV intraven-
tricular hemorrhage after birth [24]. For observation in the
home, infants were placed supine on a flat, padded surface
while wearing the infant sensor suit. The infant’s legs were
momentarily held stationary at the beginning of each kicking
session. For this baseline study, this step allowed us to later
calibrate a zero-point time stamp with respect to quantifying
the performance of our algorithms.

The infant was then encouraged to kick by providing stim-
ulation consisting of verbal gestural cues and presentation of
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FIGURE 2. Example of individual codifier decision (bottom three subplots) and the overall combined truth vector. At instances of disagreement
between the codifiers, the most popular identifier at a particular time was chosen to construct the combined truth vector. For example, at time
elapsed t = 25 and t = 32, there was disagreement between codifier 1 and codifiers 2 and 3. As such, for the combined truth vector, the decision of
codifier 2 and 3 were chosen over the decision of codifier 1.

TABLE 1. Infant demographics.

physical play objects. Stimulation was provided until it was
determined that the infant needed to rest. That is, the kicking
session continued until the parent or clinician requested a rest
period or if the infant showed any form of agitation or distress.
During kicking, acceleration and angular rate data were col-
lected at a sampling rate of 100Hz from the embedded infant
suit sensors. Several periods of data were collected with each
session yielding up to 20 minutes of kicking data. Session
length varied between infants due to infant emotional state;
the average session length was 14 minutes. Each session was
also filmed using a video timestamping application for the
creation of truth data.

C. CONSTRUCTION OF GROUND TRUTH
Three independent coders were separately tasked to codify
instances of leg motion activity in the timestamped videos.

TABLE 2. Infant Session Information.

Each coder was asked to identify moments of time when
the infant’s leg was moving. Results from the coders were
resampled to match the sampling rate of the data collection
app and then used to construct a truth vector quantifying
motion activity for each kicking session. If there was dis-
agreement in motion activity between the coders, the most
popular identifier (2 out of 3) at that timestamp was used to
construct the truth vector (Fig. 2).
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Coders were not given any specific instructions regarding
which limb segment motion to prioritize. They were also not
given instructions regarding interferences to or physical influ-
encers of the infant’s movements. These instances include
occurrences where another individual, such as the parent,
physically moved the infant or the infant’s legs during an
observation session.

D. CONSTRUCTION OF FEATURE VECTOR
FOR ACTIVITY DECTECTION
To account for local dependencies between data points, a slid-
ing window with a width of 250 ms and step of 100 ms
was used for each segment of data. These values were deter-
mined through previous experiments to optimize the accuracy
of kicking detection while compensating for sensor noise.
A SHOD was used to create the feature vectors for the activ-
ity detector. SHOD is a magnitude-based method that uses
acceleration and angular rate data to increase the precision
and accuracy of an activity detector [17]. The SHOD value
for each window was calculated and associated with the
timestamp value at the center of the window (also called an
instance of data). Then, these values were combined to create
the figure of merit vj for each sensor per leg. An explanation
of the computation of vj and definition of constants is given
in Appendix. The figures of merit for each sensor or combi-
nations therein were used to create a feature vector V for the
activity detector. A feature vector was constructed for each of
the infant’s legs for each window of data.

IV. GROSS ACTIVITY DETECTION
In this section, we determine the relative importance of each
sensor to the overall detection results. We compare cases
where all 3 sensors per leg are present, where data from
two sensors are present, and where data from one sensor is
present. We examine the ability of three different machine
learning algorithms to identify periods of kicking activity
with different combinations of sensors to ensure that any
trends observed are not dependent upon the classifier used.

A. APPROACHES FOR ACTIVITY DETECTION
In this work, three approaches were used to detect peri-
ods of activity: a thresholding method, a K-nearest neigh-
bors (KNN) supervised learning method, and a Gaussian
mixture model (GMM) unsupervised learning method. For
the thresholding method and the KNN supervised learn-
ing method, a leave-one-out approach was used for train-
ing. In the leave-one-out approach, a segment of data is
left out during training and the remaining segments of data
are used to train the classification model. Detection results
are then reported on the left-out segment of the data to
evaluate the ability of the model to generalize to unseen
data. For the GMM unsupervised learning method, a model
was created for each segment of data without providing
truth labels with respect to the detection output for that
segment. Specific details for each method are detailed as
follows.

