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ABSTRACT In this paper, using the weak fuzzy similarity relation, we propose a new similarity degree
which describes the relationships between the 2-tuples in U × V . In addition, we propose the reliability
of each 2-tuples and use this reliability to give the calculation method of the similarity degree between the
2-tuples and the approximation set X . Using this similarity degree, a new fuzzy rough set model is proposed.
Furthermore, a new fuzzy rough entropy which describing the knowledge information in the dual-universe
U × V is defined. Then, we present a decision-making model to solve the problems, in which the elements
in two different universes have different attributes. Finally, we give a significant algorithm which is applied
to a decision-making problem in the dual-universe, and the effectiveness of this algorithm is verified by a
numerical example.

INDEX TERMS Decision-making method, fuzzy rough entropy, reliability, rough set, similarity degree.

I. INTRODUCTION
Rough set theory [1], [2], a mathematical tool for data ana-
lyzing and processing, was first proposed by Pawlak in 1982.
As a new soft computing tool for dealing with incomplete
knowledge, it has become a hot mathematical framework
for data mining, decision making, decision support, pattern
recognizing, feature selection, machine learning, intelligent
controlling and knowledge discovery [3]–[9].

In rough set theory, there are two representations of rough
set definitions [10]. One is a pair of lower and upper approxi-
mations, another is three pair-wise disjoint positive, boundary
and negative regions. The basic framework of the classical
rough set theory is the approximation space composed of the
universe and the binary relation. Although the rough set is
composed of the upper approximation operator and lower
approximation operator, the classification basis of classical
rough set theory is the equivalence classes. This makes the
rough set model with high misclassification rate and limits
its application in a way. By using the probability theory and
the variable precision method, some scholars have proposed
the probability rough set model and variable precision rough
set model [11]–[15]. These two models greatly reduce the
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misclassification rate of the elements, and make the rough
set theory widely applied and popularized.

In recent years, in order to study uncertainty information
more precisely, a large number of scholars began to study
rough set theory from the following three aspects. Firstly,
replace the approximation object X with a non-crisp set,
such as fuzzy set. Secondly, replace equivalence relation with
similarity relation, reflexive relation, fuzzy relation or fuzzy
similarity relation. Dubois and Prade [16] were the first
researches to propose the concepts of rough fuzzy set and
fuzzy rough set by using the above two ideas. Cock et al. [17]
then proposed two new upper and lower approximation oper-
ator definitions to solve the problem that an element in the
fuzzy rough set may belong to multiple ‘soft similar classes’
at the same time. In 2016, Aggarwal [18] proposed the
probabilistic variable precision fuzzy rough set model. These
models were widely used in many fields, such as attribute
reduction [19], attribute subset selection [20] and decision
support system [21]. Thirdly, change one universeU into two
universes U and V . In 2004, Pei and Xu proposed a rough
set model based on two universes [22]. Based on this model,
a large number of scholars began to study the uncertainty
problems in two different universes, and proposed different
models to deal with the corresponding questions [23]–[27].
Such as, Shen and Wang [25] gave a variable precision rough
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set model over two different universes and introduced its
properties. Sun and Ma [26] proposed the fuzzy rough set
model on two different universes and discussed two extended
models of the fuzzy rough set model that named the degree
fuzzy rough set and the variable precision fuzzy rough set.
But these models are based on using one universe to judge
the classification of elements in another universe, so there
is a certain classification error. Abd El-Monsef et al [28]
studied this issue and proposed some models that can make
the approximating sets and the approximated sets are on the
same universes of discourse.

As we all know, entropy is an important measure to study
the uncertainty of information. In 1948, Shannon [29] pro-
posed a system entropy to measure the uncertainty of the
actual structure of the system. Liang and Shi [30] intro-
duced the concepts of information entropy, rough entropy
and knowledge granulation in rough set theory. In 2009,
Bianucci and Cattaneo [31] made a summary for the con-
cepts of information entropy and granulation co-entropy of
partitions and coverings. Ma and Sun [32] gave the defini-
tion of the rough entropy for probabilistic rough set over
two universes. In order to explain the similarity between
the quantities mentioned in kinds of frameworks to evaluate
a various entropy, Bouchon and Marsala [33] defined the
concept of entropy measure. The rough entropy can be used
to describe the uncertainty of the approximation set, but it is
based on the equivalence class generated by binary relation.
This ignores the indistinguishability of the elements in the
same equivalence class.

In order to solve above difficulty, in this paper, we mainly
discuss a new fuzzy rough set model on dual-universe
combined with some of the binary relationships proposed
in [34], [35]. We introduce the weak fuzzy similarity relation
over two universes, and propose a calculation method for the
similarity degree between the 2-tuples in U × V based on
this relation. At the same time, we also give the reliability ξi
of each 2-tuples in the approximation set X , and define the
similarity degree between the 2-tuples and the approximation
sets. Then we define the lower and upper approximation
operators of the new fuzzy rough set in combination with
the similarity degree. This model solves the problem that the
relationship between elements in two universes with different
attributes is difficult to describe. To explain this advantage,
we give a numerical example of clinical diagnosis.

The structure of this paper is as follows. In Section 2,
we introduce some basic definitions of rough set theory.
In Section 3, we give the calculation methods for the simi-
larity degree of (u1, v1) and (u2, v2) and the similarity degree
between (ui, vj) and X based on the weak fuzzy similar-
ity relation firstly. Then, we construct a new fuzzy rough
set model based on reliability over dual-universe. This new
concept of the fuzzy rough set can classify the elements in
U × V . We can solve the problems by giving corresponding
decision-making method to different regions. In Section 4,
we first define the approximation precision and rough degree
of this fuzzy rough set based on reliability over dual-universe.

Then we give the concept of the entropy of dual-universe
information system. In Section 5, we present a numerical
example of clinical diagnosis to verify the advantages of the
model presented in this paper. Finally, in Section 6, we give
some concluding remarks and future research.

II. PRELIMINARY
In this section, we introduce some basic concepts of rough
set, fuzzy rough set and fuzzy similarity relations from [7],
[8], [16], [22], [34] and [35].

Generally speaking, the theory begins with the notion
of an approximation space, which is a pair (U ,R), where
U is a non-empty set (the universe of discourse) and R an
equivalence relation onU , i.e., R is reflexive, symmetric, and
transitive. The relation R decomposes the set U into disjoint
classes in such a way that two elements x, y are in the same
class iff (x, y) ∈ R. Let U/R denote the quotient set of U by
the relation R, and U/R = {X1,X2, . . . ,Xm} where Xi is an
equivalence class of R, i = 1, 2, . . . ,m.
If any two elements x, y in U belong to the same equiva-

lence class Xi ∈ U/R, we say that x and y are indiscernible.
The equivalence class of R and the empty set ∅ are the
elements in the approximation space (U ,R).
Definition 1 (See [7], [8]): Let (U ,R) be an arbitrary

approximation space. Given any set X ∈ 2U , in general,
it may not describe X in (U ,R) precisely. One may charac-
terize X by a pair of lower and upper approximations defined
as follows,

apr(X ) = ∪{[x]R|[x]R ⊆ X} = {x ∈ U |[x]R ⊆ X},

apr(X ) = ∪{[x]R|[x]R ∩ X 6= ∅} = {x ∈ U |[x]R ∩ X 6= ∅},

(1)

The lower approximation apr(X ) is the union of all the
elementary sets which are the subsets of X , and the upper
approximation apr(X ) is the union of all the elementary sets
which have a non-empty intersection with X . The interval
[apr(X ), apr(X )] is the representation of an ordinary set X
in the approximation space (U ,R) or simply, the rough set
of X .
Furthermore, the positive region, the negative region and

boundary region of X about the approximation space (U ,R)
are defined as follows, respectively,

pos(X ) = apr(X ),

neg(X ) = ∼ apr(X ),

bn(X ) = apr(X )− apr(X );

where the symbol ∼ stands for the complementarity of sets.
Definition 2 (See [16]): Let X be a set. φ be a fuzzy par-

tition on X and F be a fuzzy set in X . The upper and lower
approximations φ∗(F) and φ∗(F) of a fuzzy set F are defined
by

