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ABSTRACT The problem of parametric modeling for the two-dimensional (2-D) harmonic signals with
missing harmonics is addressed. Themodeling process consists of two parts. First, we devise the joint spatial-
temporal linearly constrained minimum variance beamformer and perform the joint estimation of the spatial
and temporal fundamental frequencies for each pitch of the signal based on the maximum harmonic model.
Second, we differentiate the competing signal models by the number of harmonic components and derive the
maximum a posteriori criterion for the 2-D harmonic signals. As a result, the harmonic components of each
pitch are detected according to their spectral powers. The simulation and experimental results are provided
to show the superiority of the proposed signal modeling methodology over other existing schemes.

INDEX TERMS Fundamental frequency estimation, harmonic detection, two-dimensional harmonic signal,
linearly constrained minimum variance beamformer, maximum a posteriori criterion, maximum harmonic
model.

I. INTRODUCTION
Parametric modeling for the harmonic signal, whose frequen-
cies are integer multiples of the fundamental ones, is a clas-
sical but still open problem in the spectral analysis research
due to its application in a wide range of areas such as music
and voiced speech signal processing [1], [2], biomedical engi-
neering [3], sonar [4] and so on.

In this work, we focus on the area of music and voiced
speech signal processing, where the signal of interest (SOI)
is modeled as the multi-pitch harmonic signal [5]. Corre-
spondingly, the parametric modeling consists of two parts -
harmonic detection and parameter estimation for each source
(or pitch), by which we mean the detection of the indexes
of the individual harmonic components and the estimation of
their characteristic parameters. For the parameter estimation,
the fundamental frequencies are of most interest. Once their
estimates are obtained, the remaining linear parameters such
as amplitudes and initial phases, can be computed as a linear
least-squares (LLS) solution [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jing Liang.

Conventionally, the fundamental frequency estimation is
performed in the single-channel setup [7]–[13]. Conse-
quently, when the frequencies of the harmonic components
from different pitches are close to each other relative to
the length of the observation, that is, the problem of spec-
trally overlapping harmonics occurs, it is difficult to dif-
ferentiate these pitches. To achieve better source separation
and improve the estimation accuracy, the multiple-channel
setup of microphone arrays has been adopted in the recent
years [14]–[16], where the music and voiced speech
signals are measured from the multiple channels, that is
microphones, successively at some time delay. As a result,
the measured signals constitute a two-dimensional (2-D) har-
monic signal, which is characterized by the spatial-temporal
fundamental frequencies. Accordingly, several joint estima-
tion methods for the 2-D fundamental frequencies have been
proposed in the relevant works [14]–[18], in order to enhance
the source separation. Since more data are observed from
the multiple channels than those from the single channel,
the parameter estimation refinement is also expected [19].
However, most of these methods are parametric, and do not
perform well if the information about the harmonic indexes is
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not complete. The common nonparametric estimation meth-
ods based on the fast Fourier transform (FFT) can handle this
case, but subjected to the limited ability to resolve the closely-
spaced frequencies relative to the length of the observation
signal [20]. Hence, a kind of high-resolution nonparametric
estimation method is needed in the case of the incomplete
signal model.

When it comes to the harmonic detection, we note that it
often happens in practice that the frequencies of the harmonic
components consist of just a subset of the consecutive inte-
ger multiples of the fundamental quantities. This means that
some integer-order harmonics are not present in the observed
signal. For example, in the public switched telephone network
(PSTN), the speech signals are commonly high-pass filtered
at about 300 Hz, meaning that the lower harmonics for speak-
ers with the frequencies below 300 Hz are missing from the
observed signal. Similarly, the harmonic signal may consist
of only odd-order or even-order harmonics [5], or some har-
monic components may be so weak that they are buried in the
background noise. In these situations, the appearance or dis-
appearance of the harmonic components incurs the expo-
nential growth of the number of the potential signal models
with respect to the maximum possible order of the harmonic
components of the signal. Therefore, it is not appropriate
to utilize such model comparison methods as [21]–[23] to
determine which harmonic components exist or miss due
to the high computational burden. To overcome the above
difficulty, it is proposed to characterize the candidate signal
models only in terms of the number of harmonics, and we
aim to estimate the signal order, that is the number of the
harmonic components existing in the observed signal. As a
result, the harmonic components are detected as the ones with
the largest spectral powers.

In the signal order estimation, one class of the meth-
ods are based on the rank determination of the data
matrix, including the order estimators of MUltiple SIgnal
Classification (MUSIC) [24], ESTimation ERror (ESTER)
[25] and Subspace-based Automatic Model Order Selection
(SAMOS) [26], etc. Although it is easy to conduct rank deter-
mination following their respective criteria, these methods do
not utilize the statistical model of the observed data. In [27],
various information theoretic criteria have been reviewed to
select the order of the sinusoidal signals in white Gaussian
noise, such as the minimum description length (MDL) crite-
rion, direct Kullback-Leibler (KL) approach, cross-validatory
KL approach based on the Akaike information criterion
(AIC), generalized cross-validatory KL approach based on
the generalized information criterion (GIC) and Bayesian
approach based on the Bayesian information criterion (BIC).
In [28], the authors try to estimate the order of the one-
dimensional (1-D) sinusoidal signals from the Bayesian view-
point, and derive the maximum a posteriori (MAP) criterion,
which is regarded as optimal in the sense of maximizing
the average probability of correct detection. In [29], the
MAP criterion is extended to the 2-D sinusoidal signals.
Nevertheless, the authors consider the general model of the

2-D sinusoidal signal, and do not take the harmonic structure
into account when deriving the 2-D MAP criterion. What is
more important is that, in [29], the asymptotic assumptions of
the lengths of the two dimensional data are both used, which
is impractical for the number of the signal channels.

In this paper, we model the 2-D harmonic signals by
combining the parameter estimation and harmonic detec-
tion together. Firstly, we propose the maximum harmonic
model, which encompasses all the candidate models of the
2-D harmonic signals. Then, we develop a high-resolution
nonparametric estimator, that is the joint spatial-temporal
linearly constrained minimum variance (JST-LCMV) beam-
former, to perform the joint estimation of the 2-D funda-
mental frequencies based on the maximum harmonic model.
Accordingly, the spectral powers of all the estimated har-
monic components in the maximum harmonic model are
obtained. Secondly, the harmonic detection procedure is pro-
posed, where we estimate the signal order by extending
the MAP criterion to the 2-D harmonic signal, and detect
the harmonic components according to their spectral power
estimates.

The rest of this paper is organized as follows. The prob-
lem of parametric modeling for the 2-D harmonic signals
with missing harmonics is formulated in Section II. The
proposed parametric modeling methodology for the 2-D har-
monic signal is presented in Section III, which includes the
joint estimation of the 2-D fundamental frequencies with the
JST-LCMV beamformer and the detection of the existing
harmonic components based on the MAP criterion and the
spectral powers of the harmonic components of the maximum
harmonic model. Simulation and experimental results are
presented in Section IV to evaluate the performance of the
proposed parametric modeling framework by comparing with
other parameter estimation and harmonic detection methods.
Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION
In this paper, we consider the model of the 2-D harmonic
signal without multi-path components, which is generated by
the multiple recordings of a 1-D harmonic signal s(n). Here,
the signal s(n) consists of K pitches:

s(n) =
K∑
k=1

s(k)(n) =
K∑
k=1

Lk∑
l=1

ρl,kejωkpl,kn, (1)

for n = 1, 2, · · · ,N , where j =
√
−1 stands for the

unit imaginary number, N denotes the data length, ωk and
pl,k (p1,k < · · · < pLk ,k ) are the temporal fundamen-
tal frequency and the harmonic indexes of the k-th pitch,
respectively, and ρl,k is the complex-valued amplitude of the
l-th harmonic component of the k-th pitch. Since pl,k
(l = 1, · · · ,Lk ) are not necessarily consecutive integers,
there maybe exist missing harmonics in s(n).
Assume that each pitch of s(n), that is s(k)(n), is recorded

through the channels 1, 2, · · · , I , successively, and the
time delay between any two successive recordings is τk .
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As a result, the signal measured from the i-th channel is given
by:

xi(n) = si(n)+ qi(n), (2)

si(n) = βi
K∑
k=1

s(k)(n− fsτk i), (3)

for n = 1, 2, · · · ,N and i = 1, 2, · · · , I , where si(n) and
qi(n) represent the SOI and noise parts of xi(n), respectively,
βi is the gain of the i-th channel, and fs is the sampling
frequency. Here,N � I , which is the normal case in practice.
Without loss of generality, βi (i = 1, · · · , I ) are set as 1 uni-
formly here. The noises qi(n) are assumed to be uncorrelated
white Gaussian with the unknown variance σ 2. According
to (1), si(n) of (3) is further expressed as:

si(n) =
K∑
k=1

Lk∑
l=1

ρl,kejωkpl,k (n−fsτk i)

=

K∑
k=1

Lk∑
l=1

ρl,kej(ωkpl,kn+θkpl,k i), (4)

with θk , −ωk fsτk being the so-called spatial fundamental
frequency. Consequently, si(n) (n = 1, · · · ,N ; i = 1, · · · , I )
constitute a 2-D harmonic signal.

