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ABSTRACT The polarity conversion sequence directly determines polarity conversion efficiency and then
affects polarity optimization efficiency. However, few studies have focused on the polarity conversion
sequence problem of Reed-Muller (RM) circuits. In this paper, we propose a continuous Hopfield neural
network (CHNN)-based polarity conversion algorithm (CHNNPCA) for Mixed Polarity RM (MPRM)
circuits, which uses the CHNN to solve the best polarity conversion sequence of polarity set waiting for
evaluation before converting the polarity set. Moreover, based on the CHNNPCA, a polarity optimization
algorithm (POA) is proposed to improve the polarity optimization efficiency of MPRM circuits. The
experimental results on MCNC benchmark circuits show that for the large-scale polarity set, the CHNNPCA
is superior to the mixed polarity conversion algorithm based on the tabular technique in terms of polarity
conversion efficiency. Furthermore, compared to the traditional polarity optimization algorithm neglecting
polarity conversion sequence, the POA has a considerable advantage in improving polarity optimization
efficiency, especially for large-scale circuits. The POA can be extended to improve the polarity optimization
efficiency of fixed polarity RM circuits.

INDEX TERMS Polarity conversion, polarity optimization, Reed-Muller circuits, continuous hopfield neural
network.

I. INTRODUCTION
Digital logic circuits can be expressed in either AND/OR/NOT
based Boolean logic or AND/XOR based Reed-Muller (RM)
logic. Lots of research has shown that compared to cir-
cuits implemented using Boolean logic, circuits implemented
by RM logic have significant advantage in terms of area,
power, speed, and testability [1]–[3]. RM logic has gained
increasing popularity, particularly as look-up-table based
field programmable gate array technique has become increas-
ingly available and the relative cost of XOR gates has
become a non-critical factor restricting the use of RM design
approaches [4]–[6].

Fixed Polarity RM (FPRM) expressions and Mixed Polar-
ity RM (MPRM) expressions are the canonical representa-
tions of RM logic. The input variables of FPRM expression
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only appear in complemented or uncomplemented form,
but not both. The MPRM expressions are more compact
than FPRM expressions because there are no restrictions
on the polarity of input variables [7], [8]. Furthermore,
for some classes of practical functions, MPRM expres-
sions require fewer products than Sum-of-Products (SOP)
expressions [9], [10]. The polarity optimization of MPRM
circuits has been a hot research topic in the field of logic
synthesis. However, the optimization of MPRM circuits is
general is more complicated and difficult than the optimiza-
tion of SOP expressions due to their tremendous polarity opti-
mization space. Since the Genetic Algorithm (GA) has the
advantage of simpleness, robustness and parallel in essence,
it has been widely used in polarity optimization of RM
circuits [11]–[14].

Recently, many polarity conversion algorithms have been
proposed to derive the RM expression of target polarity.
The polarity conversion algorithm based on tabular technique
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is widely used because it puts no limits on the number
of input variables and is easy to implement [15]–[17]. The
mixed polarity conversion algorithm [14] indicates that when
the MPRM expression of know polarity is converted to the
MPRM expression of target polarity, the less different ternary
bits between adjacent polarities, the fewer polarity conversion
operations are required, the faster polarity conversion effi-
ciency. Therefore, the polarity conversion sequence problem
is Traveling Salesman Problem (TSP) [18]. Polarities are
equivalent to the cities, and the different ternary bits between
polarities are equivalent to the distances between cities. The
best polarity conversion sequence is one with the minimum
value of the sum of different ternary bits between adjacent
polarities. Therefore, it will waste the polarity conversion
time and reduce the polarity conversion efficiency to convert
the polarity set in polarity random arrangement sequence.
However, there are few studies on polarity optimization
of MPRM circuits, which consider the polarity conversion
sequence of the polarity set.