1) THRESHOLDING
A thresholding method assumes that a data set can be opti-
mally separated into two distinct classes or groups. In this
method, we determine a threshold γ from a set of training data
that separates the data into two distinct classes. As γ cannot
perfectly separate the two classes, γ is chosen to maximize a
desired classification metric (e.g. accuracy, specificity, etc.)
when data in each separated class is compared to the baseline
truth data [26]. In the leave-one-out approach, γ for each
segment of data is determined. Then the averaged γ across
the segments of data is used as the threshold for the left-out
segment.

In this work, γ was specified as the point of maximum
efficiency for each of the remaining segments of data as
computed from the receiver operating characteristic (ROC)
curve. Efficiency is a weighted average of sensitivity and
specificity. Thus, the point of maximum efficiency represents
the cutoff that maximizes both sensitivity and specificity.
Accuracy was not used as the specified metric due to the
tendency of the threshold being biased based on the larger
frequency of samples from one group over another. For exam-
ple, the threshold would be biased when using accuracy as the
optimizedmetric if the infant was not moving for a significant
portion of the data segment.

In activity detection, the two groups for classification are
as follows: a negative instance of activity (or no motion) and
a positive instance of activity (or movement). For a given
instance of testing data xi, a positive instance of activity was
indicated if:

‖V (xi)‖ > γ (1)

where V (xi) is the feature vector associated with instance xi.
If the above condition was not satisfied, a negative instance
of activity was indicated for xi. ‖V (xi)‖ was calculated by
taking the Euclidean norm.

2) K-NEAREST NEIGHBORS (KNN)
TheKNNmethod is an unsupervised, non-parametric method
for classification. KNN uses the training dataset directly to
make predictions for new unseen data. For a new instance xi,
a prediction is made by searching through the entire train-
ing set for the K most similar instances or neighbors [27].
A distance metric is used to determine which instances in the
training dataset, y, are most similar to the new instance xi.
For this work, the distance metric, d(xi, yr ), is defined using
a Euclidean distance:

d (xi, yr ) =

√√√√ n∑
j=1

(
vj (xi)− vj(yr )

)2 (2)

where n is the number of dimensions of the feature vector (the
number of sensors present) and yr represents a single instance
in the training dataset to which the testing instance xi is being
compared. the K nearest neighbors for xi are the K instances
from the training set with the smallest d (xi, yr ) .

VOLUME 7, 2019 51361



K. E. Fry et al.: Discriminative Models of Spontaneous Kicking Movement Patterns for Term and Preterm Infants

The predicted class for xi is determined as the class from
the training set that had the highest frequency from the K
most similar instances. That is, the class from the training set
with the majority of the K nearest neighbors is taken as the
prediction for the new instance. The classifier in this work
uses the K = 50 nearest neighbors from the training set to
determine the instance of activity for a given instance.

3) GAUSSIAN MIXTURE MODEL (GMM)
A GMM is a probabilistic model used to represent the pres-
ence of subpopulations, or groups, within a larger population.
This method constitutes a form of unsupervised learning and
thus does not require a set of labeled observed (training) data
to identify these groups (also known as components of the
GMM) [28], [29], [30]. GMM assumes that the individual
feature vectors V (xi) ∈ V are derived from a mixture or sum
of a finite number of Gaussian or normal distributions with
unknown parameters. These individual distributions model
the distribution of the data, the probability density functions
(pdf’s) within the different groups. The overall mixturemodel
p (V ) has the form:

p (V ) =
K∑
k=1

φkN (V |µk , 6k) (3)