Mi , µφ∗(F)(Fi) = sup
x

min(µFi (x), µF (x)),

mi , µφ∗(F)(Fi) = inf
x
max(1− µFi (x), µF (x)). (2)
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where Mi being the degree of possible membership of Fi
in F , and mi being the corresponding degree of certain mem-
bership. The pair (φ∗(F), φ∗(F)) can be called a fuzzy rough
set.
Definition 3 (See [22]): LetU , V be two non-empty finite

universes, and the elements between U with V have the
compatible relation C , that is, for any u ∈ U , there must be
existed an element v ∈ V such that the compatible relation
between u and v can be defined by a multi-value mapping
r : U → 2V . i.e., r(u) = {v ∈ V |uCv, for any u ∈ 2U }.
Where r(u) denotes the set of all elements in V that related
with u, based on the compatible relation r , for any X (X ⊆ V ),
it can be described by the elements in U that is related with
the elements of X . That is,

apr
C
(X ) = {u ∈ U |r(u) ⊆ X},

aprC (X ) = {u ∈ U |r(u) ∩ X 6= ∅}. (3)

Meanwhile, the positive region, the negative region and
boundary region of X are defined as follows, respectively,

posC (X ) = apr
C
(X ),

negC (X ) = ∼ aprC (X ),

bnC (X ) = aprC (X )− aprC (X ),

where the symbol ∼ stands for the complementarity of sets.
If aprC (X ) = apr

C
(X ), then X is called definable on two

different universes. If aprC (X ) 6= apr
C
(X ), then X is called

undefinable or rough set on two different universes.
Fuzzy similarity relation andweak fuzzy similarity relation

are characterized by the following properties.
Definition 4 (See [35]): A fuzzy similarity relation is a

mapping R : U × U → [0, 1], such that for x, y, z ∈ U ,

(1) Reflexivity: R(x, x) = 1,
(2) Symmetry: R(x, y) = R(y, x),
(3) Max-min Transitivity:

R(x, z) ≥ max[min[R(x, y),R(y, z)]], y ∈ U .

The weak fuzzy similarity relation has weaker symmetric and
transitive properties as follows.
Definition 5 (See [34]): A weak fuzzy similarity relation

is a mapping R : U × U → [0, 1], such that for x, y, z ∈ U ,

(1) Reflexivity: R(x, x) = 1,
(2) Conditional Symmetry: ifR(x, y) > 0 thenR(y, x) > 0,
(3) Conditional Transitivity: if R(x, y) ≥ R(y, x) > 0 and

R(y, z) ≥ R(z, y) > 0 then R(x, z) ≥ R(z, x).

III. FUZZY ROUGH SET MODEL BASED ON RELIABILITY
OVER DUAL-UNIVERSE
In this section, we give a calculation method of the weak
fuzzy similarity relation of 2-tuples in the dual-universe. In
addition, we combine the reliability of 2-tuples to define a
similarity degree between 2-tuples (ui, vj) and approximation
set X . Using this similarity degree, we define a fuzzy rough
setmodel based on reliability over dual-universe and establish
its basic properties.

A. THE SIMILARITY DEGREE BETWEEN 2-TUPLES AND
APPROXIMATION SETS BASED ON RELIABILITY
In this section, we mainly introduce the calculation methods
for the similarity degrees and give a simple example to illus-
trate these calculation methods.
Definition 6: Let U , V be two non-empty finite universes,

U × V is the cartesian product of U and V , U × V =
{(ui, vj)|ui ∈ U , vj ∈ V , i = 1, 2, . . . , n, j = 1, 2, . . . ,m}.
R : U×V → [0, 1] is a binary relation. A = {a1, a2, . . . , ap}
is the attribute set, µal (ui, vj) is the attribute values of
(ui, vj) with respect to attribute al, l = 1, 2, . . . , p. The pair
〈U × V ,R,A〉 is called a dual-universe information system.
RA[(ui, vj), (us, vt )] is called the similarity degree of (ui, vj)
and (us, vt ) with respect to R, if,

RA[(ui, vj), (us, vt )] =
6
p
l=1min[µal (ui, vj), µal (us, vt )]

6
p
l=1µal (us, vt )

.

(4)

Theorem 1: The similarity degree RA with regard to R is a
weak fuzzy similarity relation.
Proof: For ∀(u1, v1), (u2, v2), (u3, v3) ∈ U × V ,

(1) By (4), we have

RA[(u1, v1), (u1, v1)] =
6
p
l=1min[µal (u1, v1), µal (u1, v1)]

6
p
l=1µal (u1, v1)

= 1.

(2) From (4), we have

RA[(u1, v1), (u2, v2)] =
6
p
l=1min[µal (u1, v1), µal (u2, v2)]

6
p
l=1µal (u2, v2)

> 0.

since µal (u1, v1), µal (u2, v2) ≥ 0, we have

6
p
l=1min[µal (u1, v1), µal (u2, v2)] > 0.

Thus, we obtain that

6
p
l=1min[µal (u2, v2), µal (u1, v1)]

6
p
l=1µal (u1, v1)

> 0.

(3) From (4), we have

6
p
l=1min[µal (u1, v1), µal (u2, v2)]

6
p
l=1µal (u2, v2)

≥
6
p
l=1min[µal (u2, v2), µal (u1, v1)]

6
p
l=1µal (u1, v1)

> 0,

we have 6p
l=1µal (u2, v2) ≤ 6

p
l=1µal (u1, v1). Similarly,

6
p
l=1µal (u3, v3) ≤ 6

p
l=1µal (u2, v2), so

6
p
l=1µal (u3, v3) ≤ 6

p
l=1µal (u1, v1). (5)

By (4), we have

RA[(u1, v1), (u3, v3)] =
6
p
l=1min[µal (u1, v1), µal (u3, v3)]

6
p
l=1µal (u3, v3)

,
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and

RA[(u3, v3), (u1, v1)] =
6
p
l=1min[µal (u3, v3), µal (u1, v1)]

6
p
l=1µal (u1, v1)

,

by (5) we get that

RA[(u1, v1), (u3, v3)] ≥ RA[(u3, v3), (u1, v1)].

Theorem 2: The similarity degree RA with regard to R is a
fuzzy preordering.
Proof: By the Definition (6), for any (u1, v1), (u2, v2),

(u3, v3) ∈ U × V , we have

RA[(u1, v1), (u2, v2)] =
6
p
l=1min[µal (u1, v1), µal (u2, v2)]

6
p
l=1µal (u2, v2)

.

It is easy to know that RA is reflexive. Next, we need to prove
that RA is transitive.
In fact,

((u1, v1), (u2, v2)) ∈ RA, ((u2, v2), (u3, v3)) ∈ RA.

By the proof of Theorem (3.1), we know that, if

RA[(u1, v1), (u3, v3)] > 0,

and

RA[(u3, v3), (u1, v1)] > 0.

And if

RA[(u1, v1), (u2, v2)] ≥ RA[(u2, v2), (u1, v1)] > 0,

RA[(u2, v2), (u3, v3)] ≥ RA[(u3, v3), (u2, v2)] > 0,

then

RA[(u1, v1), (u3, v3)] ≥ RA[(u3, v3), (u1, v1)].

Thus, we get that

((u1, v1), (u3, v3)) ∈ RA,

namely RA is transitive. So the similarity degree RA with
regard to R is a fuzzy preordering.
Theorem 3: The similarity degree RA with regard to R is a

weak ordering.
Proof:We known that a weak orderingw is a fuzzy relation

which is transitive andµw(x, y) > 0 orµw(y, x) > 0 for every
x 6= y in [28].

By the Theorem (2), we know RA is transitive. For every
(ui, vj) 6= (us, vt ), by (4), we have

RA[(ui, vj), (us, vt )] > 0, RA[(us, vt ), (ui, vj)] > 0.

So the similarity degree RA with regard to R is a weak
ordering.
Definition 7: Let X = {(x1, y1), (x2, y2), . . . , (xn, yn)} is a

fuzzy set. According to the influence of each 2-tuples on the
set X , we call ξ1, ξ2, . . . , ξn, (ξi 6= 0, i = 1, 2, . . . , n) are the
reliability of (xi, yi), (i = 1, 2, . . . , n) to judge X .
Definition 8: Let X , Y are two fuzzy sets, and (x1, y1) ∈

X ∩ Y . If ξ1 is the reliability of (x1, y1) to judge X , and

ξ2 is the reliability of (x1, y1) to judge Y . Then we define the
reliability of (x1, y1) to judge X ∩ Y is ξ3 =

ξ1+ξ2
2 .