The model of the 2-D harmonic signal, that is si(n) of (4),
is well-suited for the application of processing the voiced
speech signals and many musical instrumental signals at
microphone arrays [14]–[17]. When the microphones are
arranged as the uniform linear array (ULA), for example,
we have that τk = d sinαk/c, and

θk = −ωk fsd sinαk/c, (5)

with αk , d and c denoting the direction-of-arrival (DOA),
inter-element spacing and propagation speed of the sound
wave, respectively. Note that when the multi-path propaga-
tion occurs, the signal model of (4) is still valid but with
ωk1 = ωk2 , for some k1 6= k2.

It should be addressed that in this paper, we assume that
the multiple recordings of each pitch of the 1-D harmonic
signal are spaced with the equal time delay. Based on this
point, we develop the joint fundamental frequency estimation
method in Section III. When the 1-D harmonic signal is
measured spatially at a non-uniform rate, we can utilize the
interpolation-based techniques such as [30]–[32] to recover
the multiple recordings spaced with the equal time delay
as (2).

In this paper, we aim to devise a high-resolution nonpara-
metric method to estimate the 2-D fundamental frequencies
of (ωk , θk ) jointly under the assumption of the unknown har-
monic indexes, and then to determine the harmonic indexes
of each pitch, that is pl,k , based on the parameter estimates.
Afterwards, the parametric modeling of the 2-D harmonic
signal si(n) is completed. Here, K is assumed known a priori.
Nevertheless, as shown in Section IV.E, when K is unknown
and relaxed as K ≤ Kmax , our methodology is robust to

such difficulty and can still select the correct model as when
K is known. As a result, the number of sources is determined
automatically.

III. PARAMETRIC MODELING METHODOLOGY
The work of parametrically modeling the 2-D harmonic sig-
nal consists of two parts: i) the joint estimation of the tempo-
ral and spatial fundamental frequencies with the JST-LCMV
beamformer; ii) the detection of the existing harmonics with
the MAP criterion. In this section, the detail of the develop-
ment of the JST-LCMV beamformer and the MAP criterion
is illustrated.

A. 2-D FUNDAMENTAL FREQUENCY ESTIMATION WITH
THE JST-LCMV BEAMFORMER
Since the information about the harmonic indexes is unavail-
able, the parametric methods are not appropriate in the
2-D fundamental frequency estimation here. To overcome
such difficulty, we turn to the nonparametric methods. Tra-
ditionally, the nonparametric parameter estimation meth-
ods are classified into two categories - signal independent
and signal dependent [20]. For the former, the FFT-based
method is extensively used, where we search for the fre-
quency estimates according to the locations of the peaks
of the signal’s periodogram. This kind of method is essen-
tially a filtering approach, where a bandpass filter is uti-
lized with the finite impulse response (FIR) given by the
standard Fourier transform vector (e.g., for the 1-D signal,[
1 e−jω̃ · · · e−j(N−1)ω̃

]T
). However, the FFT-based approach

is subjected to the well-known frequency resolution limit of
the FFT (see Section 2.4 of [20]).

To alleviate this problem, several signal dependent beam-
formers have been developed (see [33] for an overview),
among which the linearly constrained minimum variance
(LCMV) beamformer is popular due to its simplicity and
effectiveness. Since the LCMV beamformer is designed
through passing the SOI undistorted while suppressing the
signal out of interest as much as possible, it becomes
more SOI selective and bears higher frequency resolution
than the signal independent methods. The standard version
of the LCMV beamformer considers the spectral analysis
only in one-dimension (temporal domain or spatial domain).
To achieve the joint estimation of 2-D fundamental frequen-
cies, here we extend the LCMV beamformer to the two-
dimensional scenario of the temporal and spatial domains,
and develop the JST-LCMVbeamformer. To improve the esti-
mation accuracy, we make use of the harmonic relation of the
signal components in devising the JST-LCMV beamformer.

Due to the lack of the information about the harmonic
indexes, we define the maximum harmonic model for the
observed signal at the first step:

xi(n) = si(n)+ qi(n), (6)

si(n) =
K∑
k=1

Lmax,k∑
l=1

ρ′l,ke
j(ωk ln+θk li), (7)
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where Lmax,k is the maximum possible order of the harmon-
ics for the k-th pitch (which means pLk ,k ≤ Lmax,k ), and
ρ′l,k is the complex-valued amplitude of the l-th harmonic
component of the k-th pitch in the maximum harmonic
model. Comparing (4) and (7), it is seen that the maximum
harmonic model covers all the possible signal models of si(n)
of (4) with respect to different Lk and pl,k ; and ρ′l,k = 0, for
l 6= p1,k , · · · , pLk ,k .
Now considering a segment of the signal xi(n) sampled at

Ns temporal instants and from Is channels, we construct the
Ns×Is data matrixXis (ns) as: (see (8), as shown at the bottom
of the next page), for ns = 1, · · · ,N−Ns+1, is = 1, · · · , I−
Is + 1, and express the FIR of the 2-D filter at the temporal
and spatial frequencies (ω̃, θ̃ ), as [34]: (see (9), as shown at
the bottom of the next page). Furthermore, we convert the
2-D data matrix and filter response into the 1-D ones by
means of vectorization as:

xis (ns) = vec
{
Xis (ns)

}
, (10)

hω̃,θ̃ = vec
{
Hω̃,θ̃

}
, (11)

with vec{·} denoting the column-wise stacking operator.
Our proposed signal dependent joint spatial-temporal fil-

tering method for the joint estimation of (ωk , θk ) is based on
the LCMV beamformer [35]. Different from the FFT-based
method, we utilize the single spatial-temporal filter with
multiple harmonic constraints. The JST-LCMV beamformer
aims to minimize the output power subject to a distortionless
response at certain frequency pairs. The output of the spatial-
temporal filter is given by:

yis (ns) = hH
ω̃,θ̃

xis (ns), (12)

with the superscript of H denoting the Hermitian transpose.
Accordingly, the output power is:

E
{
yis (ns)y

H
is (ns)

}
= hH

ω̃,θ̃
E
{
xis (ns) · x

H
is (ns)

}
hω̃,θ̃

= hH
ω̃,θ̃

Rhω̃,θ̃ , (13)

where R is the covariance matrix of the signal xis (ns). With
the maximum possible harmonic order for the k-th pitch,
Lmax,k , and its corresponding 2-D fundamental frequency
(ωk , θk ), the LCMV beamformer design problem for the
k-th pitch is formulated as the following optimization
problem:

hωk ,θk = argmin
h̃

h̃HRh̃,

s.t. h̃Ha(lωk , lθk ) = 1,

for l = 1, 2, · · · ,Lmax,k , (14)

where a(ω̃, θ̃ ) ∈ C(IsNs)×1 is the spatial-temporal Fourier
transform vector, and is defined as:

a(ω̃, θ̃ ) = a2(θ̃ )⊗ a1(ω̃), (15)

a1(ω̃) =
[
1 e−jω̃ · · · e−j(Ns−1)ω̃

]T
, (16)

a2(θ̃ ) =
[
1 e−jθ̃ · · · e−j(Is−1)θ̃

]T
, (17)

with ⊗ denoting the Kronecker product. The above opti-
mization problem is solved by using the Lagrange multiplier
method [36], which gives the following expression for the
optimal stacked spatial-temporal filter response:

hωk ,θk = R−1Ak (ωk , θk ) ·

(AH
k (ωk , θk )R

−1Ak (ωk , θk ))−11Lmax,k , (18)

with 1Lmax,k denoting an Lmax,k×1 vector with all the elements
being one, and Ak (ω̃, θ̃ ) defined as:

Ak (ω̃, θ̃ ) =
[
a(ω̃, θ̃ ) · · · a(Lmax,k ω̃,Lmax,k θ̃ )

]
. (19)

By inserting the optimal filter response (18) into the output
power expression (13), the 2-D fundamental frequencies of
the harmonic signal si(n) of (4), are estimated in a joint way
by searching for the peaks of the output power J (ω̃, θ̃ ) over
the set of the 2-D fundamental frequency candidate � ×2,
with

J (ω̃, θ̃ ) = 1HLmax,k

(
AH
k (ω̃, θ̃ )R

−1Ak (ω̃, θ̃ )
)−1

1Lmax,k , (20)

for ω̃ ∈ � = (0, 2π ) and θ̃ ∈ 2 = (0, 2π ).
In the real-life setting, it is impossible to access the covari-

ance matrixR, which is usually estimated in the forward way
as:

R̂F =
1

(N − Ns + 1)(I − Is + 1)

·

N−Ns+1∑
ns=1

I−Is+1∑
is=1

xis (ns) · x
H
is (ns). (21)

It is seen from the signal model of (2) that xis (ns) of (10) is
second-order stationary. Thus, R can also be estimated in the
backward way as (see Section 4.8 of [20]):

R̂B = J0R̂T
FJ0, (22)

with J0 denoting the exchange matrix with the anti-diagonal
elements being 1 and the rest being 0. To enhance the estima-
tion accuracy, here R is estimated by averaging R̂F and R̂B
as follows:

R̂ =
1
2

(
R̂F + R̂B

)
. (23)

In the practical procedure, we estimate the K pairs of 2-D
fundamental frequencies of si(n) of (4) one by one. Firstly,
we obtain the coarse estimate of each pair of the 2-D fun-
damental frequencies, denoted by (ω̂(0)

k , θ̂
(0)
k ), from the grid

of its admissible range. Then, we conduct the estimation
refinement by searching for the locally minimum point of
J (ω̃, θ̃ ) of (20) from (ω̂(0)

k , θ̂
(0)
k ) based on the gradient-based

method. In detail, we calculate the estimate for the k-th pitch
iteratively as:[

ω̂
(i+1)
k
θ̂
(i+1)
k

]
=

[
ω̂
(i)
k
θ̂
(i)
k

]
+ δ · ∇J (ω̃, θ̃ )

∣∣∣
ω̃=ω̂

(i)
k ,θ̃=θ̂

(i)
k

, (24)

where i and i + 1 are the iteration indexes, δ > 0
is a small constant which is found using a line search
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algorithm [37], and ∇J (ω̃, θ̃ ) =
[
∂J (ω̃,θ̃ )
∂ω̃

∂J (ω̃,θ̃ )
∂θ̃

]T
is the

gradient of J (ω̃, θ̃ ). According to the rules of matrix deriva-
tive [38], ∇J (ω̃, θ̃ ) is: (see (25), as shown at the bottom of
this page), whereRe{·} stands for the operation of taking real

part, and Qk (ω̃, θ̃ ) =
(
AH
k (ω̃, θ̃ )R̂

−1Ak (ω̃, θ̃ )
)−1

, B1,k =

∂Ak (ω̃,θ̃ )
∂ω̃

, B2,k =
∂Ak (ω̃,θ̃ )

∂θ̃
.

It should be noted that in the fundamental frequency esti-
mation of the harmonic signal with missing harmonics, there
maybe exist relatively lower but still high peaks of J (ω̃, θ̃ )
of (20) at the frequency pairs corresponding to the integer
multiples or divisors of the true fundamental frequencies [5].
For the multi-pitch signal, such peaks are probably higher
than the peak at another fundamental frequency pair and thus,
their locations may bemistaken as the fundamental frequency
estimates. To overcome this difficulty, it is proposed to cancel
the estimated harmonic components corresponding to the
k-th pitch from the observation once (ω̂k , θ̂k ) is solved, and
then, to select the initial estimate of the next pair of 2-D
fundamental frequency, that is (ω̂(0)

k+1, θ̂
(0)
k+1), based on such

preprocessed data. Define the observation as:

x =
[
xT1 xT2 · · · x

T
I

]T
, (26)

xi =
[
xi(1) xi(2) · · · xi(N )

]T
, (27)

and we cancel the harmonic components corresponding to the
k-th pitch by the projection operation [20]:

x\k =
(
IIN − Pk (ω̂k , θ̂k )

(
PHk (ω̂k , θ̂k )Pk (ω̂k , θ̂k )

)−1
PHk (ω̂k , θ̂k )

)
x

, P⊥k x, (28)

where IIN is an (IN )× (IN ) identity matrix, and

Pk (ω̂k , θ̂k ) =
[
p(ω̂k , θ̂k ) · · · p(Lmax,k ω̂k ,Lmax,k θ̂k )

]
,

with

p(ω̃, θ̃ ) , p2(θ̃ )⊗ p1(ω̃),

p1(ω̃) ,
[
ejω̃ ej2ω̃ · · · ejN ω̃

]T
,

p2(θ̃ ) ,
[
ejθ̃ ej2θ̃ · · · ejI θ̃

]T
.

Up to now, the procedure of the 2-D fundamental frequency
estimation is summarized in Algorithm 1.

Algorithm 1 Procedure of the 2-D Fundamental
Frequency Estimation
Input: The signal observation xi(n), n = 1, · · · ,N ,

i = 1, · · · , I , and the maximum possible orders
Lmax,k , k = 1, · · · ,K . Stack xi(n) as x, and set
x◦ = x.

Output: The 2-D fundamental frequency estimates
(ω̂k , θ̂k ), k = 1, · · · ,K .

1 for k = 1; k ≤ K ; k ++ do
2 Estimate the covariance matrix R with x◦ as (23);
3 Construct the cost function J (ω̃, θ̃ ) of (20) based on

the maximum harmonic model of (6) with Lmax,k ;
4 Obtain the coarse estimate of the fundamental

frequency of the k-th pitch, (ω̂(0)
k , θ̂

(0)
k ), from the grid

of �×2;
5 Solve the refined estimate (ω̂k , θ̂k ) by searching for

the peak of J (ω̃, θ̃ ) of (20) near (ω̂(0)
k , θ̂

(0)
k );

6 Cancel the harmonic components corresponding to
the k-th pitch from the observation xi(n) by (28) as

x◦ = P⊥k x
◦
;

7 end
8 Return (ω̂k , θ̂k ), k = 1, · · · ,K .

According to (12)-(19), we can estimate the spectral
power at some 2-D frequency pair (ω̃, θ̃ ) by the JST-LCMV

Xis (ns) =


xis (ns) xis+1(ns) · · · xis+Is−1(ns)

xis (ns + 1) xis+1(ns + 1) · · · xis+Is−1(ns + 1)
...

...
. . .

...

xis (ns + Ns − 1) xis+1(ns + Ns − 1) · · · xis+Is−1(ns + Ns − 1)

 (8)

Hω̃,θ̃ =


Hω̃,θ̃ (0, 0) Hω̃,θ̃ (0, 1) · · · Hω̃,θ̃ (0, Is − 1)
Hω̃,θ̃ (1, 0) Hω̃,θ̃ (1, 1) · · · Hω̃,θ̃ (1, Is − 1)

...
...

. . .
...