K∑
k=1

φk = 1 (4)

where N (V |µk , 6k ) is the pdf of group k , µk and 6k are
the mean and covariance matrix specifying the normal dis-
tribution, and K is the number of groups. The group mixture
weights, φk for group k , are constrained to sum to 1 so that the
total pdf normalizes to 1. Finally, the dimension ofµk and6k
are determined by the dimension of the feature vectors V (xi).
An expectation-maximization algorithm is used to itera-

tively estimate the model parameters (µk , 6k , φk ) for each
normal distribution in the mixture model. The expecta-
tion step determines the expected group assignment Ck for
each instance xi is calculated given the model parameters
(i.e. p(Ck |V (xi), µ̂, 6̂, φ̂)). The maximization step then max-
imizes the expectations calculated in the expectation step
and updates the model parameters. This process repeats until
the algorithm converges resulting in a maximum likelihood
estimate.

With the estimatedmodel parameters, data can be clustered
by assigning each datum to its most likely cluster assignment.
That is, cluster assignment is by the most likely group assign-
ment. The probability that an instance xi belongs to a certain
component assignment Ck is calculated by:

p (Ck |V (x i)) =
φkN (V (x i)|µ̂k , 6̂k )∑K
r=1 φrN (V (xi)|µ̂r , 6̂r )

(5)

where the model parameters specifying the normal distri-
butions are the estimated parameters from the expectation-
maximization algorithm.

In this work, a GMM is estimated such that the model
clusters the data into two groups over N replicates or rep-
etitions. Then, the estimated model most likely to describe
the data is selected from the N replicates and used to assign
instances of activity to each timestamp. N = 15 was chosen
to ensure that at least one replicate converged while not being
too computationally intensive.

B. ACTIVITY DETECTION WITH
COMBINATIONS OF SENSORS
This work also aims to determine the robustness of the gross
activity detection approaches relative to the presence or loss
of sensor data acquired from term and low-risk preterm
infants. As such, different combinations of sensor loss are
considered when evaluating the three methods for activity
detection to ensure that any trend observed is not dependent
upon the classifier used.

1) ALL SENSORS PRESENT
We first examine the performance of the different activity
detection approaches discussed in section IV. A. when all
three sensors per leg are present. This serves as a base-
line on the optimal performance associated with the three
different approaches. In the baseline assessment, the indi-
vidual sensor figures of merit are concatenated to cre-
ate a three-dimensional feature vector at each instance
(e.g. V (xi) = [vthigh (xi) , vshin (xi) , vfoot (xi)]).

2) TWO SENSORS PRESENT
In this section, we examine the impact a missing sensor
has on overall activity recognition. That is, if data from
one sensor is lost, how well does the algorithm perform
with the remaining two sensors. We examine the case where
the shin and thigh sensor are present, the case where the
shin and foot sensor are present, and the case where the
thigh and foot sensor are present. For the sensors present,
the individual sensor figures of merit are concatenated to
create a two-dimensional feature vector at each timestamp
(e.g. V (xi) = [vthigh (xi) , vshin (xi)]).

3) ONE SENSOR PRESENT
We finally examine algorithm robustness by measuring its
performance when only one sensor is present. This provides
an indication of the reliability of the various approaches
and their dependency on individual sensor placement. It also
serves as an indication of the relative importance of each
sensor to overall detection of motor activity.

C. RESULTS FOR GROSS ACTIVITY DETECTION
Table 3 depicts how well each algorithm predicts overall
leg movement using the different combinations of available
sensors. Values displayed are the average performance of the
classifier over all infants over all testing sessions. Though no
statistically significant claims can be made due to the small
sample size, there were numerous observed trends.
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TABLE 3. Classifier performance when different combinations of sensors present.

Overall, the highest accuracy was achieved when all three
sensors were present. For the threshold method, a comparable
detection accuracy was reached when the foot and shin sen-
sors were present. In general, the omission of the foot or shin
sensor impacted accuracy more than the omission of the thigh
sensor. Additionally, the foot sensor tended to be the most
accurate sensor for detecting activity on its own though in
some instances, the shin sensor wasmore accurate. In general,
the thigh sensor was the least accurate for detecting accuracy
on its own. In terms of gross activity recognition, the thigh
sensor was found to be less important to overall recognition
than the foot or shin sensor.

