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ABSTRACT Recently, network security has become a major challenge in communication networks. Most
wireless networks are exposed to some penetrative attacks such as signal interception, spoofing, and stray.
Radio frequency (RF) fingerprinting is considered to be a promising solution for network security problems
and has been applied with various improvements. In this paper, extensive data from Bluetooth (BT) devices
are utilized in RF fingerprinting implementation. Hilbert-Huang transform (HHT) has been used, for the
first time, for RF fingerprinting of Bluetooth (BT) device identification. In this way, time-frequency-energy
distributions (TFED) are utilized. By means of the signals’ energy envelopes, the transient signals are
detected with some improvements. Thirteen features are extracted from the signals’ transients along with
their TFEDs. The extracted features are pre-processed to evaluate their usability. The implementation of
three different classifiers to the extracted features is provided for the first time in this paper. A comparative
analysis based on the receiver operating characteristics (ROC) curves, the associated areas under curves
(AUC), and confusion matrix are obtained to visualize the performance of the applied classifiers. In doing
this, different levels of signal to noise ratio (SNR) levels are used to evaluate the robustness of the extracted
features and the classifier performances. The classification performance demonstrates the feasibility of the
method. The results of this paper may help readers assess the usability of RF fingerprinting for BT signals
at the physical layer security of wireless networks.

INDEX TERMS Bluetooth, classification, Hilbert-Huang transform, network security, radio frequency
fingerprinting, wireless networks.

I. INTRODUCTION
Network security has become a fundamental issue in the
wireless networks. Threats like signal interception, spoofing
and strays are considered to be major forms of penetrations.
Extensive studies have been conducted to enhance the secu-
rity of wireless networks at physical layer. Mobile devices,
such as cell phones and tablets, are considered as the most
widely used wireless devices. These mobile devices need to
be supported by multiple security approaches [1].

Radio Frequency (RF) fingerprinting is introduced as a
solution to enhance the security at physical layer. RF fin-
gerprinting is a technique by which wireless devices can be
identified and classified [2]–[4]. In [2] spectral power density
fingerprints are used to provide hardware specific identifica-
tion. In [3], RF fingerprinting is proposed to mitigate primary
user emulation attacks. This mitigation is accomplished via
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low-end software-defined cognitive radio networks. A recent
work [5] confirms that RF fingerprinting is an enhancing
security technique for wireless networks. The works pre-
sented in [6], [7] used RF fingerprinting for identifying indi-
vidual transmitters. A study [6] proposed Specific Emitter
Identification (SEI) method based on Hilbert-Huang trans-
form (HHT). HHT is applied to obtain time-frequency-energy
distributions (TFED) of transient signals [8]–[10]. HHT is a
self-adaptive signal analysis method; therefore, no preced-
ing information is needed in signal analysis [6]. However,
a study [7] proposed SEI method based on signal’s energy
trajectory gained by the high order cumulants. The works
in [6], [7] applied SEI to the transients of the collected GSM
signals.

In RFfingerprinting, the first stage is detection of the signal
transient or transient signals of continuously transmitting
devices. In the literature, many techniques are employed
to detect signal transients [5], [11], [13], [14], [16]–[21]
although there is still room for improvements. The next
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is extracting unique features from the detected transients.
Finally, the extracted features are used in classification of
transmitting devices. It has been seen that HHT based RF fin-
ger printing alongwithmultiple classifiers for Bluetooth (BT)
signals have not been investigated. Especially, testing and
performance of this method with extensive BT data has not
been studied yet.