Hω̃,θ̃ (Ns − 1, 0) Hω̃,θ̃ (Ns − 1, 1) · · · Hω̃,θ̃ (Ns − 1, Is − 1)

 (9)

∇J (ω̃, θ̃ ) =
[
∂J (ω̃,θ̃ )
∂ω̃

∂J (ω̃,θ̃ )
∂θ̃

]T
= −2Re

{[
1HLmax,kQk (ω̃, θ̃ )AH

k (ω̃, θ̃ )R̂
−1B1,k (ω̃, θ̃ )Qk (ω̃, θ̃ )1Lmax,k

1HLmax,kQk (ω̃, θ̃ )AH
k (ω̃, θ̃ )R̂

−1B2,k (ω̃, θ̃ )Qk (ω̃, θ̃ )1Lmax,k

]}
(25)
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beamformer as:

sLCMV (ω̃, θ̃ ) =
1

aH (ω̃, θ̃ )R̂−1a(ω̃, θ̃ )
. (29)

Consequently, the spectral power of the l-th harmonic com-
ponent of the k-th pitch in the maximum harmonic model,
is estimated as:

sLCMV (lω̂k , lθ̂k ) =
1

aH (lω̂k , lθ̂k )R̂−1a(lω̂k , lθ̂k )
. (30)

The above spectral power estimate for the maximum har-
monic model will be utilized in the harmonic detection as
detailed in the next part.

B. HARMONIC DETECTION WITH THE MAP CRITERION
In this part, we devise the harmonic detection scheme via
extending the well-known MAP criterion [28] into the case
of the 2-D harmonic signal and with the estimated 2-D fun-
damental frequencies. In the MAP model selection criterion,
it is assumed that there exist a series of candidate models,
and the correct model is determined with the largest posterior
probability given the observation data. The posterior proba-
bility of each model is calculated according to the Bayesian
rule and depends on the prior probability of the candidate
models and unknown parameters.

According to (4), (2) is rewritten in the form of matrix-
vector multiplication as follows:

x = 5ρ + q, (31)

where q is the noise part of x,

ρ =
[
ρT1 ρ

T
2 · · · ρ

T
K

]T
,

ρk =
[
ρ1,k ρ2,k · · · ρLk ,k

]T
,

and

5 =
[
51 52 · · · 5K

]
,

5k =
[
p(p1,kωk , p1,kθk ) · · · p(pLk ,kωk , pLk ,kθk )

]
,

for k = 1, 2, · · · ,K .
Now we assume that there exist M candidate models,

which are differentiated in terms of the number of harmonics,
and are indexed as m = 1, 2, · · · ,M , respectively. For
the m-th model, there exist m harmonic components across
the Km present pitches. This means that these m harmonic
components come from Km different pitches. Correspond-
ingly, the m-th model includes the unknown parameters of
the Km pairs of 2-D fundamental frequencies, them complex-
valued amplitudes and the noise level, which are denoted by
ψKm ∈ R2Km×1, ρm ∈ Cm×1 and σ > 0, respectively. Here,

ψKm is further represented by ψKm =

[
ωTKm θ

T
Km

]T
, with

ωKm ,
[
ω1 · · · ωKm

]T and θKm ,
[
θ1 · · · θKm

]T denoting
the temporal and spatial fundamental frequencies in the m-th
model, respectively.

To calculate the posterior probability of the model m given
the observed data x, denoted by p(m|x), the prior probability

of the candidate models and the unknown parameters should
be selected first. It is assumed a priori that the M competing
models are equiprobable. That is, the prior probability of the
m-th model:

p(m) =
1
M
, m = 1, 2, · · · ,M . (32)

As a result, to maximize p(m|x) is equivalent to the maxi-
mization of p(x|m), that is the conditional probability dis-
tribution function (PDF) of x given the model m [39]. The
goal of harmonic detection is to derive a model selection
rule based on the noninformative prior of the unknown
parameters. In other words, we should select such priors
that they can represent the lack of the prior knowledge of
the values of the unknown parameters before the data are
observed [28]. In addition, we assume that all the unknown
parameters, that is ψKm , ρm and σ , are independent of each
other.

According to the Bayesian rule, we have that the prior
PDF of the unknown parameters given the m-th model is
expressed as:

p(ψKm , ρm, σ |m) = p(ρm, σ |ψKm ,m) · p(ψKm |m). (33)

Assuming that the fundamental frequencies are independent
of each other, the lack of the prior knowledge of these
frequencies means that ψKm are uniformly distributed in
DKm , [0, 2π ]2Km . Thus,

p(ψKm |m) =
1

(2π )2Km
. (34)

Due to the independence of ρm and σ , it holds that

p(ρm, σ |ψKm ,m) = p(ρm|ψKm ,m) · p(σ |ψKm ,m). (35)

From the assumption that little is known a priori rela-
tive to the information contained in the observed data,
the prior PDF of ρm and σ are locally uniform [39], or
equivalently,

p(ρm|ψKm ,m) = γ (m), (36)

and

p(σ |ψKm ,m) = cσ−1, (37)

where c > 0 is a constant, and γ (m) is positively con-
stant for any given m. Note that, (36) and (37) result in an
improper prior distribution of (35) if defined inCm×1

×R+ or
R2m×1

× R+. Hence, (36) and (37) are defined only locally,
and not over the entire definition domain. This is consistent
with the boundedness of the amplitudes ρm and the noise
level σ . In detail, (36) and (37) define the priors of ρm and
σ only over the range where the likelihood functions of the
corresponding parameters are close to or at the maximum,
whereas the priors decay to zero outside this range to ensure
that they represent proper PDFs.
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Note that the noise qi(n) is white Gaussian. On the assump-
tion of the true model m and the true parameter values ψKm ,
ρm and σ , the PDF of the observed data is:

p(x|m,ψKm , ρm, σ ) =
1

πNIσ 2NI

· e−
1
σ2

(x−Dmρm)
H (x−Dmρm), (38)

where

Dm =
[
d1 d2 · · · dm

]
,

di = p2(θ̄i)⊗ p1(ω̄i),

for 1 ≤ i ≤ m. For ω̄i and θ̄i, there exist 1 ≤ k ≤ Km and
1 ≤ l ≤ Lmax,k , so that ω̄i = lωk and θ̄i = lθk .
In Appendix A, it is derived that when N → ∞, the con-

ditional PDF of the observed data x based on the model m,

p(x|m) = C(m)(IN )−2m(xH D̂⊥mx)
−IN

· (2π )Km (IN )−Km |Ĥm|
−1/2, (39)

where C(m) = c2−(2Km+1)π−(2Km−m+IN )0(IN )γ (m), the
projection matrix D⊥m is defined as follows:

D⊥m , IIN − Dm(DH
mDm)−1DH

m , (40)

the Hessian matrix of ln xHD⊥mx,

Hm =
∂2 ln xHD⊥mx

∂ψKm∂ψ
T
Km

, (41)

D̂⊥m and Ĥm are the versions of D⊥m and Hm, respectively,
with ψKm replaced by ψ̂Km , the maximum likelihood (ML)
estimate of ψKm for the observation x and based on the m-th
data model.

The signal order estimate of the MAP criterion, denoted
by M̂MAP, is taken as the candidate order which maximizes
the conditional PDF, p(x|m). Taking the negative logarithm
of (39), we have that for the large data length N , the order
estimate

M̂MAP = arg min
m∈Z+

{− ln p(x|m)}

≈ arg min
m∈Z+

(IN ) ln xH D̂⊥mx

+ (2m+ Km) ln IN +
1
2
ln |Ĥm|. (42)

To find the determinant of Ĥm, we compute the elements of
Hm one by one, and evaluate their values at the ML estimate
of ψKm . In detail, the first- and second-order derivatives of
ln xHD⊥mx are:

∂ ln xHD⊥mx
∂ψKm (i1)

= (xHD⊥mx)
−1
·
∂(xHD⊥mx)
∂ψKm (i1)

(43)

and (see (44), as shown at the bottom of the next
page), respectively, with ψKm (i1) and ψKm (i2) denoting the
i1-th and i2-th elements of ψKm , respectively, for

i1, i2 = 1, 2, · · · , 2Km. Since the ML estimate of ψKm , that
is ψ̂Km , is an extreme point of xHD⊥mx, we have that

∂xHD⊥mx
∂ψKm (i1)

∣∣∣∣
ψKm=ψ̂Km

= 0. (45)

As a result, Ĥm has the following form:

Ĥm = (xH D̂⊥mx)
−1
· Ĥ0,m, (46)

where

H0,m =
∂2(xHD⊥mx)

∂ψKm∂ψ
T
Km

(47)

is the Hessian matrix of xHD⊥mx, and

Ĥ0,m = H0,m
∣∣
ψKm=ψ̂Km

. (48)

Furthermore, (42) is written as

M̂MAP ≈ arg min
m∈Z+

(IN ) ln xH D̂⊥mx

+ (2m+ Km) ln IN +
1
2
ln |Ĥ0,m|. (49)

According to (A.11)-(A.13), D⊥m is simplified as

D⊥m = IIN − Dm(DH
mDm)−1DH

m

≈ IIN −
1
IN

DmDH
m , (50)

where DH
mDm is approximated as DH

mDm ≈ (IN )Im. Thus,
the elements of H0,m are calculated approximately as:
(see (51), as shown at the bottom of the next page).

