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ABSTRACT The 3D object reconstruction from depth image streams using Kinect-style depth cameras
has been extensively studied. In this paper, we propose an approach for accurate camera tracking and
volumetric dense surface reconstruction, assuming that a known cuboid reference object is present in the
scene. Our contribution is threefold. First, we maintain the drift-free camera pose tracking by incorporating
the 3D geometric constraints of the cuboid reference object into the image registration process. Second,
we reformulate the problem of depth stream fusion as a binary classification problem, enabling high-
fidelity surface reconstruction, especially in the concave zones of objects. Third, we further present a
surface denoising strategy to mitigate the topological inconsistency (e.g., holes and dangling triangles),
which facilitates the generation of a noise-free triangle mesh. We extend our public dataset CU3D with
several new image sequences, test our algorithm on these sequences, and quantitatively compare them with
other state-of-the-art algorithms. Both our dataset and our algorithm are available as open-source content at
https://github.com/zhangxaochen/CuFusion for other researchers to reproduce and verify our results.

INDEX TERMS 3D object reconstruction, depth cameras, Kinect sensors, open source, signal denoising,
SLAM.

I. INTRODUCTION
Reconstructing a 3D surface model from a sequence of pro-
vided range images has been an active research topic during
the last decade. In recent years, the emergence of depth
cameras based on either structured light (e.g., Asus Xtion,
Kinect 1.0) or time-of-flight (ToF) (e.g., Kinect 2.0) sensing
offers dense depth measurements directly at a high frame rate
as video streams. The KinectFusion algorithm [1] introduced
by Newcombe et al. is one of the seminal works for real-time
camera tracking and dense environment reconstruction, turn-
ing depth sensors into consumer-grade 3D scanners. It uses
fast iterative closest point (ICP) algorithms [2], [3] for camera
pose estimation and a volume known as the truncated signed
distance function (TSDF) for scene representation. The con-
nected mesh surfaces are later extracted using the marching
cubes algorithm [4].

On the reconstruction accuracy, however, the KinectFu-
sion algorithm suffers from a number of limitations, includ-
ing the ICP image registration algorithm that is prone to
accumulating drift in the presence of structure-less surfaces,
the inability to recover from drift, and the problem of surface
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deformation for highly curved and concave zones of the
scanned objects [5].

Many researchers have been working on solving these
problems. ICP variants such as point-to-plane ICP [6] and
generalized ICP (GICP) [7] have been proposed for better
image alignment. Loop closures have been detected, and
pose graphs have been built and optimized online [8]–[12]
or offline [13], [14] to produce robust and globally con-
sistent maps. To address the surface deformation problem,
Whelan et al. proposed the ElasticFusion framework [10], [15]
to activate nonrigid model-to-model refinement, which also
relies on local loop closure detection. Slavcheva et al. pro-
posed the SDF-2-SDF algorithm [16], [17], which focuses
on small-scale object reconstruction. Similarly, we also
proposed a CuFusion framework [18] for accurate camera
localization and object modeling under the assumption that
a known cuboid reference object is present in the scene.
A prediction-corrected TSDF fusion strategy is applied
instead of a simple moving average fusion to resolve the
surface deformation problem.

However, the reconstruction quality of [18] relies heavily
on the quality of the raw depthmeasurements. Tomaintain the
reconstruction fidelity in particularly highly curved zones of
objects, the input depth images should contain as little motion
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blur as possible, which requires the camera to orbit steadily.
Even mild blurring in depth measurements caused by slightly
faster camera motion may lead to reconstruction failure on
the sharp edges of objects. To address these problems, in this
paper, we introduce a novel approach that is an extension
of our previous work [18]. The major contributions are as
follows.
• We propose an ICP variant that takes the constraints of
the known reference object into account for robust and
accurate camera pose estimation. With the supplemen-
tary information of the reference object, we maintain
near-optimal camera tracking for each frame, making
it possible for accurate object reconstruction. We build
pose graphs and solve for optimized camera poses and
compare them with those without graph optimization,
demonstrating that our method is accurate enough.

• We reformulate the data fusion task as a per voxel binary
classification task to maintain the reconstruction fidelity
and resistance to motion blur result from camera jitters.

• We present a denoising strategy, which performs noise
reduction directly on the generated volume during scan-
ning, resulting in cleaner mesh surface outputs, taking it
one step further for industrial applicability of the output
surface models such as in 3D printing.