All methods and combinations of sensors have higher sen-
sitivity than specificity. As such, all combinations of sensors
were able to identify positive instances of activity better than
negative instances of activity. Finally, of the three detection
methods, the KNN method performed the best for all sensor
combinations.

V. RELATIONSHIP BETWEEN MOVEMENT
BREAKDOWN AND AGE
In this section, we discuss our method for determining cor-
relations between characterization of the kicking activity and
the infant’s age. The objective for developing such a model

is important in identifying features of normative kicking,
leading to early identifications of delayed or atypical kicking
profiles. For characterizing kicking activity, we decompose
movements into four states and determine the proportion
of time an infant spends in each of the states: at rest (no
motion), unilateral motion (dominant leg movement only),
and bilateral (both legs moving). In the unilateral motion
state, the dominant leg depends on the individual. That is,
percentages reported are either left leg unilateral motion or
right leg unilateral motion depending on which leg is domi-
nant for the infant (i.e. which state between unilateral left and
unilateral right the infant spends more time in). Additionally,
the development of preterm infants is generally measured
on an adjusted scale. That is, preterm infants of a certain
adjusted age are typically compared to term infants of that
birth age. However, it is unclear whether a preterm infant
should be considered by their adjusted age or their birth age in
this relationship. In this study, we chose to evaluate preterm
infants based on their adjusted age and their birth age.

A. DESCRIMINATIVE MODEL FITTING
To develop a model that defines the relationship between
characterization of kicking activity and infant age, the percent
of time the infant spent in each motion state was plotted
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FIGURE 3. Plots for the percent of time an infant spent in the various
motion states vs adjusted age rounded to the nearest half month. Here,
the percentages for the premature infants (indicated with the blue +

markers) were plotted against the infant’s adjusted age. The adjusted age
is calculated by subtracting the number of weeks the infant was born
before their due date from the infant’s birth age.

against the infant’s age. A linear regression was fit to each
motion state to predict percentage of time given an infant’s
age. A sum of squares error (SSE) was then calculated for

FIGURE 4. Plots for the percent of time an infant spent in the various
motion states vs birth age rounded to the nearest half month. Here,
the percentages for the premature infants (indicated with the blue +

markers) were plotted against the infant’s birth age. The motion states
were fit with a linear model to determine which age premature infants
should be considered when examining their movement breakdown.

each motion state to indicate how well the linear model
represented the data:

SSE =
n∑
i=1

(yi − ŷi)2 (6)
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FIGURE 5. Plots for the percent of time infant D spent in the various
motion states vs birth age. Infant D was born to term. For infant D,
the general trends discussed for the entire group are observed here over
multiple months. That is, the amount of time infant D spent at rest
increases with age as the amount of time spent performing bilateral and
unilateral motion decreased with age.

where yi is an observed percentage and ŷi is the predicted
percentage from the linear model. When the SSE’s from two
models are compared, the smaller SSE indicates the model

FIGURE 6. Plots for the percent of time infant F spent in the various
motion states vs adjusted age. Infant F was born 6 weeks preterm.
Infant F also follows the general trends discussed for the entire group.
However, there is a distinct increase in % time for unilateral motion and a
distinct decrease in % time for no motion from 5.5 month to 6.5 months
adjusted age that goes against the trend for the overall group.

with higher predictive power. The coefficient of determina-
tion, R2, is also reported for each model. R2 indicates the per-
centage of variability in the response variable that is explained
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by the linear model. Generally, a higher R2 indicates a better
fitting model though this is not guaranteed. As such, it is
important to consider R2 in addition to another metric for
goodness of fit like the SSE.