As a result, the MAP order estimate becomes:

M̂MAP ≈ arg min
m∈Z+

(IN ) ln xH D̂⊥mx

+ 2m ln IN +
1
2
ln |Ĥ0,m|

, arg min
m∈Z+

Q(m), (52)

where the (i1, i2)-th element ofH0,m (i1, i2 = 1, 2, · · · , 2Km)
is computed as (see (53), as shown at the bottom of the next
page), and

Ĥ0,m = H0,m
∣∣
ψKm=ψ̂Km

. (54)

Correspondingly, the harmonic components of the
M̂MAP-th model are detected as existing in the 2-D harmonic
signal si(n) of (4).
Remark 1: Here, we select the m harmonic components

with the largest spectral powers from those of the maximum
harmonic model, to constitute them-th model and to calculate
the MAP criterion of (52). Instead of calculating the MAP
criterion for all the combinations of the candidate harmonic
components, we compare it only for mmax =

∑K
k=1 Lmax,k

times, which saves a great deal of computation.
Remark 2: It is seen from (52) that the MAP crite-

rion consists of three terms. The first term is about data
fitting. Note that the M candidate models are nested
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(referring to Remark 1). Thus, the first term decreases with
increasing m. Meanwhile, the second term increases, which
penalizes overfitting to a larger degree for a more complex
model. It is difficult to analyze the third term directly. But
extensive numerical tests show that its variation with respect
to m is usually small compared with that of the second term,
and it acts as finely tuning the MAP criterion.
Remark 3: In practice, it is computationally prohibitive to

solve the ML estimate of ψKm , that is ψ̂Km in (52), especially
for each m. Here, we obtain the approximate value of ψ̂Km
from Algorithm 1, which is based on the maximum harmonic
model and the nonparametric JST-LCMV beamformer.

In summary, the complete procedure of the harmonic
detection is listed in Algorithm 2.

Algorithm 2 Procedure of the harmonic detection
Input: The signal observation xi(n), n = 1, · · · ,N ,

i = 1, · · · , I , the 2-D fundamental frequency
estimates (ω̂k , θ̂k ), and the maximum possible
orders Lmax,k , k = 1, · · · ,K .

Output: The harmonic indexes pl,k , k = 1, · · · ,K .
1 Set mmax =

∑K
k=1 Lmax,k ;

2 Estimate the spectral power sLCMV (lω̂k , lθ̂k )
(k = 1, · · · ,K , l = 1, · · · ,Lmax,k ) of xi(n) using (30);

3 Sort sLCMV (lω̂k , lθ̂k ) in the descending order as
λ1 > λ2 > · · · > λmmax ;

4 for m = 1;m ≤ mmax;m++ do
5 Constitute the m-th model with the harmonic

components corresponding to λ1, λ2, · · · , λm;
6 Calculate Q(m) of (52) for the m-th model;
7 end
8 Determine m = M̂MAP which minimizes Q(m);
9 Return the harmonic indexes corresponding to λm,
m = 1, 2, · · · , M̂MAP.

IV. SIMULATION AND EXPERIMENT RESULTS
A. SIMULATION SETTING
In this section, we firstly compare the spectrograms of the
joint spatial-temporal FFT (JST-FFT) and the JST-LCMV
beamformer, from which it is seen that the latter bears higher
frequency resolution.

Then, we evaluate the estimation and detection perfor-
mance of the proposed JST-LCMV beamformer and MAP
criterion, respectively, by comparing with other methods. The
mean square errors (MSE), which account for the combina-
tion of the bias and standard error, are adopted to evaluate the
performance of the 2-D fundamental frequency estimation.
They are defined as follows:

MSEω =
1
SK

K∑
k=1

S∑
s=1

(ω̂(s)
k − ωk )

2 (55)

and

MSEθ =
1
SK

K∑
k=1

S∑
s=1

(θ̂ (s)k − θk )
2, (56)

with ωk , θk and ω̂
(s)
k , θ̂

(s)
k being the true parameter values and

their estimates at the s-th trial, respectively; and S being the
number of trials.

The performance of the harmonic detection is eval-
uated in terms of the probability of correct detection
(PCD): PCD = S0/S, with S0 and S being the number
of correct-detection trials and the total number of trials,
respectively.

For the performance evaluation, the results provided are
the averages of 1000 runs and they are produced with
respect to signal-to-noise ratio (SNR), which is defined
as: SNR = σ 2

s /σ
2 with the signal power σ 2

s =∑K
k=1

∑Lk
l=1 |ρl,k |

2/
∑K

k=1 Lk .
In the simulation, we consider the 2-D harmonic signals of

the two cases: single-pitch and two-pitch, whose data lengths
are set as (N , I ) = (50, 5) and (N , I ) = (100, 10), respec-
tively. Their parameter settings are shown in Tables 1 and 2,
respectively. It is seen from these two tables that there exist
only the odd-order harmonic components in the signals for
simulation.

It is shown in [40] that the best shift-invariance characteris-
tic of the signal subspace is achieved when the data matrix is
as square as possible. Thus, for the estimate of the covariance
matrix, R̂ of (23), Is and Ns are set as: Is = b0.5 Ic and
Ns = b0.5 Nc (buc denoting the largest integer smaller
than u), respectively, which is found empirically to result in
good performance.

∂2 ln xHD⊥mx
∂ψKm (i1)∂ψKm (i2)

= −(xHD⊥mx)
−2 ∂(x

HD⊥mx)
∂ψKm (i1)

·
∂(xHD⊥mx)
∂ψKm (i2)

+ (xHD⊥mx)
−1 ∂2(xHD⊥mx)
∂ψKm (i1)∂ψKm (i2)

(44)

∂2(xHD⊥mx)
∂ψKm (i1)∂ψKm (i2)

≈ −
2
IN

Re

{
xH
(

∂2Dm

∂ψKm (i1)∂ψKm (i2)
· DH

m +
∂Dm

∂ψKm (i1)
·

∂DH
m

∂ψKm (i2)

)
x
}

(51)

H0,m(i1, i2) = Re

{
xH
(

∂2Dm

∂ψKm (i1)∂ψKm (i2)
· DH

m +
∂Dm

∂ψKm (i1)
·

∂DH
m

∂ψKm (i2)

)
x
}

(53)
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FIGURE 1. Spectrograms of the single-pitch harmonic signal from the: (a) JST-FFT and (b) JST-LCMV
beamformer.

TABLE 1. Simulation Setting of Single-Pitch Harmonic Signal.

TABLE 2. Simulation Setting of Two-Pitch Harmonic Signal.

B. COMPARISON IN FREQUENCY DOMAIN
Before investigating the estimation and detection perfor-
mance of the JST-LCMV beamformer, we first observe the
spectrograms from the JST-FFT and the JST-LCMV beam-
former, which can help us have a better understanding of the
advantage of the JST-LCMV beamformer over the standard
tool for spectral analysis. As shown in Figs. 1 and 2, the spec-
trograms are represented in the form of contour plots, with
the height denoting the spectral power. For the spectrogram
from the JST-FFT, the filter’s impulse response vector is
the Fourier transform vector, and the spectral power at the
2-D frequency (ω̃, θ̃ ) is estimated as:

sFFT (ω̃, θ̃ ) = E
{
yis (ns)y

H
is (ns)

}
= hH

ω̃,θ̃
E
{
xis (ns)x

H
is (ns)

}
hω̃,θ̃

≈ hH
ω̃,θ̃

R̂hω̃,θ̃

=
1

(IsNs)2
aH (ω̃, θ̃ )R̂a(ω̃, θ̃ ), (57)

with a(ω̃, θ̃ ) and R̂ defined in (15) and (23), respectively.