Compared with most existing simultaneous localization
and mapping (SLAM)-like algorithms, our method focuses
on geometric fidelity, taking depth streams as the only input
to generate topologically consistent mesh models. We per-
form qualitative and quantitative evaluations on reconstruc-
tions from both synthetic and real-world sequences of the
CU3D dataset. Both the camera trajectory and the reconstruc-
tion accuracy are compared with state-of-the-art approaches.
We show the fidelity of the reconstruction of our method
and release our code and dataset to the community for future
work.

II. RELATED WORK
The SLAMproblem has been extensively studied.Monocular
RGB camera tracking systems such as monoSLAM [19] and
parallel tracking and mapping (PTAM) [20] allow users to
obtain camera trajectories and sparse point cloud models.
Dense reconstruction systems [21]–[23] have also been pro-
posed to replace point cloud-based systems. With the advent
of Kinect-style active depth sensors, the KinectFusion [1]
algorithm permits dense volumetric reconstruction of the
scene in real time, enabling mesh model output for physics-
based augmented reality (AR) [24] and 3D printing [25].
Improved frameworks have then been proposed in the aspects
of memory efficiency [26]–[28], large space representa-
tion [8], [11], [27], [29], camera trajectory accuracy with
loop closure detection and optimization [12], [27], [30],
and scene representation such as surfels [31] or hybrid data
structure [32].

Some researchers have used structural priors for accurate
camera localization. Zhou and Koltun [33] introduced an
approach for robust contour cue extraction and integrated

the contour constraints into the registration objective and
stabilizing camera tracking in challenging scenarios. High-
level features such as planes [34]–[38] and objects [39], [40]
have also been used as primitives to provide more constraints
to camera pose estimation. However, such systems may fail
when those priors do not present in the scene. In this paper,
we make full use of the information of a precisely human-
made cuboid reference object, namely, the orthogonal or
parallel planar facets and the contour cues of certainly known
lengths as constraints for camera localization stabilization.
The accurate and robust camera trajectories are later used in
the model generation process to integrate single images into
consistent models in the global coordinate.

In addition to pairwise local registration methods for cam-
era localization, many recent works [13], [41]–[43] have
been devoted to registering point clouds globally, which does
not rely on good camera pose initialization. As a represen-
tative work, fast global registration (FGR) [42] uses fast
point feature histograms (FPFH) [44] to find feature cor-
respondences, filters them in a ‘‘mutual best’’ strategy to
reduce false matches, and defines an objective function that
minimizes the distances between the corresponding points,
leading to globally consistent camera pose estimation with-
out local refinement. Deep learning-based algorithms such
as 3DMatch [45] and point pair feature net (PPFNet) [46]
have also been proposed for direct global registration. Ref-
erence [45] used dense local grids and 3D convolutional
neural networks (CNNs) to learn the local patch descriptor,
and [46] further employed raw points and normals to improve
the descriptor representation. These global registration algo-
rithms, however, focus mostly on the camera pose estimation
rather than the quality of the final reconstruction. To be more
specific, balancing the manifoldness and sharpness of the
reconstructed surface models remains a challenge to us.

Different dense scene representations have also been
explored in the literature. Occupancy mapping using a grid
of cells to represent the space has been popular in robotics.
A probability of occupancy in each cell is accumulated via
Bayesian updates every time a new informative observation is
provided [47]. Similarly, the SDF volumetric representation
introduced in [48] is often used in graphics to fuse partial
depth scans into one global model. The SDF represents the
surface interfaces implicitly as zeros, and the mesh models
can be extracted using the marching cubes type algorithm [4].
Instead of volumes, surfels [10], [31], [49], [50] are also
exploited to represent the scene, which renders the scene with
the surface-splatting technique [51] and reduces the com-
putational complexity and memory overhead compared with
the volumetric approaches. The volumetric representation has
been reported to be difficult to resolve the highly curved
and concave details, such as the folds in the garment [5] or
thin geometries [18], even if the voxels are small enough.
Reference [18] introduced a prediction-corrected data fusion
strategy for geometry detail preservation. By storing sur-
face normal and view ray vectors per voxel as additional
information, it enables fast correction of the surface where
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FIGURE 1. An overview of our system pipeline. Details of the notations are described in section III.

deformation is previously accumulated. The main problem
of [18] resides in its inability to deal with motion blur in raw
depthmeasurements as well as its highmemory consumption.
Different from either conventional volumetric or surfel-based
approaches, we propose a novel method for data fusion with
a volumetric representation. We convert the typical moving
average to a scheme of per voxel probabilistic binary classi-
fication dedicated to the reconstruction fidelity, especially in
sharp geometries.