In this paper, we propose a Polarity Optimization algo-
rithm (POA) of MPRM circuits, which considers the polarity
conversion sequence. Compared with the existing polarity
optimization algorithms of MPRM circuits, our main contri-
butions are as follows.

1) We establish a mathematical model to describe the
polarity conversion sequence problem by using graph theory.
The point set denotes polarities, and the edge set denotes the
different ternary bits between two polarities.

2) We propose a Continuous Hopfield Neural Network
(CHNN) based Polarity Conversion Algorithm (CHNNPCA)
forMPRMcircuits, which uses CHNN to solve the best polar-
ity conversion sequence of polarity set waiting for evaluation
before converting the polarity set. The CHNNPCA can be
applied to complete polarity set as well as incomplete polarity
set, and can be extended to improve the polarity conversion
efficiency of FPRM circuits. To the best of our knowledge,
we are the first to use CHNN for the optimization of RM
circuits.

3) We propose a polarity optimization algorithm called
POA to improve the polarity optimization efficiency of
MPRM circuits. We compare the POA with the traditional
polarity optimization algorithm neglecting polarity conver-
sion sequence. Experimental results demonstrate the effec-
tiveness and superiority of POA. The POA can be extended
to improve the polarity optimization efficiency of FPRM
circuits.

The remainder of this paper is structured as follows.
In Section II, we introduce the MPRM expression. The math-
ematical model for polarity conversion sequence problem
is described in Section III. Using CHNN to solve polarity
conversion sequence problem is described in Section IV.
Section V presents a CHNN based polarity conversion algo-
rithm. Section VI presents a polarity optimization algorithm
for MPRM circuits. The experimental results are described in
Section VII. Our conclusions are presented in Section VIII.

II. MPRM EXPRESSION
Any n-variable Boolean function can be represented canoni-
cally in SOP form as

f (xn−1, xn−2, ..., x0) =
2n−1∑
i=0

aimi (1)

where 6 is an OR operator and mi are the minterms, which
can be expressed as

mi = ẋn−1ẋn−2...ẋ0, ẋj =

{
x j, ij = 0
xj, ij = 1

(2)

where j = n − 1, n − 2, ..., 0, ai are the coefficient of the
minterms and ai = 1 or 0, which corresponds to the presence
or absence of minterms, respectively. The OR can be replaced
by an XOR if all the variables are present in every term of
Eq. (1). Alternatively, the function can be expressed by an
MPRM expression as follows:

f p(xn−1, xn−2, ..., x0) = ⊕
2n−1∑
i=0

biπi (3)

where ⊕6 denotes modulo-2 addition and πi represents the
product term of the MPRM expression. bi ∈ {0, 1} represents
whether or not πi appears in the MPRM expression. p =
(pn−1pn−2...p0) is the polarity and i = (in−1in−2...i0) is
the subscript. The relationship between ẋj, pi, and ij can be
expressed as follows:

TABLE 1. The value of ẋj .

In an MPRM expression, each variable can appear as true,
complemented, or mixed. The polarity of MPRM expression
can be represented by replacing each variable with 0, 1, or 2,
depending on whether the variable is true, complemented,
or mixed. When a variable is true (complemented), it can
be replaced with 0 (1). When a variable is present in both
true and complemented forms, it can be replaced with 2. The
polarity directly determines the simplicity or complexity of
the expression, meaning it influences circuit performance in
terms of power and area. Consequently, polarity optimization
of MPRM circuits, which aims to find the polarity under
which one circuit performance is the best within a partic-
ular polarity space, is a combination optimization problem.
The polarity can be expressed as decimal equivalent of the
resulting ternary number. The above description is illustrated
in Example 1.
Example 1: Given a 3-variables MPRM expression

f 5(x2, x1, x0) = x2x̄1 ⊕ x2x̄1x̄0 ⊕ x2x0 with polarity 5. Since
the decimal polarity 5 is equivalent to the ternary (012)3,
x2 appears in true form, x1 appears in complemented form,
and x0 appears in mixed form within this MPRM expression.
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III. MATHEMATICAL MODEL TO DESCRIBE THE
POLARITY CONVERSION SEQUENCE PROBLEM
For a polarity set with n polarities, the number of polarity
conversion sequences is n!. Therefore, it is a combinatorial
optimization problem to choose the best polarity conversion
sequence, which corresponds to the minimum value of the
sum of different ternary bits between adjacent polarities,
from the n! polarity conversion sequences. More precisely,
it belongs to classical TSP.