Fig. 1 shows the spectrograms of the single-pitch harmonic
signal from the JST-FFT and the JST-LCMV beamformer
at SNR = 40 dB. From this figure, it is seen that for the
single-pitch signal, both of the JST-FFT and JST-LCMV
beamformer can differentiate all the three harmonic compo-
nents, while the former has wider main lobe. Fig. 2 shows
the spectrograms of the two-pitch harmonic signal. For the
two-pitch signal, the JST-FFT method is unable to differen-
tiate the two harmonic components with the same temporal
frequency of 1.5, while the latter can. From Figs. 1 and 2,
it is concluded that the JST-LCMV beamformer bears bet-
ter frequency resolution, and it is reasonable to utilize the
JST-LCMV beamformer to perform the parameter estima-
tion and spectral analysis instead of the standard FFT-based
method.

C. JOINT ESTIMATION OF 2-D FUNDAMENTAL
FREQUENCIES
Now we evaluate the estimation performance of the
JST-LCMV beamformer based on the maximum harmonic
model and with Lmax,k set as 3, 5, 7 for each pitch. For
comparison, the results of the JST-FFT, harmonic MUSIC
(HMUSIC) [14] and nonlinear least squares (NLS) [15]meth-
ods are also included. For fairness, these methods are also
applied to the maximum harmonic model. Here, the Cramér-
Rao lower bound (CRLB) [41] is provided as a benchmark,
which demonstrates the best results theoretically achievable.

Fig. 3 shows the MSE results of the 2-D fundamental
frequency estimation for the single-pitch signal, where the
different columns of the subfigures correspond to the differ-
ent values of Lmax,k , and the first and second rows of the
subfigures show the estimation results of the temporal and
spatial fundamental frequencies, respectively.

Let us focus on the case that Lmax,k = 7 at first. It is
seen that the MSEs of the JST-LCMV beamformer decrease
approximately linearly with respect to the SNR, which means
that the 2-D fundamental frequency estimation with the
JST-LCMV beamformer is consistent with respect to
the SNR. Furthermore, the MSE curves of the JST-LCMV
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FIGURE 2. Spectrograms of the two-pitch harmonic signal from the: (a) JST-FFT, (b) JST-LCMV beamformer,
(c) JST-FFT (zoomed), and (d) JST-LCMV beamformer (zoomed).

FIGURE 3. MSEs of the single-pitch parameter estimation versus SNR for: (a)–(c) temporal fundamental frequency and (d)–(f) spatial
fundamental frequency.

beamformer keep parallel with the CRLBs when the SNR
is sufficiently large. In detail, when SNR ≥ 0 dB, the gaps
between the MSEs of the LCMV beamformer and their

corresponding CRLBs are about 3 dB for the temporal and
spatial fundamental frequencies, respectively. Meanwhile,
the MSEs of the JST-FFT method decrease more and more
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FIGURE 4. MSEs of the two-pitch parameter estimation versus SNR for: (a)–(c) temporal fundamental frequency and (d)–(f) spatial
fundamental frequency.

slowly with the increase of the SNR. When SNR ≥ 10 dB,
they keep nearly constant. This is because of the limited
frequency resolution of the JST-FFTmethod aforementioned,
which causes the estimation bias. The MSEs of the NLS
method agree well with the CRLBs when SNR ≥ −8 dB,
which is consistent with the fact that the NLS method is
statistically efficient under the assumption of white Gaussian
noise [41]. The MSEs of the HMUSIC keep nearly con-
stant in the whole SNR range. This is because the HMU-
SIC is a parametric frequency estimation method, and does
not work when the information of the signal model is not
complete.

When Lmax,k = 5, the layout of the MSE curves of the
JST-LCMV beamformer, JST-FFT, NLS and HMUSICmeth-
ods are similar to those when Lmax,k = 7. This is because the
maximum harmonic model covers the true signal model for
both of these two cases.

When Lmax,k = 3, it is seen that the gaps between
the MSEs of the LCMV beamformer and their corre-
sponding CRLBs become obviously larger. In detail, when
SNR ≥ 0 dB, the gaps are about 8 dB for the tem-
poral and spatial fundamental frequencies, respectively.
This demonstrates that the LCMV beamformer still works
when Lmax,k is smaller than the largest harmonic index of
the true signal model, but with a less satisfying perfor-
mance. Note that when Lmax,k = 3, the MSEs of the
NLS method keep nearly constant when SNR ≥ 10 dB.
This is because the maximum harmonic model with
Lmax,k = 3 excludes the true signal model, and the

NLSmethod cannot minimize the signal-fitting error with the
2-D fundamental frequency estimates effectively.

Fig. 4 shows the MSE results of the 2-D fundamental fre-
quency estimation for the two-pitch harmonic signal with the
same subfigure layout as Fig. 3. We see that when Lmax,k = 5
and 7, for the JST-LCMV beamformer, the MSEs of the
temporal and spatial fundamental frequencies keep the gaps
of 3−5 dB from the CRLBs when SNR ≥ 16 dB. Meanwhile,
the MSEs of the JST-FFT method keep nearly constant when
SNR ≥ 0 dB. When Lmax,k = 3, the gaps between the MSEs
of the JST-LCMV beamformer and the CRLBs are enlarged
to 10− 12 dB.
We extend the NLS method to the two-pitch harmonic

signal following [7]. It is seen that for the NLS method,
the MSEs of the temporal and spatial fundamental frequen-
cies keep nearly constant when SNR ≥ 20 dB, which is
related to the decoupling difficulty in the extension of the
NLS method to the multi-pitch harmonic signal [9]. Note
that for Lmax,k = 5 and 7, the MSEs of the temporal
fundamental frequency are smaller than the CRLB when
SNR ≤ 10 dB, which demonstrates that the NLS method
provides the biased estimates when the SNR is small enough.
In addition, the MSEs of the spatial fundamental frequency
are always larger than the CRLB in the whole SNR range. The
HMUSIC algorithm still does not work due to the incomplete
model information.

By comparing the fundamental frequency estimation per-
formance of the above methods for the single-pitch and two-
pitch harmonic signals, we adopt the estimation results of
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FIGURE 5. PCDs of the harmonic detection versus SNR for the: (a)–(c) single-pitch signal and (d)–(f) two-pitch signal.

the JST-LCMV beamformer for the harmonic detection in the
next subsection.

D. DETECTION OF THE HARMONICS
Having obtained the estimates of the 2-D fundamental fre-
quencies, it is possible to detect the existing harmonic compo-
nents of the 2-D harmonic signal based on the MAP criterion
and following the procedure in Section III.B. Fig. 5 shows the
harmonic detection performance of the MAP criterion, where
the different columns of the subfigures correspond to the
different values of Lmax,k ; and the first and second rows of the
subfigures show the results for the single-pitch and two-pitch
signals, respectively. For comparison, we also employ the
MUSIC [24], SAMOS [26] and AIC [27] methods to estimate
the orders of the 2-D harmonic signals under consideration,
and provide their corresponding results of harmonic detec-
tion. Here, we extend the SAMOS order estimator to the 2-D
harmonic signal by utilizing the shift invariance in both of the
temporal and spatial dimensions. To make the performance
evaluation of Figs. 5(a) and (d) feasible, we regard only the
harmonic components with the indexes not larger than 3 as
existing in the true signal model when Lmax,k is set as 3.
When Lmax,k = 7, the proposed MAP criterion together

with the MUSIC and SAMOSmethods are consistent asymp-
totically with respect to the SNR. For the single-pitch har-
monic signal, the detection with the MAP criterion achieves
a 100% success rate above the threshold SNR = −8 dB.
By comparison, the MUSIC and SAMOS methods perform
perfectly when SNR ≥ −4 dB and SNR ≥ −2 dB, respec-
tively. For the two-pitch signal, the PCD of theMAP criterion

achieves the value of 100% when SNR ≥ −4 dB, while the
PCDs of the MUSIC and SAMOS methods become 100%
when SNR ≥ 16 dB and SNR ≥ 30 dB, respectively. This
means that theMAP criterion bears the threshold SNR advan-
tage of 2 dB and 20 dB over theMUSIC and SAMOSmethods
for the signal-pitch and two-pitch signals, respectively. It is
also noted that in the whole SNR range and for both the
single-pitch and two-pitch harmonic signals, the PCD of the
AIC criterion is always lower than 100%, which means that
the AIC criterion is unable to provide the consistent harmonic
detection asymptotically with respect to the SNR.