There have been many popular RGB-D datasets created for
the evaluation of indoor 3D reconstruction. The TUMRGB-D
dataset [52] offers a set of RGB-D images with accurate and
time-synchronized ground-truth camera poses from a motion
capture system. It aims mainly at trajectory estimation and
lacks ground-truth scene models. To assess the accuracy of
the scene reconstruction, the ICL-NUIM dataset [53] gen-
erates both ground-truth poses and models for quantitative
evaluation with two synthetic scenes. Slavcheva et al. pro-
vided the first object dataset with ground-truth computer-
aided design (CAD) models and camera trajectories. The
dataset consists of a 3D-printed selection of small objects
scanned with a markerboard placed below them.

Similarly, we provide a dataset CU3D in [18] with both
synthetic and real-world sequences. Our synthetic data pro-
vide both ground-truth object models and camera poses, and
the real-world data are generated by scanning six 3D-printed
objects with only ground-truth models available. In this work,
we extend this dataset with several supplementary sequences.
Different from the previous real-world scans in our CU3D
dataset, we have no per-vertex ground-truth for these newly
added scans. We verify the reconstruction accuracy by eval-
uating the total length of the reconstructed model compared
with Vernier caliper measurements as the ground-truth.

III. METHOD
We base our work on the open-sourced implementa-
tion of the KinectFusion algorithm from the point cloud
library (PCL) [54]. Our reconstruction pipeline is illustrated

in Fig. 1, which is described in detail in the following
subsections.

A. MATHEMATICAL NOTATION
We define the image domain as � ⊂N2, and a depth image
at time k is defined as Dk : � → R, where each single
pixel p∈ � in the image stores the distance from the camera
to the surface. Assuming that the camera intrinsic matrix
is known, we define the projection and dehomogenization
function π : p = π (P) to map a 3D point P = (x, y, z)T ∈R3

in the camera coordinate to a pixel p = (u, v)T ∈ N2 in the
image plane. We present the 6-degrees-of-freedom (6DOF)
camera pose at time k in the global coordinate frame by a
rigid transformation matrix:

Tg,k =
[
Rg,k tg,k
0T 1

]
∈ SE(3) (1)

with a 3× 3 rotation matrix Rg,k∈ SO(3) and a 3× 1 trans-
lation vector tg,k ∈ R3, which transforms a point Pk ∈ R3 in
the camera coordinate frame to a global point Pg = Rg,kPk +
tg,k ∈ R3. For simplicity, we omit the conversion between the
3-vectors and their corresponding homogeneous 4-vectors.
A depth pixel p can be back-projected to the global coordinate
frame: Pg = Tg,kπ−1 (p,Dk (p)). An organized vertex map
Vk is computed by bilateral filtering and back-projecting the
raw depth image Dk , and its corresponding normal map Nk
is computed using the principal component analysis (PCA)
method.

B. CUBOID LOCALIZATION AS INITIALIZATION
Given a depth image Dk and the reference cuboid with edge
lengths Lcu = (a, b, c), we localize the cuboid; namely,
we calculate its pose in the global coordinate frame. Live
depth frames will be later aligned against the cuboid when
scanning around it to mitigate the accumulating camera drift.

We first perform plane segmentation using the agglom-
erative hierarchical clustering (AHC) algorithm [55]. Then,
we check the orthogonality of the segmented planes.
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Two planes are considered to be orthogonal if the angle
2p between their normal vectors is approximately 90◦

(i.e.,
∣∣2p − 90◦

∣∣ < ε2). Once we find three planes that are
orthogonal to each other, we check the length of the intersect-
ing line segments between them. If the three line segments’
length parameter L approximately matches the cuboid edge
length parameter Lcu (i.e., |L − Lcu| < εL), we claim to find
the cuboid and mark the three planes as its adjacent planes.
Empirically, we set ε2 = 5◦, εL = 10 mm.
We consequently define the cuboid coordinate frame of

reference. We set the frame origin Ocu to the intersection
point of the three orthogonal planes and draw the system axes
from the normal vectors. Due to the inaccuracy of the depth
measurement and intrinsic camera calibration, orthogonality
between the normal vectors of the segmented adjacent planes
is not strictly guaranteed. We obtain the nearest orthogonal
axes [Xcu,Ycu,Zcu] of the frame by solving the orthogonal
Procrustes problem, where [Xcu,Ycu,Zcu] are 3 × 1 column
vectors. The cuboid pose in the camera frame at time k is:

Tk,cu =
[
Rk,cu tk,cu
0T 1

]
∈ SE (3) (2)

Rk,cu = [Xcu,Ycu,Zcu] (3)

tk,cu = OTcu (4)

Assuming the camera pose Tg,k at time k is known,
the cuboid pose Tg,cu in the global frame of coordinate could
then be derived: Tg,cu = Tg,kTk,cu. Fig. 2 illustrates the
notations used in the paper.