Definition 9: Let 〈U × V ,R,A〉 be a dual-universe infor-
mation system.X = {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊆ U×V
is a fuzzy set, and ξk is the reliability of (xk , yk ), (k =
1, 2, . . . , n) to judge X . For ∀(ui, vj) ∈ U×V , RA[(ui, vj),X ]
is called the similarity degree of (ui, vj) and X with respect
to R, if,

RA[(ui, vj),X ] = ξ1 · RA[(ui, vj), (x1, y1)]

+ ξ2 · RA[(ui, vj), (x2, y2)]

+ · · · + ξn · RA[(ui, vj), (xn, yn)]. (6)

Based on the Definition (9), we know that the similarity
degree of (ui, vj) and X is related to the reliability ξi, in which
the weak fuzzy similarity relation R over the dual-universe
U × V takes all the values of (0, 1]. As a result, we can get
optimal results by giving different reliability ξi for different
problems.
Example 1: Let U ×V = {(u1, v1), (u1, v2), (u2, v1), (u2,

v2), (x1, y1), (x2, y2), (x3, y3)} be a dual-universe. A =

{a1, a2, a3, a4, a5, a6} is the attribute set on U × V . Take
two approximation object sets X = {(x1, y1), (x2, y2)} and
Y = {(x2, y2), (x3, y3)}, in which the reliability of (x1, y1) to
judge X is ξ1 = 0.8, the reliability of (x2, y2) to judge X is
ξ2 = 0.5, the reliability of (x2, y2) to judge Y is ξ3 = 0.7,
the reliability of (x3, y3) to judge Y is ξ4 = 0.4. The attribute
values of 2-tuples in U ×V with respect to attribute set A are
as follows, respectively.

By the Theorem (1), we can obtain the similarity degrees
of (ui, vj) and (xi, yi) i, j = 1, 2, 3 with respect to R in the
dual-universe U × V as follows, respectively,

RA[(u1, v1), (x1, y1)] =
2
3
, RA[(u1, v2), (x1, y1)] =

11
27
,

RA[(u2, v1), (x1, y1)] =
1
9
, RA[(u2, v2), (x1, y1)] =

14
27
,

RA[(u1, v1), (x2, y2)] =
16
31
, RA[(u1, v2), (x2, y2)] =

6
31
,

RA[(u2, v1), (x2, y2)] =
15
31
, RA[(u2, v2), (x2, y2)] =

10
31
,

RA[(u1, v1), (x3, y3)] =
10
31
, RA[(u1, v2), (x3, y3)] =

11
31
,

RA[(u2, v1), (x3, y3)] =
17
31
, RA[(u2, v2), (x3, y3)] =

15
31
.

By the Definition (9), we can obtain the similarity degrees of
(u1, v1) and X with respect to RA in the dual-universe U × V
as follows,

RA[(u1, v1),X ] = ξ1 · RA[(u1, v1), (x1, y1)]

+ ξ2 · RA[(u1, v1), (x2, y2)]

= 0.8×
2
3
+ 0.5×

16
31
= 0.79.

By using the same calculation method, we get the follow-
ing results, respectively,

RA[(u1, v2),X ] = 0.42, RA[(u2, v1),X ] = 0.33,
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RA[(u2, v2),X ] = 0.58, RA[(u1, v1),Y ] = 0.49,

RA[(u1, v2),Y ] = 0.28, RA[(u2, v1),Y ] = 0.56,

RA[(u2, v2),Y ] = 0.42.

By Definition (8), we can obtain the reliability of (x2, y2)
that be used to judge X ∩ Y is ξ5 =

ξ2+ξ3
2 = 0.6. So we

can calculate the similarity degrees of (ui, vj) and X ∩ Y with
respect to RA are as follows, respectively,

RA[(u1, v1),X ∩ Y ] = 0.6×
16
31
= 0.31,

RA[(u1, v2),X ∩ Y ] = 0.6×
6
31
= 0.12,

RA[(u2, v1),X ∩ Y ] = 0.6×
15
31
= 0.29,

RA[(u2, v2),X ∩ Y ] = 0.6×
10
31
= 0.19.

B. THE FUZZY ROUGH SET MODEL BASED ON
RELIABILITY OVER DUAL-UNIVERSE
AND ITS PROPERTIES
In this section, we propose a fuzzy rough set model based
on reliability over dual-universe, and prove some properties.
Then we give a new decision-making method based on this
fuzzy rough set model. In other words, according to this fuzzy
rough setmodel, we can divide the 2-tuples inU×V into three
regions, and give corresponding action plans for each region.
Definition 10: Let 〈U ×V ,R,A〉 be a dual-universe infor-

mation system. X ⊆ U × V is a fuzzy set, RA[(ui, vj),X ] are
the similarity degrees of (ui, vj) and X with respect to RA, For
any precision control parameters 0 ≤ β < α ≤ 1, we define
a lower approximation of X and an upper approximation of X
on the dual-universe U × V as follows, respectively,

R(ξ,α)A (X ) = {(ui, vj) ∈ U × V |RA[(ui, vj),X ] ≥ α},

R
(ξ,β)
A (X ) = {(ui, vj) ∈ U × V |RA[(ui, vj),X ] > β}. (7)

Furthermore, we also define the positive region
POS(ξ,α)A (X ), negative region NEG(ξ,β)

A (X ) and boundary
region BND(ξ,α,β)

A (X ) of X with respect to RA on the dual-
universe U × V as follows, respectively,

POS(ξ,α)A (X ) = R(ξ,α)A (X ),

NEG(ξ,β)
A (X ) = U × V − R

(ξ,β)
A (X ),

BND(ξ,α,β)
A (X ) = R

(ξ,β)
A (X )− R(ξ,α)A (X ). (8)

Obviously, the relation R
(ξ,β)
A (X ) = POS(ξ,α)A (X )

⋃
BND(ξ,α,β)

A (X ) is satisfied according to the above definition.
And for distinct regions, we can give the corresponding
decision-making methods to solve the problems in the dual-
universe information systems.

If R
(ξ,β)
A (X ) = R(ξ,α)A (X ), then X is called the definable

set over U × V . To the contrary, X is called undefinable
set or the fuzzy rough set based on reliability over U × V
while R

(ξ,β)
A (X ) 6= R(ξ,α)A (X ).

Example 2: (Continued Example (1)) We taking α =

0.54, β = 0.39. According to the calculation results in Exam-
ple (1), we can calculate the lower approximation, upper
approximation, positive region, negative region and boundary
region of X as follows, respectively,

R(ξ,0.54)A (X )={(ui, vj) ∈ U×V |RA[(ui, vj),X ]≥0.54}

={(u1, v1), (u2, v2)};

R
(ξ,0.39)
A (X )={(ui, vj) ∈ U×V |RA[(ui, vj),X ]>0.39}

={(u1, v1), (u1, v2), (u2, v2)};

POS(ξ,0.54)A (X )=R(ξ,0.54)A (X )

= {(u1, v1), (u2, v2)};

BND(ξ,0.54,0.39)
A (X )=R

(ξ,0.39)
A (X )−R(ξ,0.54)A (X )

= {(u1, v2)};

NEG(ξ,0.39)
A (X )=U×V−R

(ξ,0.39)
A (X )

= {(u2, v1)}.

Similarly, the lower approximation, upper approximation,
positive region, negative region and boundary region of Y are
calculated as follows, respectively,

R(ξ,0.54)A (Y )={(ui, vj) ∈ U×V |RA[(ui, vj),Y ]≥0.54}

={(u2, v1)};

R
(ξ,0.39)
A (Y )={(ui, vj) ∈ U×V |RA[(ui, vj),Y ]>0.39}

={(u1, v1), (u2, v1), (u2, v2)};

POS(ξ,0.54)A (Y )=R(ξ,0.54)A (Y )

= {(u2, v1)};

BND(ξ,0.54,0.39)
A (Y )=R

(ξ,0.39)
A (Y )−R(ξ,0.54)A (Y )

= {(u1, v1), (u2, v2)};

NEG(ξ,0.39)
A (Y )=U × V−R

(ξ,0.39)
A (Y )

= {(u1, v2)}.