By comparing Figs. 5(b), (e) and Figs. 5(c), (f), it is seen
that the harmonic detection performance with Lmax,k = 5 is
similar to that with Lmax,k = 7. This is reasonable, for the
maximumharmonicmodels with Lmax,k = 5 and 7 both cover
the true signal model.

It is seen from Figs. 5(a) and (d) that, when Lmax,k = 3,
the methods based on the rank determination of the data
matrix, that is theMUSIC and SAMOSmethods, do not work
in thewhole SNR range, while theMAP criterion provides the
perfect harmonic detection results when SNR ≥ −6 dB and
SNR ≥ −10 dB for the single-pitch and two-pitch harmonic
signals, respectively. Interestingly, theAIC criterion performs
perfectly when SNR ≥ 2 dB and SNR ≥ 0 dB for the single-
pitch and two-pitch harmonic signals, respectively, although
it is inconsistent with respect to the SNR when Lmax,k = 5
and 7. This suggests that the AIC criterion tends to underes-
timate the orders of the 2-D harmonic signals.
Remark 4: Based on the simulation results of Section IV.

C-D, it is suggested to set Lmax,k of the maximum harmonic
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FIGURE 6. PCDs of the harmonic detection with the MAP criterion versus SNR for the:
(a) single-pitch signal and (b) two-pitch signal.

model as a large value so that the parametric modeling
methodology for the 2-D harmonic signals can provide sat-
isfying performance.

E. ABOUT SOURCE ENUMERATION
As mentioned in Section II, the source number K is assumed
known a priori here. When K is unknown, the problem of the
determination ofK , that is source enumeration, occurs. In this
subsection, we will explore the source enumeration ability
of our proposed signal modeling methodology. Here, it is
assumed that K ≤ Kmax , and we estimate the Kmax pairs of
2-D fundamental frequencies following Algorithm 1. Based
on the estimated parameters and the maximum harmonic
model:

xi(n) = si(n)+ qi(n),

si(n) =
Kmax∑
k=1

Lmax,k∑
l=1

ρ′l,ke
j(ωk ln+θk li),

we constitute the candidatemodels, and conduct the harmonic
detection with the developed MAP criterion.

Fig. 6 shows the harmonic detection performance of the
MAP criterion with Kmax = K (the same as K being known)
and Kmax = K + 1. The Lmax,k is set as 7 as suggested in the
last subsection. It is seen from Fig. 6 that the proposed signal
modeling methodology can give the perfect performance for
Kmax = K and K + 1 when the SNR is sufficiently high.
This is reasonable, since according to theMAP criterion, only
the candidate model with the largest posterior probability is
selected. When the SNR is sufficiently high, the true signal
model usually satisfies this condition.

It is noted that for the single-pitch signal, when Kmax is
set as K and K + 1, the harmonic detection performances
are similar, while for the two-pitch signal, there is a threshold
SNR loss of 18 dBwhenKmax is set asK+1. Combining with
the results of Figs. 3 and 4, it is inferred that the performance
of the harmonic detection is also subjected to the quality
of the parameter estimation. If the accurate estimates are
unavailable, the signal modeling is less robust to a more
complex set of candidate models.

FIGURE 7. Spectrogram of the anechoic trumpet signal for the
experiment.

F. EXPERIMENT ON REAL-LIFE DATA
In this subsection, we evaluate the performance of the pro-
posed JST-LCMV beamformer and MAP criterion through
an experiment on the real-life data, that is the anechoic
trumpet signal.1 Firstly, we analyze its temporal fundamen-
tal frequency and localize the sound source in a joint way.
Afterwards, the harmonic detection is conducted. The DOA
of the sound source is set as 50◦. Due to the limited laboratory
conditions, here we utilize this anechoic trumpet signal and
its temporally delayed version to mimic the measured signals
by two microphones spaced with d = 5 cm. Thus, β1 and β2
of (3) are equal to 1. The sampling frequency is fs = 44.1 kHz,
and the propagation speed of the sound wave is measured as
c = 341.7 m/s. Accordingly, the time delay between the two
sets of experimental signals is τ ≈ 5/fs.
Fig. 7 shows the spectrogram of the anechoic trumpet

signal using the short-time Fourier transform,2 where the yel-
lower strips correspond to the stronger harmonic components.
From this spectrogram, it is seen that there exists one pitch
with the temporal fundamental frequency around 1170Hz and

1The anechoic trumpet signal was download from
http://theremin.music.uiowa.edu/MIS.html

2The spectrogram is produced with the function ‘‘spectrogram’’ of
MATLAB.
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FIGURE 8. Experimental results of the signal modeling: (a) temporal fundamental frequency estimation,
(b) DOA estimation, and (c) harmonic detection.

the 7 consecutive harmonic components; and the higher-order
components have the smaller spectral powers.

To evaluate the statistical properties of the proposed signal
modeling method, we take 1000 equally spaced segments of
the sampled signals during 0 − 2.5 s, each segment with the
data length of N = 100, and conduct the signal modeling for
each segment. For the parameter estimation, since the exact
true value is unavailable, we calculate the mean value (MV)
and standard deviation (SD) of the estimates instead; for the
harmonic detection, we calculate the detection rate (DR) for
the harmonic components indexed by l = 1, 2, · · · , 7. Here,
the DR of the l-th component is defined as: DRl = Sl/S,
where Sl is the number of the trials where the l-th component
is detected, and S is the total number of trials, that is 1000.
In view of the small number of channels, Ns and Is are set as
50 and 2 for the JST-LCMV beamformer, respectively. For
the harmonic detection, the order of the maximum harmonic
model is set as Lmax,1 = 7.
Figs. 8(a) and (b) show theMVs and SDs of the JST-LCMV

beamformer, JST-FFT, and NLS methods, together with their
respective estimation results at some temporal instants. It is
seen that the JST-LCMV beamformer bears the comparable
performance with the theoretically optimal NLSmethod. The
MV of the DOA estimates of the JST-FFT method deviates
from the true location by larger than 4◦, while it performs
less stably than the JST-LCMV beamformer. Fig. 8(c) shows
the DRs of the MAP criterion together with the MDL [27]

and MUSIC methods. Since the AIC criterion is not consis-
tent and the SAMOS method is not so good as the MUSIC
according to Section IV.D, they are not compared here. From
Fig. 8(c), it is seen that the MAP and MDL criteria detect the
harmonic components l = 1, 2, 3 and 4 with the DR of 100%.
Although the MUSIC method detects the first harmonic
component with the DR of 100%, its performance degrades
quickly for the higher-order components. For the weaker
5-th component, the MAP criterion bears the DR higher than
that of the MDL by 5%. Additionally, all the three methods
can hardly perceive the 6-th and 7-th components, which are
so weak that they are almost buried in the background noise.

V. CONCLUSION
In this paper, a complete framework is proposed to con-
duct the parametric modeling for the 2-D harmonic signals
with missing harmonics. This includes the estimation of the
2-D fundamental frequencies and the detection of the har-
monic components. To achieve this objective, we develop the
JST-LCMV beamformer for the joint 2-D parameter estima-
tion based on the maximum harmonic model; and derive the
maximum a posteriori criterion to estimate the signal order.
The corresponding number of harmonic components from the
maximum harmonic model with the largest spectral powers
are selected as existing in the 2-D harmonic signals. Simula-
tion and experimental results demonstrate the performance
advantages of the proposed signal modeling methodology
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by comparing with other parameter estimation and harmonic
detection methods.