In this study, HHT based RF fingerprinting is implemented
for BT signals with relatively large number of devices and
transients. BT signals are collected in the laboratory from
20 cell phone devices (5 manufacturers with various model
and serial number). 150 transients are recorded from each
device. BT signals are captured directly by high sampling rate
oscilloscope and are not down converted as inmany published
works. An improved transient detection technique based on
energy envelope is developed. The HHT are applied for
producing TFED from which unique features are extracted.
The extracted features are further smoothed by filtering in
order to increase the classification performance. Three dif-
ferent classifiers are employed and their performances are
compared. As to the knowledge of the authors, this work is the
first in terms of the size of the data, the practical techniques
applied and comparative analysis of the classifiers with such
big data set. To investigate the applied techniques to noisy
signals, we added different levels of noise captured in the
data colletion stage to the transients. The considered classi-
fiers are applied with the features extracted from the noisy
transients. A comparison between the performance of the
classifiers based on four different levels of noise are provided.
The classifiers’ performances are evaluated based on criteria
as in the literature, namely, confusion matrix, the Receiver
Operating Characteristics (ROC) and the area under the ROC
curve (AUC).

The paper is organized as follows; section 2 describes
the data acquisition system and high level signal process-
ing functionalities. In section 3, an improved algorihm
for transient detection is presented. Section 4 presents the
HHT/TFED method used in transient signal decomposition.
In section 5, the extraction of the features in time and fre-
quency domain (TFED), and their assessments are discussed.
Section 6 presents the classifiers, and their performance com-
parison with the date set. Section 7 demonstrates the effec-
tiveness of the applied techniques with noisy signal along
with peformance analysis. Finally, concluions are drawn in
section 8.

II. DATA ACQUISITION AND SIGNAL PROCESSING
For precise analysis and quantifying of classification and
identification performances, BT signals were captured in
laboratory environment. The laboratory is isolated in an
underground floor (−2) where no other devices or equip-
ments are switched on. The ambient temperature and humid-
ity are very stable in the laboratory as the change in
environmental conditions may affect the performance of
classifications [12]. Fig. 1 shows the block diagram of the
signal capturing/acquisition and off-line processing.

FIGURE 1. Signal acquisition setup and flow chart of signal processing.

BT signals are collected from different cell phone brands,
models and serial numbers (identical brand and model but
different serial numbers of a model). Bluetooth (BT) system
has an operational band between 2400MHz and 2483.5 MHz
(Industrial, Scientific and Medical band or ISM). BT sig-
nals are captured directly by high sampling rate oscilloscope
(hihg-end device) without down conversion in order to min-
imize impairments on distinctive transient characteristics.
At first, the cell phones are set in flight mode to isolate any
unwanted signals generated from the cell phones. Then, BT is
switched on manually. By this way, the cell phones only
emit BT signals. As the receiver characteristics play a critical
role, high end oscilloscope(TDS7404 DSO 4 GHz/20 GSPS)
connected to a commerical WiFi modem antenna (operating
at 2.4 GHz ISM band) is used to capture BT signals [3].
The performance of high-end devices (expensive equipment
such as high sampling, stable, oscilloscopes and/or spectrum
analysers) in RF fingerprinting has been studied experimen-
tally in [3]. Typical length of captured signals was 261800,
for example for a group of devices, corresponding to 13 µs
at 20 GSPS. The distance between the cell phones and the
receiving antenna is kept 30 cm for all the devices. According
to Nyquist theorem, for a transient at 2.835 GHz signal(the
upper bound of BT band), the minimum sampling rate is
required to be 4.97 GHz. However, BT signals were sam-
pled at the highest possible frequency (20 GHz) in order
to preserve the phase characterstatististics of the transients.
The objective is to maximize the use of distinctive characters
of the features. Filtering is needed for removing noise and
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components introduced by the sampling oscilloscope [13].
ABand Pass Filter (BPF)(FIR filter) was used to eliminate the
unwanted frequency components. It was a conventional digi-
tal filter to pass only ISM2400 band. In this way, the resultant
signals contain only noisy BT emissions. Then, the signals
were normalized before the detection of the transients, and
extracting of the features. Typical size of the detected tran-
sient signals was 30850 samples which corresponds to 1.5 µs
duration (it may slightly vary from device to device). Next,
HHT is applied to the detected transients and subtle features
along with the overall features are extracted in parallel. The
subtle and overall features are smoothed by means of median
filter (a 4th-order, one-dimensional median filter is imple-
mented) to improve the classification performance. Conse-
quently, we evaluated the classifiers’ performances based on
smoothed and unsmoothed features to investigate the effects
of the smoothing process.