Theorem 4: Let U ,V be two non-empty finite universes.
U × V is a dual-universe, RA[(ui, vj),X ] is the similarity
degree between (ui, vj) and X about RA. For any X , Y , then
the lower approximation and the upper approximation have
the following properties,

(1) R(ξ,α)A (X ) ⊆ R
(ξ,β)
A (X ).

(2) R(ξ,α)A (∅) = ∅ = R
(ξ,β)
A (∅).

(3) R(ξ,α)A (X ∩Y ) ⊆ R(ξ,α)A (X )∩R(ξ,α)A (Y ), R(ξ,α)A (X ∪Y ) ⊇
R(ξ,α)A (X ) ∪ R(ξ,α)A (Y ).

(4) R
(ξ,β)
A (X ∩Y ) ⊆ R

(ξ,β)
A (X )∩R

(ξ,β)
A (Y ), R

(ξ,β)
A (X ∪Y ) ⊇

R
(ξ,β)
A (X ) ∪ R

(ξ,β)
A (Y ).

(5) For any X ⊆ Y , there are R(ξ,α)A (X ) ⊆ R(ξ,α)A (Y ) and
R
(ξ,β)
A (X ) ⊆ R

(ξ,β)
A (Y ).

(6) If 0 < α1 ≤ α2 ≤ 1 and 0 ≤ β1 ≤ β2 < 1, then
R(ξ,α2)A (X ) ⊆ R(ξ,α1)A (X ) and R

(ξ,β2)
A (X ) ⊆ R

(ξ,β1)
A (X ).

Proof: It is easy to prove by the definitions of the lower and
upper approximations. We only prove (5).
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(5) By the Definition (10), we have

R(ξ,α)A (X ) = {(ui, vj) ∈ U × V |RA[(ui, vj),X ] ≥ α},

R
(ξ,β)
A (X ) = {(ui, vj) ∈ U × V |RA[(ui, vj),X ] > β}.

Suppose X = {(x1, y1), (x2, y2)}, Y = {(x1, y1), (x2, y2),
(x3, y3)}, and the reliability of (x1, y1) and (x2, y2) to judge
X are ξ1, ξ2, the reliability of (x1, y1), (x2, y2) and (x3, y3) to
judge Y are ξ3, ξ4, ξ5, respectively. By the Definition (9), we
have

RA[(ui, vj),X ] = ξ1 · RA[(ui, vj), (x1, y1)]

+ ξ2 · RA[(ui, vj), (x2, y2)],

RA[(ui, vj),Y ] = ξ3 · RA[(ui, vj), (x1, y1)]

+ ξ4 · RA[(ui, vj), (x2, y2)]

+ ξ5 · RA[(ui, vj), (x3, y3)].

Since 0 ≤ ξm ≤ 1,m = 1, 2, . . . , 5, and
RA[ui, vj), (xn, yn)] ∈ [0, 1], n = 1, 2, 3.
There is

[RA[(ui, vj),X ] ≤ [RA[(ui, vj),Y ].

Thus, we obtain that

R(ξ,α)A (X ) ⊆ R(ξ,α)A (Y ), R
(ξ,β)
A (X ) ⊆ R

(ξ,β)
A (Y ).

The proof is complete.
According to the Theorem (4) (6), we know that the

lower approximationwill increase with parameter α decrease,
the upper approximation will decrease with parameter β
increase, so that positive region will increase with parameter
α decrease, negative region will increase with parameter β
increase and boundary region will decrease with α decrease
and β increase.
Theorem 5: If α = 1, β = 0, then,

R(ξ,α)A (X ) = {(ui, vj) ∈ U × V |RA[(ui, vj),X ] = 1},
R
(ξ,β)
A (X ) = {(ui, vj) ∈ U × V |RA[(ui, vj),X ] > 0}.

and

POS(ξ,α)A (X ) = R(ξ,α)A (X )
= {(ui, vj) ∈ U × V |RA[(ui, vj),X ] = 1},

BND(ξ,α,β)
A (X ) = R

(ξ,β)
A (X )− R(ξ,α)A (X )

= {(ui, vj) ∈ U × V |0 < RA[(ui, vj),X ]
< 1},

NEG(ξ,β)
A (X ) = U × V − R

(ξ,β)
A (X )

= {(ui, vj) ∈ U × V |RA[(ui, vj),X ] = 0}.

Theorem 6: Let 〈U × V , R,A〉 be a dual-universe infor-
mation system. For any 0 < γ < 1, X ⊆ U × V , we have,
(1) lim

α→γ−
R(ξ,α)A (X ) =

⋂
0<α<γ

R(ξ,α)A (X ) = R(ξ,γ )A (X ),

(2) lim
β→γ+

R
(ξ,β)
A (X ) =

⋃
γ<β<1

R
(ξ,β)
A (X ) = R

(ξ,γ )
A (X ).

Proof: (1) By the Theorem (4), we have

lim
α→γ−

R(ξ,α)A (X ) =
⋂

0<α<γ

R(ξ,α)A (X ).

If α < γ , then R(ξ,α)A (X ) ⊇ R(ξ,γ )A (X ). Thus
lim
α→γ−

R(ξ,α)A (X ) =
⋂

0<α<γ
R(ξ,α)A (X ) ⊇ R(ξ,γ )A (X ). Conversely,

∀(u.v) ∈
⋂

0<α<γ
Rξ,αA (X ), for any 0 < α < γ, we have

RA[(u, v),X ] ≥ α.
Then RA[(u, v),X ] ≥ γ which implies that (u, v) ∈

R(ξ,γ )A (X ).
Otherwise, if RA[(u, v),X ] < γ , take α = RA[(u,v),X ]+1

2 ,
then 0 < α < γ , but RA[(u, v),X ] < α. This is in
contradiction with the previous conclusions.

Therefore, we can get the following conclusions,

lim
α→γ−

R(ξ,α)A (X ) =
⋂

0<α<γ

R(ξ,α)A (X ) = R(ξ,γ )A (X ).

(2) By the Theorem (4), we have

lim
β→γ+

R
(ξ,β)
A (X ) =

⋃
γ<β<1

R
(ξ,β)
A (X ).

If β > γ , then R
(ξ,β)
A (X ) ⊆ R

(ξ,γ )
A (X ). Thus

lim
β→γ+

R
(ξ,β)
A (X ) =

⋃
γ<β<1

R
(ξ,β)
A (X ) ⊆ R

(ξ,γ )
A (X ). Conversely,

∀(u, v) ∈ R
(ξ,β)
A (X ), for any γ < β < 1, we have

RA[(u, v),X ] > β.
We get that RA[(u, v),X ] > γ , and (u, v) ∈ R

(ξ,γ )
A (X ).

Therefore, we can get the following conclusions,

lim
β→γ+

R
(ξ,β)
A (X ) =

⋃
γ<β<1

R
(ξ,β)
A (X ) = R

(ξ,γ )
A (X ).

The proof is complete.
Theorem (6) shows that the lower approximation R(ξ,α)A (X )

is left continuous with α, and the upper approximation
R
(ξ,β)
A (X ) is right continuous with β.
Theorem 7: Let 〈U × V , R,A〉 be a dual-universe infor-

mation system. For any 0 < γ < 1, X ⊆ U × V , we have,
(1)

lim
α→γ+

R(ξ,α)A (X ) =
⋃

γ<α≤1

R(ξ,α)A (X )

⊆ R
(ξ,γ )
A (X ),

(2)

lim
β→γ−

R
(ξ,β)
A (X ) =

⋂
0≤β<γ

R
(ξ,β)
A (X )

⊇ R(ξ,γ )A (X ),

(3)

lim
α→γ+,β→γ−

BND(ξ,α,β)(X )

=

⋂
0≤β<γ<α≤1

(R
(ξ,β)
A (X )− R(ξ,α)A (X ))

⊇ R(ξ,γ )A (X )− R
(ξ,γ )
A (X )

= {(ui, vj) ∈ U × V |RA[(ui, vj),X ] = γ }.
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Proof: (1) By the Theorem (4), we have

lim
α→γ+

R(ξ,α)A (X ) =
⋃

γ<α≤1

R(ξ,α)A (X ).