FIGURE 2. Illustration of the notations used in this paper.

Note that the cuboid pose in the global frame is evaluated
only once when we find a triplet of orthogonal planes and left
unchanged afterwards. Each incoming depth image is aligned
against the virtual cuboid to reduce camera drift, as described
in the following sections.

C. CAMERA POSE ESTIMATION
Since we use depth maps as input sequences, only geometric
alignment is performed. For each input frame Dk at time k ,
we estimate the current camera pose Tg,k by registering the
live depth map to both the globally reconstructed surface
model and the reference cuboid.

1) FRAME-TO-MODEL REGISTRATION
Given the implicit TSDF surface model S and the previously
estimated camera pose Tg,k−1 at time k − 1, an organized
vertex and normal map (V̂k−1, N̂k−1) can be obtained via per-
pixel raycast and then transformed into the global frame as
(V̂ g

k−1, N̂
g
k−1). For frame-to-model (f2m) registration, a trans-

formation Tg,k is pursued tominimize the point-to-plane error
between Tg,kVk and V̂

g
k−1:

Ef 2m
(
Tg,k

)
=

∑
(p,p̂)∈K1

((
Tg,kVk (p)− V̂

g
k−1

(
p̂
))
N̂ g
k−1

(
p̂
))2
(5)

where K1= {
(
p, p̂

)
is the set of correspondences associated

with projective data association [1]:

p̂ = π
(
T̃k−1,kVk (p)

)
(6)

where T̃k−1,k denotes the transformation from current time k
to time (k − 1) during each ICP iteration.

2) FRAME-TO-CUBOID REGISTRATION
Assuming the cuboid pose has previously been initialized,
for each camera pose Tg,k−1, per-pixel ray casting is per-
formed on the reference cuboid to synthesize a proxy depth
map D̂cuk−1. An organized vertex and normal map in the global
frame (V̂cu

g
k−1, N̂cu

g
k−1) is then derived by back-projecting the

proxy depth map and transforming local maps to the global
space. Similar to the frame-to-model registration, the distance
between the current depth measurement and the cuboid sur-
face (frame-to-cuboid, i.e., f2c) is minimized:

Ef 2c
(
Tg,k

)
=

∑
(p,p̂)∈K2

((
Tg,kVk (p)

−V̂cu
g
k−1

(
p̂
))
N̂cu

g
k−1

(
p̂
))2

(7)

In addition, we exploit the edge-to-contour (e2c) distance
as a constraint term to mitigate the potential camera drift.
Contours of the reference cuboid can be discretized into a 3D
point set Vegcu in the global frame with an interval of 1 mm
once the cuboid is successfully localized. Given the inpainted
depth map D′k , we find the edge pixel set Ck at depth discon-
tinuities in the live depth map, as proposed in [33]. The 3D
edge point set Vek could then be derived by back-projection
of Ck . The edge-to-contour error to minimize is:

Ee2c
(
Tg,k

)
=

∑
(s,t)∈K3

((
Tg,kVek (s)− Vegcu (t)

)
N̂cu

g
k−1 (t)

)2
(8)

where K3= { (s, t) is the correspondence set obtained by a
nearest neighbor search with KD-tree.

3) JOINT OPTIMIZATION
We combine (5), (7), and (8) to form a joint cost function:

Etrack = Ef 2m + wf 2cEf 2c + we2cEe2c (9)
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where wf 2c and we2c are the weights that determine the influ-
ence of correspondences on the cuboid surfaces and contours.
When setting wf 2c = we2c = 0, our optimization objective
is equivalent to KinectFusion. We empirically set wf 2c = 4
and we2c = 24 in our experiments, enforcing the constraints
of the contour correspondences. Note that the two weights
are set larger because the correspondence sets K2 and K3
are much smaller thanK1. We compute the camera pose Tg,k
by iteratively minimizing the linear approximation [6] of the
overall cost function Etrack .