We use the graph theory to describe the polarity conversion
sequence problem. Let G = (P,E) be a graph, where point
set P denotes polarities, and edge set E denotes the different
ternary bits between two polarities. Therefore, the polarity
conversion sequence problem can be described as follows:

Min
∑
r 6=s

brscrs (4)

∑
s6=r

crs = 1 r ∈ P (5)

∑
r 6=s

crs = 1 s ∈ P (6)

∑
r,s∈V

crs ≤ |V | − 1 V ∈ P (7)

crs ∈ {0, 1} r, s ∈ P (8)

where brs denotes the different ternary bits between polarity
r and polarity s, crs ∈ {0, 1} denotes the presence or absence
of the edge (r, s) in the polarity conversion sequence, and
|V | denotes the number of polarities in set V . Equation (4)
denotes the object function of polarity conversion sequence
problem, which aims at minimizing the sum of different
ternary bets between adjacent polarities. Equations (5) and (6)
are restrictions to guarantee each polarity in polarity conver-
sion sequence is converted only once. Equations (7) and (8)
are restrictions to guarantee that there is no sub-sequence.
Therefore, the solutions satisfying the above restrictions com-
pose a polarity conversion sequence, which visits all the
polarities and converts each polarity only once.

IV. USING CHNN TO SOLVE POLARITY CONVERSION
SEQUENCE PROBLEM
Numerous studies show that compared to traditionally com-
bined optimization methods, CHNN has stronger computing
power and storage capacity, especially in solving the opti-
mization problem such as TSP [19]–[21]. Therefore, we use
the CHNN to solve the polarity conversion sequence prob-
lem. To use CHNN to solve polarity conversion sequence
problem, it is necessary to transform the restrictions and
objective function into energy function, and use the output
of CHNN to represent the efficient solution. As the network
status changed, the efficient solution of polarity conversion
sequence problem can be obtained when the energy function
reaches a minimum.

Using CHNN to solve the best polarity conversion
sequence of a polarity set with n polarities, the n ∗ n nerve
cells are need to structure the n∗n permute matrix, where row

x denotes the polarity number, column j denotes the position
of polarity in polarity conversion sequence. If vxj is equal to 1,
it represents that the polarity x appears at the j-th position of
polarity conversion sequence.
Example 2: Given a polarity set with 5 polarities, which are

represented by A, B, C, D and E, respectively. A conversion
sequence B → D → E → A → C is randomly chosen,
the sum of different ternary bits between adjacent polarities
can be expressed as follows:

S = dBD + dDE + dEA + dAC (9)

where dBD denotes the different ternary bits between polarity
B and polarity D, dDE denotes the different ternary bits
between polarity D and polarity E, dEA denotes the different
ternary bits between polarity E and polarity A, dAC denotes
the different ternary bits between polarity A and polarity C.

TABLE 2. Permute matrix.

The polarity conversion sequence problem can be mapped
into neural network by using a permute matrix shown
in Table 2. The restrictions and the optimal condition of
polarity conversion sequence problem are as follows:

Restriction (1): a polarity is converted only once, namely,
each row only has one ‘1’;

Restriction (2): only one polarity is converted at a time,
namely, each column only has one ‘1’;

Restriction (3): there are n polarities, namely, the sum of
elements in permute matrix are equal to n;

Optimal condition: solving theminimum value of the sum
of different ternary bits between adjacent polarities.