Ten different models among five brands were selected
for the experiments. For each model, two different (series
or serial number) cell phones were acquired. By this way,
a database of 20 cell phones has been created with 150 tran-
sients for each device. The total number of the transients was
adequate for the analysis of classification performance and
the robustness of the features. Table 1 lists the devices, brands
and models. Here, A and B indicate the series of the same
brand and model devices. A typical transient captured in the
laboratory is also shown in Fig. 2. As expected, the detection
of the transients is the key point for the analysis of such huge
data-set, and then its usability for further work. Then, the first
step in the development deals with the transient detection
algorithms and possible improvements (detection of start and
end points of transient signals).

TABLE 1. The classes.

III. TRANSIENT SIGNALS DETECTION
The detection of signal transient is an essential step to identify
and discriminate transmitting devices via transient based RF

FIGURE 2. A Typical BT signal captured in the laboratory (high SNR).

fingerprinting techniques. This can be achieved by means of
signal characteristics such as amplitude, frequency, phase,
and energy. Before the transient detection, the captured sig-
nals are pre-filtered to remove undesired components and
noise. This is done by applying a band-pass filter (BPF) with
cut off frequencies selected for the band of operation [13].
The authors have already studied [22] the performances of
various phase and amplitude/energy based techniques. Use of
energy envelope of signals is very common technique for the
detection of transients, more specifically, the start and end
point of transients. However, it is necessary to improve the
proposed techniques for both more practical implementations
and lower computational loads. This requires somehow intu-
itive approaches to be implemented with extensive data-set.
The algorithm developed for the transient detection follows
this approach. The pseudo code that shown in Fig. 3 repre-
sents some parts of the algorithm.

A sample outcome of the transient detection algorithm
is shown in Fig. 4 where the start and the end points of
the transients are indicated automatically. The algorithm is
based on the use of the local energy envelope maxima. The
multiple local energy maximums leads to interference in the
transient durations of different classes. Then, the transient
duration cannot be used as a robust feature. This is resolved by
exploiting the transient features to re-capturing the transient
end.

Therefore, the energy based transient detection algorithm
has been improved by introducing several more stages. In this
technique, the features to be extracted in the next stage is
also considered earlier in the detection of the transients.
While it requires more signals from multiple devices, overall,
this makes the process more accurate, and keep the features
more robust. Firstly, the processes estimate the end of the
transient using conventional methods. Then, it introduces
further stages for precise detection of the transient start and
end points. The following illustrates the major steps of the
algorithm:
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FIGURE 3. Pseudo code of the transient detection algorithm.

FIGURE 4. Sample BT signal: its energy envelope and components (high
SNR).

1) Acquire the transient durations of a couple records
(typically 2/3 of the records).

2) Calculate the medians of transient durations.
3) Identify some critical features of each record, and

calculate the extreme values (maximum/minimum) of
each feature.

4) By means of the parameters in (3), calculate the end of
the transient, for all records, by

Ei,j = Si,j + 1̂i ± Ri,j, (1)

where i represents the index number of class, j repre-
sents the index number of record, S represents the start
point of the signal transient, E represents the end point
of the signal transient, 1̂ represents the median of the
transients duration of some number of records, R is a
random integer.

Note that some of the features are extracted from the transient
signal itself before applying HHT, that is, to generate TFED.
These are described in details in section 5.

IV. TFED GENERATION
The HHT is applied to the detected transients in order to
obtain the Hilbert spectrum of the time-frequency-energy
plane, and extract the subtle signal features along the
time axis and frequency axis of the TFED. The HHT
has been introduced as a data analysis tool for various
forms of signals [6], [25]–[27]. Empirical Mode Decomposi-
tion (EMD) and Hilbert Transform (HT) are used to accom-
plish the HHT. The first step of HHT is to obtain intrinsic
mode functions (IMFs) of the transient signals. This can be
done by applying the EMD to the transient signal.