By the lower and upper approximations, if α > γ , we have

R(ξ,α)A (X ) = {(ui, vj) ∈ U × V |RA[(ui, vj),X ] ≥ α}

⊆ {(ui, vj) ∈ U × V |RA[(ui, vj),X ] > γ }

= R
(ξ,γ )
A (X ).

Then there is
⋃

γ<α≤1
R(ξ,α)A (X ) ⊆ R

(ξ,γ )
A (X ), we have

lim
α→γ+

R(ξ,α)A (X ) =
⋃

γ<α≤1

R(ξ,α)A (X ) ⊆ R
(ξ,γ )
A (X ).

(2) By the Theorem (4), we have

lim
β→γ−

R
(ξ,β)
A (X ) =

⋂
0≤β<γ

R
(ξ,β)
A (X ).

By the lower and upper approximations, if β < γ , we have

R
(ξ,β)
A (X ) = {(ui, vj) ∈ U × V |RA[(ui, vj),X ] > β}

⊇ {(ui, vj) ∈ U × V |RA[(ui, vj),X ] ≥ γ }

= R(ξ,γ )A (X ).

Then there is
⋂

0≤β<γ
R
(ξ,β)
A (X ) ⊇ R(ξ,γ )A (X ), we have

lim
β→γ−

R
(ξ,β)
A (X ) =

⋂
0≤β<γ

R
(ξ,β)
A (X ) ⊇ R(ξ,γ )A (X ).

(3) It is easy to know that if 0 ≤ β < γ < α ≤ 1, then
R(ξ,α)A (X ) ⊆ R

(ξ,γ )
A (X ) and R

(ξ,β)
A (X ) ⊇ R(ξ,γ )A (X ). So there is

R
(ξ,β)
A (X )− R(ξ,α)A (X ) ⊇ R(ξ,γ )A (X )− R

(ξ,γ )
A (X ),

that is to say,⋂
0≤β<γ<α≤1

(R
(ξ,β)
A (X )− R(ξ,α)A (X ))

⊇ R(ξ,γ )A (X )− R
(ξ,γ )
A (X )

= {(ui, vj) ∈ U × V |RA[(ui, vj),X ] = γ }.

Since BND(ξ,α,β)(X ) will decrease as β increase
and α decrease, then lim

α→γ+,β→γ−
BND(ξ,α,β)(X ) =⋂

0≤β<γ<α≤1
(R

(ξ,β)
A (X )− R(ξ,α)A (X )).

Thus, we get that

lim
α→γ+,β→γ−

BND(ξ,α,β)(X )

=

⋂
0≤β<γ<α≤1

(R
(ξ,β)
A (X )− R(ξ,α)A (X ))

⊇ R(ξ,γ )A (X )− R
(ξ,γ )
A (X )

= {(ui, vj) ∈ U × V |RA[(ui, vj),X ] = γ }.

Theorem 8: Let 〈U×V ,R,A〉 be a dual-universe informa-
tion system, whereU×V = {(u1, v1), (u1, v2), . . . , (u1, vm),
(u2, v1), . . . , (un, vm)} and RA be the similarity degree of

U × V . For any 0 ≤ β < α ≤ 1 and X ⊆

U × V , if RA[(u1, v1),X ] ≤ RA[(u1, v2),X ] ≤ . . . ≤

RA[(u1, vm),X ] ≤ RA[(u2, v1),X ] ≤ . . . ≤ RA[(un, vm),X ],
then,

(1) If (ui, vj) ∈ R
(ξ,α)
A (X ), then

(ui+1, vj+1), (ui+1, vj+2), . . . , (un, vm) ∈ R
(ξ,α)
A (X ).

(2) If (ui, vj) ∈ R
(ξ,β)
A (X ), then

(ui+1, vj+1), (ui+1, vj+2), . . . , (un, vm) ∈ R
(ξ,β)
A (X ).

Proof: Without losing generality, we only prove the case
of U × V = {(u1, v1), (u1, v2), (u1, v3), (u2, v1), (u2, v2),
(u2, v3)}.
(1) Since (u2, v1) ∈ R

(ξ,α)
A (X ), we know that,

RA[(u2, v1),X ] ≥ α,

and

RA[(u2, v1),X ] ≤ RA[(u2, v2),X ] ≤ RA[(u2, v3),X ]

are satisfied.
Therefore, (u2, v2), (u2, v3) ∈ R

(ξ,α)
A (X ).

(2) Since (u2, v1) ∈ R
(ξ,β)
A (X ), we know that,

RA[(u2, v1),X ] > β,

and

RA[(u2, v1),X ] ≤ RA[(u2, v2),X ] ≤ RA[(u2, v3),X ]

are satisfied.
Therefore, (u2, v2), (u2, v3) ∈ R

(ξ,β)
A (X ).

IV. APPROXIMATION PRECISION, ROUGH DEGREE AND
FUZZY ROUGH ENTROPY
A. THE APPROXIMATION PRECISION AND ROUGH
DEGREE OF THE NEW FUZZY ROUGH SET MODEL
In this section, we give the notion of the approximation
precision and rough degree of this fuzzy rough set based on
reliability over dual-universe.
Definition 11: Let U , V be two non-empty finite uni-

verses, X ⊆ U × V is a fuzzy set, RA[(ui, vj),X ] is the
similarity degree between (ui, vj) and X with respect to RA.
The approximation precision ρ(ξ,α,β)(X ) of X about RA is
defined as follows,

ρ(ξ,α,β)(X ) =
|R(ξ,α)A (X )|

|R
(ξ,β)
A (X )|

, (9)

Let ϕ(ξ,α,β)(X ) = 1− ρ(ξ,α,β)(X ) is the rough degree of X
about RA.
Where X 6= ∅, |X | denotes the cardinality of the set X , and

0 ≤ ρ(ξ,α,β)(X ) ≤ 1, 0 ≤ ϕ(ξ,αβ)(X ) ≤ 1.
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Example 3: (Continued Example (2)) By the Defini-
tion (11), we have

ρ(ξ,0.54,0.39)(X ) =
|R(ξ,0.54)A (X )|

|R
(ξ,0.39)
A (X )|

=
2
3
;

ϕ(ξ,0.54,0.39)(X ) = 1− ρ(ξ,0.54,0.39)(X ) =
1
3
;

ρ(ξ,0.54,0.39)(Y ) =
|R(ξ,0.54)A (Y )|

|R
(ξ,0.39)
A (Y )|

=
1
3
;

ϕ(ξ,0.54,0.39)(Y ) = 1− ρ(ξ,0.54,0.39)(Y ) =
2
3
.

Theorem 9: Let 〈U × V , R,A〉 be a dual-universe infor-
mation system. For any 0 ≤ β < α ≤ 1, and ∅ 6= X ⊆ Y ⊆
U × V ,
(1) If R(ξ,α)A (X ) = R(ξ,α)A (Y ), then ρ(ξ,α,β)(X ) ≥

ρ(ξ,α,β)(Y ), ϕ(ξ,α,β)(X ) ≤ ϕ(ξ,α,β)(Y ).
(2) If R

(ξ,β)
A (X ) = R

(ξ,β)
A (Y ), then ρ(ξ,α,β)(X ) ≤

ρ(ξ,α,β)(Y ), ϕ(ξ,α,β)(X ) ≥ ϕ(ξ,α,β)(Y ).
(3) If R(ξ,α)A (X ) = R(ξ,α)A (Y ), R

(ξ,β)
A (X ) = R

(ξ,β)
A (Y ), then

ρ(ξ,α,β)(X ) = ρ(ξ,α,β)(Y ), ϕ(ξ,α,β)(X ) = ϕ(ξ,α,β)(Y ).
Proof: By the Theorem (4), if X ⊆ Y , we have

R(ξ,α)A (X ) ⊆ R(ξ,α)A (Y ), R
(ξ,β)
A (X ) ⊆ R

(ξ,β)
A (Y ).