The energy function is structured according to the above
restrictions and optimal condition, as below:

If the row x satisfies restriction (1), the sum of multiplica-
tion of any two elements in x-th row is equal to 0, namely:

n−1∑
x=1

n∑
j=i+1

vxivxj = 0 (10)

Obviously, the sum of multiplication of any two elements of
all the rows is equal to 0, namely:

n∑
x=1

n−1∑
i=1

n∑
j=i+1

vxivxj = 0 (11)
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Similarly, the following equation can be obtained according
to restriction (2):

n∑
i=1

n−1∑
x=1

n∑
y=x+1

vxivyi = 0 (12)

From the restriction (3), it is concluded that the sum of all the
elements in permute matrix is equal to n, namely:

n∑
x=1

n∑
i=1

vxi − n = 0 (13)

The objective function of polarity conversion sequence can
be obtained according to the optimal condition, namely:

J (v)=min[
1
2

n∑
x=1

n∑
y=x+1

n∑
i=1

dxyvxi(vy,i+1 + vy,i−1)] (14)

where dxy denotes the different ternary bits between polarity
x and polarity y. If polarity x and polarity y are next to each
other, Vy,i+1 and Vy,i−1, one is 0 and the other is 1; if polarity
x and polarity y are not next to each other, then both Vy,i+1
and Vy,i−1 are 0. Therefore, the sum of different ternary bits
between adjacent polarities can be calculated according to the
objective function.

Therefore, the polarity conversion sequence problem can
be represented as the following optimization problem:

min J (v) =
1
2

n∑
x=1

n∑
y=x+1

n∑
i=1

dxyvxi(vy,i+1+vy,i−1) (15)

s.t. J1(v) =
n∑

x=1

n−1∑
i=1

n∑
j=i+1

vxivxj = 0 (16)

J2(v) =
n∑
i=1

n−1∑
x=1

n∑
y=x+1

vxivyi = 0 (17)

J3(v) = (
n∑

x=1

n∑
i=1

vxi − n)2 = 0 (18)

The energy function of CHNN is structured by putting the
restrictions and optimal condition together, as below:

E =
A
2

n∑
x=1

n−1∑
i=1

n∑
j=i+1

vxivxj +
B
2

n∑
i=1

n−1∑
x=1

n∑
y=x+1

vxivyi

+
C
2
(
n∑

x=1

n∑
i=1

vxi − n)2

+
D
2

n∑
x=1

n∑
y=x+1

n∑
i=1

dxyvxi(vy,i+1 + vy,i−1) (19)

The link weight wxi,yj between nerve cells and output
threshold value Ixi of nerve cells can be obtained by com-
paring equation (19) with standard energy function. As the
network status changed, the polarity conversion sequence
can be obtained according to the permute matrix consisting
of network status vi,j when the energy function reaches a
minimum.

V. CHNN BASED POLARITY CONVERSION ALGORITHM
Research indicates that the CHNN performs well in solving
small-scale TSP with 10 cities, while its performance is
poor when deals with large-scale TSP with 30 cities [22].
Literature [23] analyzed the reason why CHNN is difficult
to obtain efficient solution from hyperspace perspective, and
modified the energy function of CHNN, as below:

E =
A
2

n∑
x=1

n∑
i=1

n∑
j=1,j 6=i

VxiVxj +
B
2

n∑
x=1

n∑
y=1,y 6=x

n∑
i=1

VxiVxi

+A1(
n∑

x=1

n∑
i=1

V 2
xi +

C
2

n∑
x=1

n∑
i=1

Vxi − n)2

− (
An − A+ A1

n
)

n∑
x=1

n∑
i=1

n∑
y=1

n∑
j=1

VxiVyj

+
D
2

n∑
x=1

n∑
y=1

n∑
j=1

dxyVxj(Vy,i−1 + Vy,i+1) (20)

Accordingly, the link weight is modified, namely:

Txi,yj = −Aδxy(1− δij)− Bδij(1− δxy)− 2A1δxyδij − C

+ 2(AN − A+ A1)/N 2
− Ddxy(δj,i+1 + δj,i−1)

(21)

From the Equations (20) and (21), it is concluded that
the literature [23] can obtain efficient solution at the price
of surprisingly complex energy function and link weight,
which will extend the convergence time. Traditionally CHNN
is sensitive to parameter and its convergence speed is slow.
To eliminate the above flaw of CHNN, literature [24] pro-
posed an improved algorithm of CHNN solving TSP and the-
oretically proved the effectiveness of the improved algorithm.
The energy function of literature [24] is as follows:

E =
A
2

N∑
x=1

(
N∑
i=1

Vxi − 1)2 +
A
2

N∑
i=1

(
N∑
x=1

Vxi − 1)2

+
D
2

N∑
x=1

N∑
y=1

N∑
i=1

dxyVxiVy,i+1 (22)

And its dynamical equation can be expressed as follows:

dUxi
dt
= −

∂E
∂Vxi
= −A(

N∑
i=1

Vxi − 1)− A(
N∑
y=1

Vyi − 1)

−D
N∑
y=1

dxyVy,i+1 (23)

In this section, based on the CHNN model proposed
in [24], we propose a polarity conversion algorithm for
MPRM circuits, called CHNNPCA, to improve polarity con-
version efficiency. The difference between CHNNPCA and
mixed polarity conversion algorithm based on tabular tech-
nique lies in the following two aspects: firstly, CHNNPCA
uses CHNN proposed in [24] to solve the best polarity con-
version sequence before converting polarity set; secondly,

54812 VOLUME 7, 2019



Z. He et al.: POA Taking Into Account Polarity Conversion Sequence

each polarity is converted according to the obtained best
polarity conversion sequence. Specifically, the steps to solve
the best polarity conversion sequence by using CHNN are as
follows (the parameter settings refer to literature [24]):

(1) The variables and weights are initialized, namely,
t = 0, A = 1.5, D = 1.0, where the A and D are weights;
(2) The different ternary bits between n polarities in polar-

ity set waiting for evaluation are calculated;
(3) The input matrixUxi(t) of CHNN is initialized, namely,

Uxi(t) = U
′

0 + δxi, where x, i = 1, 2, ..., n and U
′

0 =
1
2U0 ln(n− 1), U0 = 0.02, δxi is a random value in (−1,+1);
(4) The output matrix Vxi(t) of CHNN is calculated by

using the Sigmod activation function, namely, Vxi(t) = 1
2 (1+

tanh(Uxi(t)U0
));

(5) If the maximum number of iteration is reached, the
step (11) is performed. Otherwise, go to step (6);

(6) The dUxi
dt is calculated according to the neural network

dynamical equation;
(7) The input matrix Uxi(t + 1) of CHNN at the next

moment is calculated, namely,Uxi(t+1) = Uxi(t)+
dUxi
dt 1T ,

where 1T = 0.01;
(8) The output matrix Vxi(t + 1) of CHNN at the next

moment is calculated, namely, Vxi(t + 1) = 1
2 (1 +

tanh(Uxi(t+1)U0
));

(9) The energy function E is calculated;
(10) The legality of polarity conversion sequence is

checked, if the polarity conversion sequence is legal, the sum
of different ternary bits between adjacent polarities corre-
sponding to the polarity conversion sequence is stored and
go to step (5); Otherwise, go to step (5) directly;

(11) The best polarity conversion sequence corresponding
tominimum value of the sum of different ternary bits between
adjacent polarities is output according to the sum of different
ternary bits between adjacent polarities;

It should be noted that we do not use dE
dt = 0 as the ending

condition due to the fact that the point that satisfies dE
dt =

0 could be an inflection point, instead of a minimum value
point. Moreover, if the point that satisfies dEdt = 0 is minimum
value point, keep up iteration will help algorithm to escape
the local optimum, and then improve the global optimization
ability.