D. POSE GRAPH OPTIMIZATION
We build pose graphs for optimization based on the geometric
characteristics of the reference cuboid. Each time a triplet
of mutually orthogonal planes of the cuboid is observed in
the global frame, the orthogonal normal vectors span the
space R3, during which strong geometric constraints ensure
accurate camera pose estimation. We select a keyframe as a
vertex of the pose graph each time a new trihedron enters
the camera’s field of view and the relative transformation
from the interframe alignment as its edges. We optimize the
pose graph using the open-source framework ‘‘g2o’’ [56] and
compare our camera trajectories with the optimized trajecto-
ries, showing that our camera poses are accurate enough even
without graph optimization.

E. SURFACE RECONSTRUCTION
In this paper, we introduce a method that is an improvement
to [18].We detect sharp or thin geometric zones by raycasting
through the negative TSDF area. Similar to [18], we sub-
stitute the simple moving average data fusion strategy with
a non-uniform strategy. We turn the problem of data fusion
into a probabilistic binary classification problem and adopt a
denoising scheme, leading to more accurate and cleaner mesh
models than other methods.

1) TRUNCATED SIGNED DISTANCE FUNCTION
The signed distance function (SDF) F : R3

→ R introduced
in [48] represents the scene non-parametrically. Two compo-
nents are stored at each location of volume S: the SDF valueF
and a weightW :

S 7→ [F,W ] (10)

Each SDF value in the voxel corresponds to the signed dis-
tance from the cell to the closest surface. In most volumetric
reconstruction systems, the projective SDF is computed along
the optical axis, which is view dependent. Instead, we multi-
ply the projective SDF by the cosine value of the incidence
angle of each view ray for an approximation of the real SDF
value.

The TSDF is obtained by normalizing and truncating the
SDF value with a constant truncation distance δ, which is usu-
ally set empirically. When we set it large, the reconstruction
is more noise resistant, whereas the surface details are lost,
and when it is set small, the case is the opposite. Based on the
observation that depth measurements near image edges are

highly uncertain, we choose an adaptive truncation distance
δa to ensure the fineness of the details of the surface recon-
struction. Given a 3D point P in the global frame, its TSDF
is computed as follows:

Fproj (P) = D (p)− Pz (11)

p = π
(
T−1g,k P

)
(12)

η = Fproj (P) ∗ cos (θin) (13)

F (P) =

{
min (1, η/δ) iff η ≥ −δa
null otherwise

(14)

δa = max (σ,min (1, λ/3)) ∗ δ (15)

λ = dist(p) ∗ Pz/f (16)

where Pz is the depth of point P in the camera frame, η is
the approximation of the real SDF value, θin is the incidence
angle of the view ray, and f is the camera focal length. The
dist function performs edge detection and distance transfor-
mation to determine the distance from a pixel to its nearest
edge. The pixel distance is converted to a physical distance λ
and normalized by a constant physical length 3. When
λ < 3, the pixel is near the depth edge, and the truncation
distance δa is adapted to a smaller value. We empirically set
σ = 0.3 and 3 = 30 mm.

2) RAYCAST FOR THIN GEOMETRY DETECTION
Data fusion around thin geometric zones may be problematic.
To detect thin areas efficiently, we propose a ‘‘cast through’’
strategy, checking whether zero-crossing is found twice when
performing per-pixel raycast. Different from the raycast pro-
cedure in KinectFusion, our ray continues after a +ε to ε
zero-crossing is detected and does not stop until a ε to +ε
back face, or a ε to a void cell of zero weight is found,
or finally when exiting the working volume. The latter two
cases indicate that no thin geometry is met temporarily along
the current ray.

Our raycast process outputs a ‘‘fake’’ depth map Df con-
sisting of both positive and negative values. The sign of a
value indicates whether a ray finally intersects the front or
back surface, and the absolute depth value shows the distance
between the camera and the final intersection point along the
principal optical axis.

Moreover, our modified raycast for thin geometry detec-
tion does not continue straight all the time. When a pixel
ray intersects the surface at a grazing angle (empirically
θin> 60◦), ray refraction is performed. The primary reason
for this is that when the ray is nearly parallel to the surface,
erroneous zero-crossings are often detected. Additionally,
when a ray penetrates a thin area, it usually passes through
the internal space faster if it bends towards the negative
normal direction, leading to more accurate measurements of
the negative pixels in Df . The ray refraction is performed by
weighted averaging the original pixel ray and the negative
surface normal vector at the incident point. Let Lg (p) denote
the view ray along pixel p and Ng(p) the surface normal at
pixel p in the global frame. The refracted view ray L ′g (p) is
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FIGURE 3. Our modified raycast strategy for thin geometry detection.
Note that the ray along pixel p1 is refracted closer to the surface normal
at the incident point on the surface due to the large incidence angle,
which makes it more quickly penetrate the object. The ray along pixel p2
continues straight without refraction.