That is to say,

|R(ξ,α)A (X )| ≤ |R(ξ,α)A (Y )|, |R
(ξ,β)
A (X )| ≤ |R

(ξ,β)
A (Y )|.

By the Definition (11), we know

ρ(ξ,α,β)(X ) =
|R(ξ,α)A (X )|

|R
(ξ,β)
A (X )|

, ϕ(ξ,α,β)(X ) = 1− ρ(ξ,α,β)(X ).

(1) If R(ξ,α)A (X ) = R(ξ,α)A (Y ), there is

|R(ξ,α)A (X )| = |R(ξ,α)A (Y )|.

Thus, we obtain

|R(ξ,α)A (X )|

|R
(ξ,β)
A (X )|

≥
|R(ξ,α)A (Y )|

|R
(ξ,β)
A (Y )|

.

That is to say,

ρ(ξ,α,β)(X ) ≥ ρ(ξ,α,β)(Y ), ϕ(ξ,α,β)(X ) ≤ ϕ(ξ,α,β)(Y ).

(2) If R
(ξ,β)
A (X ) = R

(ξ,β)
A (Y ), there is

|R
(ξ,β)
A (X )| ≤ |R

(ξ,β)
A (Y )|.

Thus, we obtain,

|R(ξ,α)A (X )|

|R
(ξ,β)
A (X )|

≤
|R(ξ,α)A (Y )|

|R
(ξ,β)
A (Y )|

.

That is to say,

ρ(ξ,α,β)(X ) ≤ ρ(ξ,α,β)(Y ), ϕ(ξ,α,β)(X ) ≥ ϕ(ξ,α,β)(Y ).

(3) If R(ξ,α)A (X ) = R(ξ,α)A (Y ), and R
(ξ,β)
A (X ) = R

(ξ,β)
A (Y );

there are

|R(ξ,α)A (X )| = |R(ξ,α)A (Y )|, |R
(ξ,β)
A (X )| = |R

(ξ,β)
A (Y )|.

Thus, we obtain,

|R(ξ,α)A (X )|

|R
(ξ,β)
A (X )|

=
|R(ξ,α)A (Y )|

|R
(ξ,β)
A (Y )|

.

That is to say,

ρ(ξ,α,β)(X ) = ρ(ξ,α,β)(Y ), ϕ(ξ,α,β)(X ) = ϕ(ξ,α,β)(Y ).

Theorem 10: Let 〈U × V , R,A〉 be a dual-universe infor-
mation system. For any 0 ≤ β1 ≤ β2 < α1 ≤ α2 ≤ 1, then,

(1) R(ξ,α2)A (X ) ⊆ R(ξ,α1)A (X ), R
(ξ,β2)
A (X ) ⊆ R

(ξ,β1)
A (X );

(2) ρ(ξ,α1,β2)(X ) ≤ ρ(ξ,α2,β1)(X ).
Proof: By the Definition (10),
(1) Assume

0 ≤ β1 ≤ β2 < α1 ≤ α2 ≤ 1,

we know

R(ξ,α2)A (X ) ⊆ R(ξ,α1)A (X ),

and

R
(ξ,β2)
A (X ) ⊆ R

(ξ,β1)
A (X ).

(2) It is easy to know

|R(ξ,α2)A (X )| ≤ |R(ξ,α1)A (X )|,

and

|R
(ξ,β2)
A (X )| ≤ |R

(ξ,β1)
A (X )|.

By the Definition (11), we have

ρ(ξ,α1,β2)(X ) =
|R(ξ,α1)A (X )|

|R
(ξ,β2)
A (X )|

,

and

ρ(ξ,α2,β1)(X ) =
|R(ξ,α2)A (X )|

|R
(ξ,β1)
A (X )|

.

Thus, we obtain

ρ(ξ,α1,β2)(X )
ρ(ξ,α2,β1)(X )

=
|R(ξ,α1)A (X )|

|R
(ξ,β2)
A (X )|

/
|R(ξ,α2)A (X )|

|R
(ξ,β1)
A (X )|

=
|R(ξ,α1)A (X )| · |R

(ξ,β1)
A (X )|

|R
(ξ,β2)
A (X )| · |R(ξ,α2)A (X )|

≤ 1.

That is

ρ(ξ,α1,β2)(X ) ≤ ρ(ξ,α2,β1)(X ).

Theorem 11: Let 〈U × V , R,A〉 be a dual-universe infor-
mation system. For any 0 ≤ β < α ≤ 1, X ,Y ⊆ U×V . Then
the following relations fold for approximation precision and
rough degree of X ,Y ,X ∪ Y and X ∩ Y .
(1)

ϕ(ξ,α,β)(X ∪ Y )|R
(ξ,β)
A (X ) ∪ R

(ξ,β)
A (Y )|

≤ ϕ(ξ,α,β)(X )|R
(ξ,β)
A (X )| + ϕ(ξ,α,β)(Y )|R

(ξ,β)
A (Y )|

−ϕ(ξ,α,β)(X ∩ Y )|R
(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )|.
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(2)

ρ(ξ,α,β)(X ∪ Y )|R
(ξ,β)
A (X ) ∪ R

(ξ,β)
A (Y )|

≥ ρ(ξ,α,β)(X )|R
(ξ,β)
A (X )| + ρ(ξ,α,β)(Y )|R

(ξ,β)
A (Y )|

− ρ(ξ,α,β)(X ∩ Y )|R
(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )|.

Proof: By the Definition (11), we have

ϕ(ξ,α,β)(X ∪ Y ) = 1−
|R(ξ,α)A (X ∪ Y )|

|R
(ξ,β)
A (X ∪ Y )|

≤ 1−
|R(ξ,α)A (X )| ∪ |R(ξ,α)A (Y )|

|R
(ξ,β)
A (X )| ∪ |R

(ξ,β)
A (Y )|

.

Therefore,

ϕ(ξ,α,β)(X ∪ Y )|R
(ξ,β)
A (X ) ∪ R

(ξ,β)
A (Y )|

≤ |R
(ξ,β)
A (X ) ∪ R

(ξ,β)
A (Y )| − |R(ξ,α)A (X ) ∪ R(ξ,α)A (Y )|.

Similarly,

ϕ(ξ,α,β)(X ∩ Y ) = 1−
|R(ξ,α)A (X ∩ Y )|

|R
(ξ,β)
A (X ∩ Y )|

≤ 1−
|R(ξ,α)A (X )| ∩ |R(ξ,α)A (Y )|

|R
(ξ,β)
A (X )| ∩ |R

(ξ,β)
A (Y )|

.

We have

ϕ(ξ,α,β)(X ∩ Y )|R
(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )|

≤ |R
(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )| − |R(ξ,α)A (X ) ∩ R(ξ,α)A (Y )|.

As known, for any finite setsX and Y , the relation |A∪B| =
|A| + |B| − |A ∩ B| holds.Then,

ϕ(ξ,α,β)(X ∪ Y )|R
(ξ,β)
A (X ) ∪ R

(ξ,β)
A (Y )|

≤ |R
(ξ,β)
A (X ) ∪ R

(ξ,β)
A (Y )| − |R(ξ,α)A (X ) ∪ R(ξ,α)A (Y )|

= |R
(ξ,β)
A (X )| + |R

(ξ,β)
A (Y )| − |R

(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )|

− |R(ξ,α)A (X )| − |R(ξ,α)A (Y )| + |R(ξ,α)A (X ) ∩ R(ξ,α)A (Y )|

= |R
(ξ,β)
A (X )| + |R

(ξ,β)
A (Y )| − |R(ξ,α)A (X )| − |R(ξ,α)A (Y )|

− {|R
(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )| − |R(ξ,α)A (X ) ∩ R(ξ,α)A (Y )|}

= |R
(ξ,β)
A (X )| + |R

(ξ,β)
A (Y )| − |R(ξ,α)A (X )| − |R(ξ,α)A (Y )|

+ {|R(ξ,α)A (X ) ∩ R(ξ,α)A (Y )| − |R
(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )|}

≤ |R
(ξ,β)
A (X )| + |R

(ξ,β)
A (Y )| − |R(ξ,α)A (X )| − |R(ξ,α)A (Y )|

−ϕ(ξ,α,β)(X ∩ Y )|R
(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )|.