A. EMPIRICAL MODE DECOMPOSITION (EMD)
The EMD is a systematic way, involves approximation with
splines, to extract IMFs from a signal [28], [29] based on
a sifting procedure [30]. The generated IMFs which are a
series of stationary and linear sub-signals must satisfy the
two mandatory conditions, for more information refer to [6].
The EMD applied to the detected transient signal of each BT
signal in order to generate its IMFs. The Hilbert transform
is needed to be applied to each extracted IMFs to generate
their instantaneous characteristics. These characteristics are
expressed as the instantaneous amplitude (IA), instantaneous
phase (iph), and Instantaneous frequency (IF) [5], [28]. Hav-
ing obtained the characteristics of each IMF, the Hilbert
spectrum (HS) can be generated.

B. HILBERT SPECTRUM(HS)
The Hilbert Spectrum represents a three dimensional plot that
is illustrating the energy distribution as a function of time and
frequency [31], [32]. In order to help readers implement HS
when necessary, some major steps of the implementation are
shared in this work. The major steps in generating the HS can
be described as follows:

1) Introduce the generated instantaneous characteristics of
the IMFs of the transient

2) Calculate the scaled instantaneous frequency SIF from

SIF =
ULFS

max(IFs)− min(IFs)
∗ IFs, (2)

where ULFS is the upper limit of frequency scale, and
IFs are the instantaneous frequencies of all IMFs.

3) Initialize the number of frequency bins (FB) and the
number of time segments (TS), and define the bin space
as ULFS

FB .
4) For each IMF, obtain the HS as a weighted sum of IA

at the mth frequency bin along time segments as

HSb(m, t) = IAb(t)ωm(t), (3)

where b represents the index of imf , IAb(t) is the cor-
responding instantaneous amplitude to the imfb. The
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weight factor ωm(t) = 1, if the SIF (t) lies in the mth
frequency bin, else ωm(t) = 0.

5) Construct the overall HS of the signal transient by using

HS =
B∑
b=1

(HSb(m, t)). (4)

where B is the number of the IMFs of the transient.
A sample Hilbert spectrum obtained from captured tran-

sients is shown in Figure 5. Here, the TFED is expressed
as normalized amplitude distribution over the time and fre-
quency plane.

FIGURE 5. Typical Hilbert spectrum sample of BT signals.

V. EXTRACTION OF FEATURES
In RF fingerprinting, the transient signal or steady signal
signal can be used in feature extraction [33]. Each might have
show different performance depending on the signal types
and feature sets. This has been reported extensively in the
literature for different signals and systems. While the fea-
tures are extracted from the steady state signal in [33]–[36],
transient signals are used in [6], [7], [12], [14], [15]. In this
work, the features are extracted from the transient signals as
the literature reports higher classification performance [33].
That is because the transients of devices operating at ISM
band are long enough to extract distinguishing features with-
out the steady state signals. More importantly, the transient
signals contains some unique hardware characteristics that
cannot be forged easily [15]. Therefore, the transmitted BT
signals contain uniquely identifying features (fingerprints) of
the devices classes) that can be used in RF fingerprinting
development. It has been known that unique features could be
extracted via the transient signal transformations or decompo-
sitions in time or frequency domains. However, some of the

features can be directly extracted from the transient signal,
for example, the duration of the transient signal or the slope
of the transient. Some other features can be extracted from the
transients’ instantaneous characteristics such as the statistical
moments of instantaneous amplitude, phase and frequency
distribution [6].

Normalization of the extracted features is necessary in case
of comparing two or more devices according to two or more
features, shown in Fig. 9 and Fig. 10, as the difference of
features ranges may vary. On the other hand, normalization
of extracted features is unecessary while comparing two or
more devices according to one feature, shown in Fig. 6, Fig. 7
and Fig. 8.

FIGURE 6. std of the 20 cell phones’ transients iph.

FIGURE 7. The entropy of the 20 cell phones’ transients iph.

Features that are considered in this study are listed
in Table 2. The features in the table are divided into three
groups. Those in the first group are extracted directly from
the transient signal (overall features). The other two groups
of features are extracted from the TFED of BT signals (subtle
features).