B. RESULTS FOR CORRELATING MOVEMENT
BREAKDOWN AND INFANT AGE
Fig. 3 and 4 plot the observed percentage breakdowns vs
infant adjusted age and infant birth age respectively. The
breakdown of kicking activity reported is from activity as
detected from the KNN classification method when all three
sensors were present. Orange × markers represent obser-
vations from term infants while blue + markers represent
observations from preterm infants. Additionally, the linear
models are displayed. In these results, we observe that the no
motion class had a positive relationship with infant age while
the unilateral motion class and the bilateral motion class had a
negative relationship with age. Furthermore, the slope of the
regression for the bilateral motion class is steeper than that
of the unilateral motion class. Thus, as the infant ages, the
amount of gross motor activity of the lower limbs decreases
overall while instances of bilateral motion decrease more
rapidly than instances of unilateral motion.

TABLE 4. Comparison of linear models for motion states.

Table 4 reports the SSE’s of the six linear models. Within
each motion state, the SSE of the linear model associated
with birth age is compared to that of the SEE of the linear
model associated with adjusted age. Generally, the SSE for
the models using the adjusted age of the premature infants
was lower except for the bilateral motion state. Additionally,
the R2 value was higher for the adjusted age in the no motion
state and the unilateral motion state while the R2 value for the
bilateral motion state was higher for birth age. From the cur-
rent data, evaluating premature infants at their adjusted age
generally results in smaller residuals and higher coefficients
of determination and thus a more accurate prediction.

Fig. 5 plots the observed percentage breakdowns vs infant
age for infant D and Fig. 6 plots the observed percentage
breakdowns vs infant adjusted age for infant F. Infant D
was born to term while infant F was born 6 weeks preterm.
For infant D, the amount of time the infant spends at rest
increases with age while the amount of time the infant spends

performing bilateral or unilateral movement decreases with
age. Similar trends are observed for infant F. However, there
is a distinct increase in percent time for unilateral motion
and a distinct decrease in percent time for no motion from
5.5 month to 6.5 months adjusted age that goes against the
trend for the overall group.

VI. CONCLUSION
In this paper, we discussed machine learning methods for
classifying gross kicking activity for term and preterm infants
and examined different combinations of sensors to determine
the relative importance of each sensor to gross activity detec-
tion. While the highest overall accuracy was achieved when
the foot, shin, and thigh sensor were all present, our results
indicate that for gross activity detection, the omission of a
sensor placed on the thigh did not impact overall recognition
as much as the omission of a sensor placed on the foot or
shin. Individually, a sensor placed on the foot tended to be
the most accurate on its own while the thigh sensor tended to
be the least accurate.

We also discussed methods to correlate infant age to the
amount of time an infant is at rest, performing unilateral
activity, or performing bilateral activity. It was determined
that as the amount of time they spent at rest increases as age
increases. Furthermore, the amount of time spent performing
bilateral kicking decreases at a more rapid rate than unilateral
kicking as age increases.

Finally, we examined how this relationship changes over
time for infants observed over multiple months. The trends
observed for the three motion states when examining the
group are reflected in the analysis of the two infants (one term
and one premature) over multiple months.

To enable the early detection of delays in infant motor
development and developing CP through extended obser-
vation of infant spontaneous kicking outside of the clini-
cal setting. Characteristics of gross movement activity such
as movement breakdown and the kinematic characteristics
therein could serve as one feature to detect motor develop-
ment delays.

APPENDIX
SHOD is a magnitude-based method that uses both accel-
eration and angular rate data to increase the precision and
accuracy of an activity detector.
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1
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σ 2
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where: n refers to a specific frame, centered at instance xi,
which represents the content (acceleration and angular rate
data) of a sliding window; ak and ωk are the acceleration
and angular rate vector respectively for observation k of a
specific frame n; ān is the mean of the acceleration vector
of a specific frame n; g is the magnitude of acceleration due
to gravity (1 g).
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The constants determined are as follows: N = 25 is the
number of samples in a frame determined by the desired
length of the frame in seconds multiplied by the sampling
frequency; σ 2

a = 3.24 × 10−6, variance of the acceleration
signal noise, and σ 2

ω = 0.0049, variance of the angular rate
signal noise, are determined from specifications of the IMU.
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