Furthermore, by the relation of ϕ(ξ,α,β)(X ) = 1− |R
(ξ,α)
A (X )|

|R
(ξ,β)
A (X )|

and ϕ(ξ,α,β)(Y ) = 1− |R
(ξ,α)
A (Y )|

|R
(ξ,β)
A (Y )|

, we have

|R
(ξ,β)
A (X )| − |R(ξ,α)A (X )| = ϕ(ξ,α,β)(X )|R

(ξ,β)
A (X )|,

and

|R
(ξ,β)
A (Y )| − |R(ξ,α)A (Y )| = ϕ(ξ,α,β)(Y )|R

(ξ,β)
A (Y )|.

Thus, we have

ϕ(ξ,α,β)(X ∪ Y )|R
(ξ,β)
A (X ) ∪ R

(ξ,β)
A (Y )|

≤ |R
(ξ,β)
A (X )| + |R

(ξ,β)
A (Y )| − |R(ξ,α)A (X )| − |R(ξ,α)A (Y )|

−ϕ(ξ,α,β)(X ∩ Y )|R
(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )|

= ϕ(ξ,α,β)(X )|R
(ξ,β)
A (X )| + ϕ(ξ,α,β)(Y )|R

(ξ,β)
A (Y )|

−ϕ(ξ,α,β)(X ∩ Y )|R
(ξ,β)
A (X ) ∩ R

(ξ,β)
A (Y )|.

So we prove the assertion (1), and the assertion (2) is easy to
prove by the relation ϕ(ξ,α,β)(X ) = 1− ρ(ξ,α,β)(X ).

B. A NEW FUZZY ROUGH ENTROPY OVER THE
DUAL-UNIVERSE
In [32],Ma and Sunmentioned that there are some limitations
in describing the uncertainty of probabilistic rough set X by
using the precision and rough degree. Firstly, only the ele-
ments contained in the upper and lower approximation opera-
tors are used, while the other elements in the two universes are
not used. Secondly, compared with different binary relations
R andQ, the precision and rough degree of probabilistic rough
setX may be the same, that is, it can not explain the difference
of the binary relations. To solve the above problems, Ma and
Sun [32] proposed the concept of rough entropy of proba-
bility rough sets over two universes. However, this kind of
rough entropy is defined by equivalence class, and ignores
the indistinguishability of elements in equivalence classes.
In order to solve this difficulty, the entropy of the dual-
universe is proposed by using the granulation information in
the dual-universe.

Firstly, we give the definition of Shannon
entropy [29], [31].

Let U be a non-empty finite universe, R be a binary equiv-
alence relation on universe U . U/R = {X1,X2, . . . ,Xn} is
a partition determined by the equivalence relation R. pi =
P(Xi) =

|Xi|
|U | is the probability distribution on U/R. We call

H (U/R) = −6n
i=1pi log2 pi

is the information entropy of U/R.
If there is pi = 0 or Xi = ∅, then define 0 log2 0 = 0.
Based on the definition of Shannon entropy, we give the

general entropy of dual-universe U × V and the fuzzy rough
entropy of the object set X as follows,

Let 〈U × V , R,A〉 be a dual-universe informa-
tion system. For convenience, this section unify the
2-tuples in dual-universe U × V as (ui, vi). For exam-
ple, if U = {u1, u2, u3}, V = {v1, v2}, then U ×
V = {(u1, v1), (u2, v1), (u3, v1), (u1, v2), (u2, v2), (u3, v2)} =
{(u1, v1), (u2, v2), (u3, v3), (u4, v4), (u5, v5), (u6, v6)}. The
attribute set A = {a1, a2, . . . , am}, and the attribute
values of (ui, vi), (i = 1, 2, . . . , 6) are represented as
µa1 (ui, vi), µa2 (ui, vi), . . . , µam (ui, vi). Because the effects
of attribute am on 2-tuple (ui, vi) are different, we assign
corresponding weights to different attributes such as,
ω1, ω2, . . . , ωm, where 0 < ωk <

1
2 .
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TABLE 1. Dual-universe information system.

Definition 12: Let 〈U×V , R,A〉 be a dual-universe infor-
mation system. An index value is a mapping IV : U × V →
(0, 1) as follows,

IV (ui, vi) = 6m
k=1ωk · µak (ui, vi). (10)

where µak (ui, vi) is the attribute value of the 2-tuples (ui, vi),
and ωk is the weight of the attribution ak .
Definition 13: Let 〈U×V , R,A〉 be a dual-universe infor-

mation system. IV be an index value function of dual-universe
U × V . Then, the entropy of dual-universe U × V is defined
as follows,

EIV (U × V ) = −
1

|U × V |
6
|U×V |
i=1 log2 IV (ui, vi). (11)

Theorem 12: Let 〈U × V , R,A〉 be a dual-universe infor-
mation system. EIV (U × V ) be the entropy of dual-universe
U × V . The following assertions hold,
(1) 0 ≤ EIV (U × V ) ≤ 2 log2 10,
(2) If IV (ui, vi) = 1, i = 1, 2, . . . , |U × V |, the entropy of

dual-universe EIV (U × V ) takes minimum value 0,
(2) If IV (ui, vi) = 1

100 , i = 1, 2, . . . , |U × V |, the entropy
of dual-universe EIV (U × V ) takes maximum value
2 log2 10.

Proof: It can be easily proved by the Definition (13).
Definition 14: Let 〈U×V , R,A〉 be a dual-universe infor-

mation system. For any fuzzy set X ⊆ U × V , ϕ(ξ,α,β)(X ) is
the rough degree ofX inU×V . Then, the fuzzy rough entropy
of the object set X in U × V is defined as follows,

EIV (X ) = −ϕ(ξ,α,β)(X )
1

|U × V |
6
|U×V |
i=1 log2 IV (ui, vi).

(12)

Clearly, the fuzzy rough entropy of the object set X can also
be described as follows,

EIV (X ) = ϕ(ξ,α,β)(X )EIV (U × V ). (13)

Example 4: (Continued the Example (3)) For conve-
nience, we change the representations of the 2-tuples
in Table 1, even if (u1, v1) = (u1, v1), (u2, v2) = (u2,
v2), (u1, v2) = (u3, v3), (u2, v1) = (u4, v4), (x1, y1) =
(u5, v5), (x2, y2) = (u6, v6), (x3, y3) = (u7, v7). So,
U × V = {(ui, vi), i = 1, 2, . . . , 7}, X = {(u5, v5), (u6, v6)}
and Y = {(u6, v6), (u7, v7)}. Let the weights of the attri-
butions in U × V are ω1 = 0.1, ω2 = 0.3, ω3 = 0.4,
ω4 = 0.2, ω5 = 0.3, ω6 = 0.2. Thus, the attribute values
of 2-tuples in U × V with respect to attribute set A are as
follows, respectively.

TABLE 2. Dual-universe information system.

By the Definition (12), we can calculate the following
results,

IV (u1, v1) = 0.44, IV (u2, v2) = 0.53,

IV (u3, v3) = 0.42, IV (u4, v4) = 0.66,

IV (u5, v5) = 0.70, IV (u6, v6) = 0.68,

IV (u7, v7) = 0.82.

So, the entropy of dual-universe U × V is follows,

EIV (U × V ) = −
1

|U × V |
6
|U×V |
i=1 log2 IV (ui, vi)

= −
1
7
67
i=1 log2 IV (ui, vi)

= −
1
7
· (log2

44
100
+ log2

53
100
+ log2

42
100

+ log2
66
100
+ log2

70
100
+ log2

68
100

+ log2
82
100

)

≈ 0.758.

By the Example (3), we know that ϕ(ξ,0.54,0.39)(X ) = 1
3 ,

ϕ(ξ,0.54,0.39)(Y ) = 2
3 . Then the fuzzy rough entropy of object

set X and Y in U × V as follows, respectively,

EIV (X ) = −ϕ(ξ,0.54,0.39)(X )
1

|U × V |
6
|U×V |
i=1 log2 IV (ui, vi)

= ϕ(ξ,0.54,0.39)(X )EIV (U × V )

=
1
3
EIV (U × V )

≈ 0.253.