VI. POLARITY OPTIMIZATION ALGORITHM TAKING INTO
ACCOUNT POLARITY CONVERSION SEQUENCE
In this section, based on the proposed CHNNPCA and GA,
we propose a polarity optimization algorithm, called POA,
to improve polarity optimization efficiency of MPRM cir-
cuits. An overview of POA is depicted in Fig.1. The POA
involves chromosome encoding scheme, fitness function,
roulette wheel selection, crossover and mutation operation.
We will introduce them in detail in the following sections.

A. CHROMOSOME ENCODING SCHEME
Since the polarity ofMPRMexpression can be represented by
replacing each variable with 0, 1, or 2 depending on whether

FIGURE 1. Overview of POA.

FIGURE 2. Chromosome encoding for example 3.

the variable is true, complemented, or mixed, we encode the
polarity of MPRM expression as ternary form. The above
description is illustrated in Example 3.
Example 3: Given a 6-variables MPRM expression,

the ternary polarity ‘‘212011’’ can be encoded as 6-bits chro-
mosome as shown in Fig.2.

B. FITNESS FUNCTION
Fitness function is used to evaluate quality of chromosomes.
The higher the fitness value, the better the quality of chromo-
some. Therefore, the fitness function of POA can be defined
as follows:

fitness(ci) = 1.0
/
objective() (24)

where fitness() denotes fitness function, ci denotes the i-th
chromosome, objective() denotes objective function corre-
sponding to circuit performance.

C. ROULETTE WHEEL SELECTION
Roulette wheel selection is used to choose the excellent chro-
mosomes to produce offspring population. Given a polar-
ity set with n polarities, the probability that i-th polarity is
selected is as follows:

p(i) = fitness(i)/
n∑
i=1

fitness(i) (25)
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where fitness(i) denotes the fitness value of i-th polarity, 1 ≤
i ≤ n. Furthermore, the cumulative probability of i-th polarity
is as follows:

c(i) =
i∑

j=1

p(j) (26)

where c(i) denotes the cumulative probability of i-th polarity,
1 ≤ i ≤ n, 1 ≤ j ≤ i.

D. OPERATION
We use one-point crossover to produce offspring population
due to the ternary-encoded form of polarity. Fig.3 gives an
illustration of one-point crossover. Suppose that ‘Parent 1’
and ‘Parent 2’ are two parent chromosomes selected for
crossover. Firstly, crossover point is randomly generated.
Secondly, child chromosomes ‘Child 1’ and ‘Child 2’ are
generated by exchanging the section after the crossover point.

FIGURE 3. Demonstrating one-point crossover.

FIGURE 4. Demonstrating basic bit mutation.

We use the simplest basic bit mutation to change one or
more gene values, namely, if the original value of selected
gene is 0, then we change it to 1; if the original value of
selected gene is 1, then we change it to 2; if the original value
of selected gene is 2, then we change it to 0. Fig.4 gives an
illustration of the basic bit mutation. Suppose that ‘Parent 1’
is parent chromosome selected for mutation. Firstly, mutation
position is randomly generated. Secondly, child chromosome
‘Child 1’ is generated by changing the value of gene corre-
sponding to mutation position from 1 to 0.

E. ALGORITHM DESCRIPTION
Based on the above description, the POA is described in
Algorithm 1, where ‘popsize’ denotes population size, ‘gen’
denotes current number of iteration, and ‘maxg en’ denotes
the maximum number of iteration.