In Table 2, the Polyfit coefficient of sum of transient energy
distribution along time axis (f11) is referring to a Matlab’s
polyfit function, where the extracted feature is the coefficient
of the highest order term of the polynomial.
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FIGURE 8. Maximum of summation energy along frequency axis of TFED.

TABLE 2. Feature sets in RF fingerprints.

FIGURE 9. Normalized features distribution of two same brand different
model cell phones.

Total of 13 features with their labels are listed in the table.
By means of the extracted features, the feature vector set is
formed. One of the aims of this paper is to analyse the effects
of filtering of the features on the classification performance.

In order to do so, each feature set is smoothed by using
median filter before classification (we used the 4th-order,
one-dimensional median filter). Then, the classification are
performed with the unsmoothed and smoothed features in
order to explore the effects of smoothing process. However,
firstly, the robustness of the features can be examined by
using Box plot technique. This technique is used to illus-
trate, to some extent, the discrimination capability of the
extracted features. Typical plots are constructed by means
of the following five criteria (shown in Fig. 6): The lower
adjacent, the 25th percentile, the median, the 75th percentile,
and the upper adjacent. The 25th percentile is a value of the
considered data group at which 25% of the data values are
less than it. A 50% of the data group or the inter-quartile
range (IQR) are located between the 25th percentile and the
75th percentile. This means that 25th of the data values are
greater than the 75th percentile value. The median criterion,
which is illustrated by a red line in the middle of the box,
represents the 50% percentile. The lower and upper adjacent
represent the whisker boundaries. These boundaries can be
determined by multiplying a value (usually 1.5) times the
IQR, and subtracting or adding it to the 25th percentile or
the 75th percentile, respectively. The values of the data group
that are out of the whisker boundaries are outliers [37].

The standard deviation (std) of the transients’ instanta-
neous phases (iph) is considered (see Fig. 7) as one of the
most important discriminative features. The feature is com-
pletely separable, if the box values, including the whiskers
and outlier values, of a certain class are separated from the
boxes’ values of other considered classes. For instant, the std
of iph box values of class 1 is completely separated from
the boxes’ values of the classes 3 through 20. However,
the feature is considered to be a nearly separable feature,
if only the whiskers or outliers are inseparable. As an exam-
ple, (see Fig. 7), the std of iph box values of class 1 is nearly
separated from the box values of the class 2. If the feature is
not adequate to completely separate the considered classes,
some other features can be included. In order to illustrate
this, two more features are considered, namely the entropy of
transients’ iphs and themaximum of summation energy along
frequency axis of TFED (see Fig. 8, and Fig. 9), respectively.
With the new features, the classes 1 and 2 are completely
separated. Two different models of the cell phones from
the same brand, namely I-Phone-6s-Plus-B(Class-8) and I-
Phone-7-A (class-9) are subjects to different features (see
Fig. 10). These two classes have been identified to be themost
challenging among the considered classes in our study. How-
ever, it should be noted that some features can distinguish the
class-8 and the class-9 perfectly. It seems that the features
f 7, f 8, & f 10; and the features f 1, & f 5 would work well
in this case. Moreover, as the next stage, some features are
quite discriminative for the cell phones of the samemodel (the
same brand and the same model but different serial number)
as shown in (see Fig. 10). In this figure, Samsung Note-3-
A and Samsung Note-3-B, which are defined by class-13 and
the class-14, respectively, can be perfectly distinguished. This
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FIGURE 10. Normalized features distribution of two same brand same
model different serial number cell phones.

is due to the completely separable features f 1, & f 5; and
the nearly separable f 7, f 9, & f 11. Each of the rest of the
twenty studied classes is classified and identified based on its
extracted unique features. Based on the BT signals’ records
extracted features of the studied cell phones, the classification
of these devices can be accomplished.