EIV (Y ) = −ϕ(ξ,0.54,0.39)(Y )
1

|U × V |
6
|U×V |
i=1 log2 IV (ui, vi)

= ϕ(ξ,0.54,0.39)(Y )EIV (U × V )

=
2
3
EIV (U × V )

≈ 0.506.

V. A NUMERICAL EXAMPLE ABOUT THE FUZZY ROUGH
SET MODEL BASED ON RELIABILITY OVER THE
DUAL-UNIVERSE
In this section, we give an algorithm for the decision-making
model and provide a numerical example about clinical diag-
nosis to verify the advantages of the decision-making method
presented in this paper.
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A. AN ALGORITHM FOR THE DECISION-MAKING MODEL
In this section, we propose an algorithm for the decision-
making model based on the new fuzzy rough set. The specific
steps are as follows.

Step 1: Calculate the similarity degrees of (ui, vj) and
(xn, yn) according to Definition (6).

Step 2: Calculate the similarity degrees of (ui, vj) and X
with respect to RA according to Definition (9).
Step 3: Calculate the lower approximation, upper approxi-

mation, positive region, negative region and boundary region
of X . And the 2-tuples in the dual-universe will be divided
into the positive, negative and boundary regions.

Step 4: Calculate the precision ρ(ξ,α,β)(X ) and the rough
degree ϕ(ξ,α,β)(X ) of X .
Step 5: The decision results are obtained by analyzing the

calculated values and practical examples. In other words,
the experts will give different action plans for 2-tuples in
different regions.

B. A NUMERICAL EXAMPLE ABOUT CLINICAL DIAGNOSIS
In this section, we give a simple application of the fuzzy
rough set model based on reliability over dual-universe.
We all know that each person’s body index has a certain
degree of influence on his illness, and the severity of the same
symptom will also affect the disease. Therefore, different
treatments should be given in different situations. However,
the existing researches on disease diagnosis have ignored this
problem. The fuzzy rough set model based on reliability over
dual-universe proposed in this paper solves this difficulty
well.

Suppose that U and V are the sufferer set and the symp-
tom set, respectively. We get a dual-universe U × V with
some 2-tuples (ui, vj) by calculating their cartesian prod-
uct. A = {a1, a2, . . . , am} is an attribute set that rep-
resents the patient’s body index. For any disease X =

{(x1, y1), (x2, y2), . . . , (xn, yn)} which the 2-tuples in X has
the same attributes as the 2-tuples inU×V , and ξ1, ξ2, . . . , ξn
are the reliability of (xk , yk ), (k = 1, 2, . . . , n) to judge X .
The detailed calculation and analysis are as follows.
Example 5: Let U × V = {(u1, v1), (u1, v2), (u1, v3),

(u2, v1), (u2, v2), (u2, v3), (x1, y1), (x2, y2)} is a dual-universe,
A = {a1, a2, a3, a4, a5, a6} is the attribute set onU×V . Take
an approximation object set X = {(x1, y1), (x2, y2)}, in which
the reliability of (x1, y1) to judge X is ξ1 = 0.8, the reliability
of (x2, y2) to judge X is ξ2 = 0.5. The attribute values
of 2-tuples in U × V and X with respect to attribute set A
are as follows, respectively,

We taking α = 0.57, β = 0.45. By the Definition (6),
we can obtain the similarity degrees of (ui, vj)(i = 1, 2, j =
1, 2, 3) and (xk , yk )(k = 1, 2) as follows,

RA[(u1, v1), (x1, y1)] =
2
3
, RA[(u1, v1), (x2, y2)] =

16
31
,

RA[(u1, v2), (x1, y1)] =
11
27
, RA[(u1, v2), (x2, y2)] =

6
31
,

RA[(u1, v3), (x1, y1)] =
1
3
, RA[(u1, v3), (x2, y2)] =

14
31
,

TABLE 3. Dual-universe information system.

RA[(u2, v1), (x1, y1)] =
1
9
, RA[(u2, v1), (x2, y2)] =

15
31
,

RA[(u2, v2), (x1, y1)] =
14
27
, RA[(u2, v2), (x2, y2)] =

10
31
,

RA[(u2, v3), (x1, y1)] =
5
9
, RA[(u2, v3), (x2, y2)] =

16
31
.

By the Definition (9), we can obtain the similarity degree of
(u1, v1) and X with respect to RA in the dual-universe U × V
as follows,

RA[(u1, v1),X ] = ξ1 · RA[(u1, v1), (x1, y1)]

+ ξ2 · RA[(u1, v1), (x2, y2)]

= 0.8×
2
3
+ 0.5×

16
31
= 0.79,

Through the same calculation method, we get the following
results, respectively,

RA[(u1, v2),X ] = 0.42, RA[(u1, v3),X ] = 0.49,

RA[(u2, v1),X ] = 0.33, RA[(u2, v2),X ] = 0.58,

RA[(u2, v3),X ] = 0.70.

Then we can calculate the lower approximation, upper
approximation, positive region, negative region and boundary
region of the X as follows, respectively,

R(ξ,0.57)A (X ) = {(u1, v1), (u2, v2), (u2, v3)};

R
(ξ,0.45)
A (X ) = {(u1, v1), (u1, v3), (u2, v2), (u2, v3)};

POS(ξ,0.57)A (X ) = R(ξ,0.57)A (X )

= {(u1, v1), (u2, v2), (u2, v3)};

BND(ξ,0.57,0.45)
A (X ) = R

(ξ,0.45)
A (X )− R(ξ,0.57)A (X )

= {(u1, v3)};

NEG(ξ,0.45)
A (X ) = U × V − R

(ξ,0.45)
A (X )

= {(u1, v2), (u2, v1)}.

So the precision ρ(ξ,0.57,0.45)(X ) and the rough degree
ϕ(ξ,0.57,0.45)(X ) of X (X ∈ U × V ) can also be calculated
as follows, respectively,

ρ(ξ,0.57,0.45)(X ) =
|R(ξ,0.57)A (X )|

|R
(ξ,0.45)
A (X )|

=
3
4
;

ϕ(ξ,0.57,0.45)(X ) = 1− ρ(ξ,0.57,0.45)(X ) =
1
4
.

Then, we get the following conclusions:
(1) The sufferers (u1, v1), (u2, v2) and (u2, v3) must ill with

the disease X , and the doctor must immediately treat them.
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(2) The sufferers (u1, v2), (u2, v1) are not ill with the dis-
ease X , and they do not need treatment of this department
doctor.

(3) Since sufferer (u1, v3) belong to the boundary region,
we can not judge that he (or she) is ill with disease X or not.
So he (or she) need the second thoughts of the department
doctor.

From this numerical example, we know that physical indi-
cators and the severity of symptoms are the main factors
in determining the sufferer is ill with disease or not. For
example, the sufferer u1 with the symptom v1 must ill with the
disease X , but the sufferer u1 with the symptom v2 is not ill
with the disease X . This is the biggest advantage of using the
model presented in this paper to deal with medical problems.

VI. CONCLUSIONS
In this paper, we define the calculation methods for the simi-
larity degree of the 2-tuples inU×V and the similarity degree
between (ui, vj) and X . Based on these definitions of the
similarity degree, we construct a fuzzy rough set model based
on reliability over dual-universe, and give a new decision-
making method based on this fuzzy rough set model. This
model is to discuss the information on dual-universe, which
can reduce classification error to a greater extent. Finally we
use a numerical example of clinical diagnosis to verify and
interpret the advantages of the model presented in this paper.

The fuzzy rough set defined in this paper based on weak
fuzzy similarity degree have the following advantages:

(1)We use the cartesian product of different elements in the
different universes to generate a new dual-universe consisting
of 2-tuples. And these 2-tuples are represented under the same
attribute vector, which overcomes the difficulty of data anal-
ysis and processing because of different element attributes in
different universes.

(2) The method of calculating the weak fuzzy similarity
proposed in this paper is based on the dual-universe informa-
tion system, which avoids the error of using the elements in
one universe to judge the element classification problem in
the other universe with the traditional binary relation.

(3) The method of dealing with problems in dual-universe
information systems mentioned in this paper is easier to be
extended to multi-universe and multi-attribute problems.

Our future study is to extend this model to multiple fields
for dealing with the problems in multiple universes.
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