VII. EXPERIMENTAL RESULTS
The POA had been implemented in C language, and the
programs were compiled by the GNUC compiler. The results

Algorithm 1 POA
Input: Boolean circuit
Output: The best polarity
1: Read the Boolean circuit;
2: Parameters are initialized;
3: Initial population are generated randomly;
4: for gen = 0 to maxg en do
5: if gen == 0 then
6: CHNNPCA is performed;
7: for i = 0 to popsize do
8: Fitness value of chromosome is calculated;
9: end for
10: Elitism strategy is performed;
11: end
12: if gen! = 0 then
13: Roulette wheel selection is performed;
14: One-point crossover is performed;
15: Basic bit mutation is performed;
16: CHNNPCA is performed;
17: for i = 0 to popsize do
18: Fitness value of chromosome is calculated;
19: end for
20: Elitism strategy is performed;
21: end
22: end for
23: The best polarity is output.

were obtained by using a PCwith Intel Core i5 2.40 GHzwith
4G RAM under Linux. Moreover, we used theMCNC bench-
mark circuits as experimental circuits. Firstly, we compared
the CHNNPCA with the Mixed Polarity Conversion Algo-
rithm (MPCA) [14] based on tabular technique to demon-
strate the effectiveness of CHNNPCA in improving polarity
conversion efficiency. Secondly, to verify the effectiveness
of POA in improving the polarity optimization efficiency
of MPRM circuits, we compared the POA with Traditional
Polarity Optimization Algorithm (TPOA) [25] for MPRM
circuits, which solve the best polarity by using GA and
neglects the polarity conversion sequence.

A. COMPARISON OF CHNNPCA AND MPCA
In this section, we used the CHNNPCA and MPCA to
convert three polarity sets to demonstrate the effectiveness
of CHNNPCA. The first polarity set is a complete polarity
set with 27 polarities of 3-variables circuit, the second polar-
ity set is an incomplete polarity set with 100 polarities of
8-variables test circuit dc2, and the third polarity set is an
incomplete polarity set with 600 polarities of 10-variables
test circuit ex1010. Furthermore, we ran the CHNNPCA and
MPCA 10 times due to the randomness of CHNN, and the
maximum number of iterations of CHNN is set to be 2000.

The polarity conversion time of CHNNPCA and MPCA
on the first polarity set is shown in Fig.5. From Fig.5 we can
see that compared to the MPCA, the CHNNPCA took more
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FIGURE 5. Polarity conversion time of CHNNPCA and MPCA on the first polarity set.

FIGURE 6. Polarity conversion time of CHNNPCA and MPCA on the second polarity set.

FIGURE 7. Polarity conversion time of CHNNPCA and MPCA on the third polarity set.

polarity conversion time. The main reason is that although
the sum of different ternary bits between adjacent polarities
of the polarity conversion sequence obtained by CHNN are
less than the sum of different ternary bits between adjacent
polarities of polarity random arrangement sequence, the time
using CHNN to solve best polarity conversion sequence is
longer than the time saved considering polarity conversion
sequence, thus reducing the polarity conversion efficiency.

The polarity conversion time of CHNNPCA and MPCA
on the second polarity set is shown in Fig.6. As shown
in Fig.6, the polarity conversion efficiency of CHNNPCA is
lower than that of MPCA. There are two possible reasons for
this, one possibility is that although the CHNN succeeded in
finding the best polarity conversion sequence, the time using
CHNN to solve best polarity conversion sequence is longer
than the time saved considering polarity conversion sequence;
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TABLE 3. Parameters settings for POA and TPOA.

another possibility is that the CHNN is trapped into local opti-
mization or cannot find the efficient solution, thus wasting
time solving the best polarity conversion sequence.

The polarity conversion time of CHNNPCA and MPCA
on the third polarity set is shown in Fig.7. As shown in Fig.7,
for the large-scale polarity set, the CHNNPCA outperforms
the MPCA in terms of polarity conversion efficiency. Com-
pared toMPCA, the highest percentage of polarity conversion
time saved by CHNNPCA reached 40.38%, and the average
percentage of polarity conversion time saved by CHNNPCA
reached 29.49%. The main reason is that the time saved
considering polarity conversion sequence is greater than the
time using CHNN to solve best polarity conversion sequence,
thus making the CHNNPCA has higher polarity conversion
efficiency.