VI. CLASSIFICATION
Classifier performance has not been studied comprehensively
in RF fingerprinting of BT signals. This section describes
how classifiers are implemented on the features discussed in
the previous section. In reference with Table 1 and 2, thirteen
extracted features represent the RF fingerprints of twenty
classes each with one hundred fifty records. Each extracted
feature data of each class is divided into two data groups
namely, training set and testing set, with 40% (60 records) and
60% (90 records) of the total data (150 records), respectively.
For each set, several classifiers, namely, complex decision
tree, Linear Support Vector Machine (L-SVM), and Linear
Discriminant Analysis (LDA) are applied.

The complex decision tree is a supervised learning algo-
rithm that is very common in classification problems. The tree
is composed of three types of nodes; root nodewhich contains
all the data, splits nodes which generate internal nodes of
the tree, and leaves which are defined as terminal nodes.
The splits nodes are estimated from a statistical procedure
applied to the training data. The splits nodes are used as a
mapper from the root node to the leaf decision nodes. The
main idea of this procedure is splitting the data into subsets,
each subset belongs to unique class. The procedure of the
decision tree classifiers depends on recursively partitions of
the input data set into smaller subdivisions. The learning
algorithms of the decision tree require high-quality training
data to generate the model. Therefore, a set of training data
that represents the main data must be available to generate an
accurate decision tree classifier model [38].

L-SVM, as the second classifier studied in this paper, is a
supervised machine learning algorithm that is utilized for
classification and regression process. The idea behind the

L-SVM procedure is mapping the input data x into high
dimensional space of data by using a mapping function φ(.)
and a linear function f (x) = wφ(x) + b, where w, and b are
optimized coefficients. The linear function is used to separate
the data in the space and generate the hyperplane [39], [40].
The construction of L-SVM is to minimize the upper bound
error by maximizing the margin between the separating hyper
planes. By using the margin between the planes, separation of
the data can be achieved. The advantage of L-SVM technique
is the property of condensing information in the training set
by using small number of data points.

The optimum hyperplane of the L-SVM classifier is
located between the positive and negative points with max-
imum margin (see Fig. 11). The tips on the hyperplanes
H1 and H2 are the support vectors, while H0 represent the
median in between H1 and H2. d+ and d− represent the
shortest distances to the closest positive and negative points,
respectively. The margin of a separating hyperplane is given
by (d+) + (d−).

FIGURE 11. Separating hyperplane with maximum margin.

A linear discriminant function in Eq. 5 defines a decision
boundary in the feature space.

ŷ(t) = ωT∅(x)+ b, (5)

where x represents a patron and the feature vector function
∅(x) represents the mapping of the patron. ω and b are
parameters to be determined by a learning process of a train-
ing set (x1, y1), . . . (xi, yi), . . . (xn, yn). In order to determine
the hyperplane that maximizes the margin between classes,
the solutions of the following optimization problem need to
be achieved:

minρ(ω, b) =
1
2
ω2, subject to ∀i yi[ωT∅(x)+ b]. (6)

By means of the Lagrangian duality theory, the optimiza-
tion problem in Eq. 6 can be simplified via solving the
following problem:

max D(α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

yiαiyjαj∅(xi)T∅(xj)

subject to ∀i αi > 0∑
i

yiαi = 0, (7)
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where α∗i is the solution of the optimization problem that
determines the optimal parameters of the optimal hyperplane,
so that the direction parameter ω∗ can be expressed as

ω∗ =
∑
i

α∗i yi∅(xi). (8)

Then,the linear discriminant function can then be written
as

ŷ(t) =
n∑
i=1

yiα∗i ∅(xi)T∅(x)+ b∗. (9)

By introducing a kernel Ki,j and the duality, the discrimi-
nant function can be rewritten as

ŷ(t) =
n∑
i=1

yiα∗i Kxi,x + b
∗. (10)

Consequently, the bias parameter b∗ can be obtained [46].
As the last classifier used in this work, the Linear Dis-

criminant Analysis (LDA) is a dimensionality reduction tech-
nique. LDA is closely related to the Principal Component
Analysis (PCA) technique, where both of them are used for
reduction of feature dimensions. However, LDA technique
is used not only for data dimension reduction but also as a
classifier to model the difference between the classes of data.
The aim of this technique is to project some higher dimen-
sional feature vectors into lower dimensional vectors through
a linear transformation procedure. The generated vectors are
mostly the bests in separating the different classes [41], [42].