This paper only focuses on the 2-D harmonic signal.
In practice, it is also necessary to consider other kinds of
high-dimensional sinusoidal signals. In the future, we will
go on with the topic of parametric modeling for the high-
dimensional sinusoidal signals, and explore more about the
application of our methodology of signal modeling to the
practical scenarios including localization, biomedical signal
analysis, music and speech signal processing, and so on.

APPENDIX A
DERIVATION OF (39)
Let

ρ̂m , (DH
mDm)−1DH

mx, (A.1)

and we have

(x− Dmρm)
H (x− Dmρm) = xHD⊥mx

+ (ρm − ρ̂m)
HDH

mDm(ρm − ρ̂m). (A.2)

Applying the priors and evaluating the marginal distribution,
we have that (see (A.3), as shown at the top of the next page).
Following the similar principle in [29], p(x,ψKm , σ |m) is
approximated by

p(x,ψKm , σ |m) ≈ p(σ |ψKm ,m)p(ψKm |m)γ (m)

·
1

(πσ 2)IN
e−

1
σ2

xHD⊥mx (πσ
2)m

|DH
mDm|

. (A.4)

Substituting (34) and (37) into (A.4), it is derived that:

p(x,ψKm , σ |m)

= c2−2Kmπ−2Km+m−INγ (m)

· |DH
mDm|

−1σ−2IN+2m−1e−
1
σ2

xHD⊥mx. (A.5)

Then, p(x,ψKm |m) is evaluated as [42]:

p(x,ψKm |m)

=

∫
R+

p(x,ψKm , σ |m)dσ

≈ c2−(2Km+1)π−(2Km−m+IN )γ (m)|DH
mDm|

−1

· (xHD⊥mx)
−(IN−m)

· 0(IN − m), (A.6)

where 0(·) denotes the standard Gamma function. Further-
more, when IN � m, 0(IN −m) ≈ (IN )−m0(IN ), and (A.6)
is rewritten as:

p(x,ψKm |m)

≈ c2−(2Km+1)π−(2Km−m+IN )0(IN )γ (m)

· (IN )−m|DH
mDm|

−1(xHD⊥mx)
−(IN−m). (A.7)

Finally, to obtain the expression of the conditional PDF
p(x|m) =

∫
DKm

p(x,ψKm |m)dψKm , we make use of the
Laplace integration method [43], which considers the integral
of the form ∫ b

a
g(t)eαh(t)dt, (A.8)

where a,b, t are vectors, α is a large positive parameter,
g(t) and h(t) are real functions of t. To align with the
form of the Laplace integration method, we rewrite (A.7)
as:

p(x,ψKm |m) = C(m)(IN )−m

· |DH
mDm|

−1e−(IN−m) ln x
HD⊥mx. (A.9)

Assume that the number of the harmonic components of the
signal, that is the signal order, is equal to m. Define the
matrices D̂m and D̂⊥m in the same way as Dm and D⊥m , respec-
tively, with ψKm replaced by its ML estimate ψ̂Km . Then,
according to the Laplace integration method, the conditional
PDF p(x|m) is derived as:

p(x|m) =
∫
DKm

p(x,ψKm |m)dψKm

=

∫
DKm

C(m)(IN )−m|DH
mDm|

−1

× e−(IN−m) ln x
HD⊥mxdψKm

≈ C(m)(IN )−m|D̂H
m D̂m|

−1e−(IN−m) ln x
H D̂⊥mx

· (2π )Km |Ĥm|
−1/2(IN − m)−Km . (A.10)

When N →∞, there holds that for µ 6= 2πk (k ∈ Z),

N−1∑
n=0

ejnµ = O(1), (A.11)

N−1∑
n=0

nejnµ = O(N ), (A.12)

N−1∑
n=0

n2 ejnµ = O(N 2). (A.13)

As a result, when the data length N is large, |D̂H
m D̂m|

−1 is
simplified as

|D̂H
m D̂m|

−1
≈ (IN )−m, (A.14)

and

p(x|m) ≈ C(m)(IN )−2m(xH D̂⊥mx)
−(IN−m)

· (2π )Km (IN − m)−Km |Ĥm|
−1/2

≈ C(m)(IN )−2m(xH D̂⊥mx)
−IN

· (2π )Km (IN )−Km |Ĥm|
−1/2. (A.15)

APPENDIX B
DERIVATION OF THE CRLB FOR 2-D FUNDAMENTAL
FREQUENCY ESTIMATION
Here, we derive the CRLB for the 2-D fundamental frequency
estimation problem. Firstly, suppose that at the i-th (i =
1, 2, · · · , I ) channel we observe the signal si(µ) corrupted by
the noise qi as follows:

xi = si(µ)+ qi, (B.1)
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p(x,ψKm , σ |m)

=

∫
Cm

p(x|m,ψKm , ρm, σ )p(ρm,ψKm , σ |m)dρm

= p(σ |ψKm ,m)p(ψKm |m)
1

(πσ 2)IN

∫
Cm

e−
1
σ2

(x−Dmρm)
H (x−Dmρm)p(ρm|ψKm ,m)dρm

= p(σ |ψKm ,m)p(ψKm |m)
1

(πσ 2)IN
e−

1
σ2

xHD⊥mx
∫
Cm

e−
1
σ2

(ρm−ρ̂m)
HDHmDm(ρm−ρ̂m)p(ρm|ψKm ,m)dρm (A.3)

where xi ∈ CN×1, si(µ) ∈ CN×1, qi ∈ CN×1 and µ ∈
R(2K+2

∑K
k=1 Lk )×1 are defined as:

xi ,
[
xi(1) xi(2) · · · xi(N )

]T
, (B.2)

si(µ) ,
[
si(1) si(2) · · · si(N )

]T
, (B.3)

qi ,
[
qi(1) qi(2) · · · qi(N )

]T
, (B.4)

and

µ ,
[
ω1, ω2, · · · , ωK , θ1, θ2, · · · , θK , κ1,1, κ2,1,

· · · , κLK ,K , φ1,1, φ2,1, · · · , φLK ,K
]T
, (B.5)

respectively, with κl,k and φl,k being the module and
phase of ρl,k (k = 1, 2, · · · ,K , l = 1, 2, · · · ,Lk ),
respectively.

We derive the CRLB under the assumption that qi is
complex-valued white Gaussian noise with the variance σ 2.
Under this assumption, the log-likelihood function of the
observed signal xi is expressed as:

ln p(x1, x2, · · · , xI )

= −(NI ) lnπσ 2

−
1
σ 2

I∑
i=1

(xi − si(µ))H · (xi − si(µ)), (B.6)

and the Fisher information matrix (FIM) of xi is [41]:

I(µ) = −E
{
∂2 ln p(x1, x2, · · · , xI )

∂µ∂µT

}
. (B.7)

Since the covariance matrices of the observation signals do
not depend on the parameter vector µ, we express the FIM
related to the estimation problem at hand as:

I(µ) =
2
σ 2Re

{
I∑
i=1

UH
i (µ) · Ui(µ)

}
, (B.8)

where Ui(µ) ∈ CN×(2K+
∑K

k=1 Lk ) is the gradient matrix
defined as:

Ui(µ) ,
[
Ui(ω) Ui(θ ) Ui(κ) Ui(φ)

]
, (B.9)

with

Ui(ω) ,
∂si(µ)
∂ωT

, (B.10)

Ui(θ ) ,
∂si(µ)

∂θT
, (B.11)

Ui(κ) ,
∂si(µ)
∂κT

, (B.12)

Ui(φ) ,
∂si(µ)

∂φT
. (B.13)

Here, the parameter vectors ω, θ , κ and φ are defined as:

ω ,
[
ω1 ω2 · · · ωK

]T
, (B.14)

θ ,
[
θ1 θ2 · · · θK

]T
, (B.15)

κ ,
[
κ1,1 κ2,1 · · · κLK ,K

]T
, (B.16)

φ ,
[
φ1,1 φ2,1 · · · φLK ,K

]T
. (B.17)

Accordingly, the CRLB of µ(i) is derived as:

CRLB (µ(i)) = ρ(i), (B.18)

ρ = diag(I−1(µ)), (B.19)

where diag(I−1(µ)) stands for the diagonal elements of the
inverse matrix of I(µ), and µ(i) and ρ(i) denote the i-th
elements of µ and ρ, respectively.
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