Moreover, we could also see that for the fourth experiment,
the polarity conversion time of CHNNPCA is longer than
that of MPCA. This is primarily because the CHNN had not
found the efficient solutions or the CHNN only found the
lower quality solutions (namely, the sum of different ternary
bits between adjacent polarities of the polarity conversion
sequence obtained by CHNN are approximately equal to the

sum of different ternary bits between adjacent polarities of
polarity random arrangement sequence, thus wasting time
solving the best polarity conversion sequence and reducing
the polarity conversion efficiency.

B. COMPARISON OF POA AND TPOA
In this section, we set the power minimization as the polarity
optimization goal of MPRM circuits, and used the power
estimation model proposed in [25] to compute circuit power
accurately. Moreover, 24 MCNC benchmark circuits are ran-
domly selected to obtain the persuasive experimental results.
Furthermore, we ran the POA and TPOA 10 times due to
the randomness of GA. The parameters of two algorithms are
summarized in Table 3.

The comparison of POA and TPOA is shown in Table 4,
where column 1 shows the circuit name, column 2 shows
the number of input variables, column 3 shows the minimum
switching activity obtained by POA and TPOA, column 4
shows the best polarity corresponding to minimum switching
activity, columns 5 and 6 show the average time (in second)
of POA and TPOA, column 7 shows the percentage of time
saved by POA compared to TPOA, which is defined as

Save%= ((TPOAtime−POAtime)/TPOAtime) ∗ 100% (27)

From the Table 4, we can see that the test circuits may have
one or more best polarities, and the best polarities obtained by
POA and TPOA are the same. We could also see that for the
circuits with fewer variables, such as squar5, rd84 and 9sym,
compared to TPOA, the POA considering polarity conversion
sequence not only failed to improve polarity optimization
efficiency, but also extended the polarity optimization time.

TABLE 4. Comparison of TPOA and POA.

54816 VOLUME 7, 2019



Z. He et al.: POA Taking Into Account Polarity Conversion Sequence

The above results can be explained by the following two
possible reasons:

(1) CHNN did not find the efficient solution or only found
the general solution (namely, there is little difference between
the obtained polarity conversion sequence and polarity ran-
dom arrangement sequence) in one generation or some gener-
ations of POA, thereby wasting the time solving best polarity
conversion sequence;

(2) Although the CHNN can obtain the best polarity con-
version sequence every time, the time using CHNN to solve
best polarity conversion sequence is longer than the time
saved considering polarity conversion sequence.

Moreover, for the circuits such as dk48, in2color and
cm150a, compared to TPOA, POA has no advantage over
the TPOA, because the time using CHNN to solve best
polarity conversion sequence is approximately equal to the
time saved considering polarity conversion sequence. It is
worthwhile to mention that for the large-scale circuits such
as pcle, t1, mux and duke2, compared to TPOA, the POA
has considerable advantage in improving the polarity opti-
mization efficiency of MPRM circuits. Compared to TPOA,
the highest percentage of polarity conversion time saved by
POA reached 63.08%.

VIII. CONCLUSION
In this paper, we have proposed a polarity optimization
algorithm called POA to improve the polarity optimiza-
tion efficiency of MPRM circuits. The POA uses the pro-
posed CHNNPCA to improve polarity conversion efficiency,
and is based on the GA to solve the best polarity. Exper-
imental results show that for the large-scale polarity set,
the CHNNPCA is an efficient algorithm in improving the
polarity conversion efficiency. Moreover, the comparison
with traditional polarity optimization algorithm neglecting
polarity conversion sequence shows that the POA has con-
siderable advantage in improving the polarity optimization
efficiency of MPRM circuits. Future work will focus on
further improving the efficiency of CHNNPCA to convert
large-scale polarity set.
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