The considered classifiers are trained by using the training
set and then, the trained classifier performance is analysed
by using the testing set. This is usually not clear in most
published works. Moreover, the effect of the smoothing of the
features are also studied.When the classifiers are trained with
unsmoothed features, the training accuracy were 98.93%,
97.3% and 92% for complex decision tree, L-SVM, and LDA
types of classifiers, respectively.

After the training process, the considered classifiers are
applied to the test set which represents 60% of the total
data(150 records), corresponding to 90 transients for each
class or device. The testing demonstrates different classifiers’
performances for both smoothed and unsmoothed features
as illustrated in Table 3. It can be seen from the table that
the classification accuracy of both smoothed and unsmoothed
features is more than 90%. As expected, the classifiers with
smoothed features have higher accuracy than the unsmoothed
ones. These results can be expected because filtering of the
features concentrates the features in the feature space. Con-
sequently, the distance between classes in the feature space

TABLE 3. Classifiers’ performances at high SNR (30-35dB).

becomes greater than the case of unfiltered features so that
the interference between features is reduced dramatically.
Because of this, the classification performance of smoothed
or filtered features is higher than the case of unfiltered fea-
tures. Finally, about five records out of 1800 records on aver-
age are misclassified in the testing stage when the considered
classifiers are applied to the smoothed features. This corre-
sponds to about 0.3%misclassification which is insignificant.

Performance of classifiers is generally evaluated by
using confusion matrix. However, the receiver operating
characteristics (ROC) curve and the area under the ROC
curve (AUC) can additionally be used in evaluations. These
performance metrics can visualize the performance of the
classifiers [43], [44].

Because of the effectiveness of the L-SVM classifier, con-
fusion matrix for the L-SVM at high SNR (30- 35 dB) is
created as shown in Fig. 12. The confusion matrix presents
the number of classified records, the number of misclas-
sified records, and their classification rate (in percentage).
According to the confusion matrix in Figure 12, class 10 has
the lowest classification rate (92.2%), while the highest rate
(100%) is achieved in Class 2, 14, 19 and 20. The aver-
age classification rate is 97.2%. On the other hand, refer-
ring to Table 3, only three records were misclassified when
smoothed features are used (99.8%). This demonstrates that
the use of the smoothed features increases the classification
performance substantially.

VII. NOISE PERFORMANCE
In the previous section, we present the results at high SNR
(30- 35 dB), that is, on the originally captured data. To inves-
tigate the noise peformance of the proposed method, noisy
transients with different SNRs levels were created. In doing
this, the SNR of the transients were reduced by adding the
captured channel noise to the original transients at various
levels. The following SNR levels are considered in creating
noisy data sets: (18-23 dB), (12-15 dB), and (8-10 dB). Here
the distribution of the number of transients at specific SNR
level follows Gaussian distribution (that is, the most of the
transients have around 9 dB SNR). The SNR of the noisy
transients is calculated by using the average energy of the
noisy transient signal (s) and the average energy of the noise
signal (n) as follows

SNR = 10 log10((s/n)− 1). (11)

The considered classifiers were applied to the overall
feature, extracted from the noisy transients, and the subtle
features, extracted from the TFEDs. Table 4 presents the
performance of the classifiers for the three SNR levels.

Considering Table 3 and Table 4, it should be noted that the
average of the classification accuracy decreases with lower
SNR, as expected. For instance, performance of the L-SVM
classifier decreases to 79.3% when the SNR level is reduced
to (8-10 dB) level. However, the L-SVM is still the most
robust classifier against noise. The confusion matrix of the
L-SVM classifier at (8-10 dB) SNR is shown in Fig. 13.
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FIGURE 12. Confusion matrix for the L-SVM Classifier at high SNR.

FIGURE 13. Confusion matrix for L-SVM, SNR level of 8-10 (smoothed features).

When the confusion matrices in Figure 12 and Figure 13
are compared along with the tables given, the accuracy
decreases susbtantially. At lowest SNR level (8-10 dB) of

Fig. 13, some of the devices seem to be very difficult to
classify, such as Class 4,6 and 9, and even Class 9 is mis-
classified (35.6%) as Class 7 (42.2%). However, the overall

50532 VOLUME 7, 2019



A. M. Ali et al.: Assessment of Features and Classifiers for BT RF Fingerprinting

FIGURE 14. ROC generated for the classifiers at different SNR levels (unsmoothed features).

TABLE 4. Classifiers, test preformances with different levels of SNR
(smoothed features).

TABLE 5. Areas under ROC curves of the classifiers at different SNR levels
(unsmoothed features).

performance is still high compared with the case when
unsmoothed features are used in the same classifier. Here,
it should be noted that the classification involves 20 devices
all together. One-to one (binary) classification may still work
well for all classes except Class 9.

The ROC is another metric to measure the performance
of the classifiers. The ROC of the classifiers implemented
in this work is shown in Fig. 14 at different SNR lev-
els. Moreover, the AUCs of the relevant classfiers are also
shown in Table 5 along with Fig. 14. It should be noted
that the performance of the L-SVM in discriminating the
classes(devices) is clearly visible in these metrics. The
L-SVM classifier yields a high classification performance,
by achieving very high AUC (0.9895) at low SNR levels.
Here, only unsmoothed features are used as the objective is to
compare the perfromance of the classifiers without smooth-
ing of the features. It is expected that the performance would
increase further when the smoothing is applied to the feature
set.

VIII. CONCLUSIONS
Bluetooth (BT) signals are collected from different cell phone
brands and models. Two devices of ten different cell phones,
eachwith one hundred and fifty records, are considered in this
study. The collected BT transmission signals are de-noised
by filtering. The transient signals of the de-noised transmis-
sion signals are detected by using signal energy envelope.
By using the energy envelope, the assigned thresholds in the
detection process are adaptive to all 3000 considered records,
which indicates that the technique is efficient.

Based on the EMD method, the HHT is applied to the
detected transient signals to obtain their TFED. Thirteen fea-
tures are extracted from three feature groups namely, the tran-
sient signal and its energy envelope, summation of TFED of
the transient signal along time axis, and summation of TFED
of the transient signal along frequency axis. Among thirteen
features, the std of transient instantaneous phase, the entropy
of the transient instantaneous phase, and the duration of the
transient are considered as the most robust features. These
features are dominant in constructing the signal RF finger-
print for each record.

Before the classification, the robustness of the extracted
features are investigated by using the box plot demonstration.
In order to identify the twenty classes (devices), three most
common classifiers are applied to the extracted features. The
data set is split into training and test data in order to see realis-
tic performance of the classifiers. The test data are utilized to
train the classes via the generated trained classifier models.
The classifiers’ performances are evaluated with different
levels of SNR. The classification results demonstrate that
the method is quite effective in BT device discrimination,
and it achieved quite high performance at high SNR levels
which implies that the feature set are quite unique for use in
RF fingerprinting. On the other hand, as expected, the per-
formance decreases at low SNR levels when the smoothing
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is not applied to the features. Some specific devices seem
to be very difficult to classify at lower SNR levels, such
as Class 4, 6 and 9 (some IPhone models). This suggests
that some new decomposition techniques along with robust
feature sets should be studied extensively in discriminating
of devices. Overall, this study, with very big but diverse data
set, proves that the L-SVM achieves the highest accuracy for
different SNR levels. Based on these results, BT based RF
fingerprinting might be considered, to some extent, in secu-
rity of wireless networks, or might help researcher investigate
the proposed features in RF fingerprinting.

The future work will concentrate on various techniques
toward decomposition of the signal and use only robust fea-
tures. There will also be research toward how the same set of
features can be effectively used when a downconversion and
lower sampling rate is used. It is also possible to utilize some
deep learning apparoaches when there is a big data set [34].
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