FIGURE 4. Illustration of the cause of deformation around thin
geometries. The voxel P is considered at the back of the surface when first
viewed from the left, whereas it is found in front of another surface when
the camera orbits to the opposite side. Averaging these observations
leads to erroneous TSDF results. To address this problem, we propose a
probabilistic binary classification strategy for anisotropic data fusion.

updated by:

L ′g(p) = (1− ρr )Lg(p)− ρrNg(p) (17)

where we set ρr = 1/3 empirically. Fig. 3 illustrates our
modified raycast strategy at different incidence angles.

3) DATA FUSION AS CLASSIFICATION
A voxel grid located around a thin geometric zone may be
seen from opposite perspectives, resulting in entirely different
TSDFmeasurements. For example, in Fig. 4, voxel P is found
at the back and far away from the surface when viewed
from the left with a negative TSDF value F1 representing
the occupied space of large magnitude. When the camera
orbits to the right side, however, P is measured in front of
the surface with a small positive TSDF value F2 representing
the free space near the surface. Since a TSDF represents the
distance from a voxel to its nearest surface, F2 is closer to the
true value of P. However, averaging F1 and F2 inaccurately
produces a negative TSDF value, which is not correct and is
the common reason why high-frequency geometries are often
smoothed or deformed.

Since we recognize thin geometries with our raycast pro-
cedure in advance, we can address this problem by efficiently

fusing data around sharp zones in an anisotropic manner.
Apart from the original volume S, we maintain a ‘‘ghost’’
volume S ′ as extra storage, so the TSDF of each voxel is
determined by both volumes. At time k , for each voxel P in
the global frame, we first transform and project it to an image
pixel p, then check the value of Dfk (p) and compare it with
Dk (p) to decide in which volume the current measurement
should be fused. Algorithm 1 describes this process in detail
as follows:

Algorithm 1 Integrate TSDF Volumes

Input: {Dk ,Tg,k ,D
f
k |k = 1, 2, . . . ,N }

Output: S, S ′

1: For each: P ∈ S
2: p← π

(
T−1g,k P

)
3: SDk (P)← [FDk (P) ,WDk (P)]
4: If η < −δa then
5: If λ ≥ 3 and Wk−1 (P) < φ then
6: Wk (P)← Wk−1 (P)− 1
7: End If
8: IfW ′k−1 (P)> 0 then
9: W ′k (P)← W ′k−1 (P)− 1
10: End If
11: continue
12: End If
13: If Dfk (p) > 0 then
14: Sk (P)← fuse

(
Sk−1 (P) , SDk (P)

)
15: Else
16: Ddiff (p)← Dk (p)+ D

f
k (p)

17: If Ddiff (p)> 0 then
18: continue
19: Else If Ddiff (p)< −ξ then
20: Sk (P)← fuse

(
Sk−1 (P) , SDk (P)

)
21: Else
22: If W ′k−1 < φ then
23: S ′k (P)←fuse

(
S ′k−1 (P) , SDk (P)

)
24: Else
25: sdf front ← Dk (p)− Pz
26: sdf back ← Pz + D

f
k (p)

27: ρ ←
min(0,sdf back)

min(0,sdf back)+min
(
0,sdf front

)
28: ρ′← 1− ρ
29: Fk (P)←

ρWk−1 (P)Fk−1 (P)+ ρ′W ′k−1 (P)F
′

k−1 (P)

ρWk−1 (P)+ ρ′W ′k−1 (P)

30: Wk (P)← ρWk−1 (P)+ ρ′W ′k−1 (P)
31: W ′k (P)← 0
32: End If
33: End If
34: End If
35: End for

where the fuse function performs a weighted moving aver-
age. The threshold ξ denotes the width of a narrow band
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near the surface, within which the classification strategy is
employed. When the difference of the front and back sur-
face Ddiff (p) along the pixel ray Lg (p) lies in the range
[−ξ, 0], we attempt to fuse the incoming data to the ‘‘ghost’’
volume S ′. When the weight of S ′ is above a confidence
threshold φ, we merge it to the main volume S based on
the SDF of each voxel P to both the front and back surface.
Note that sdf back is calculated opposite to sdf front , resulting
in negative SDF for voxels before (seen from the current
camera’s viewpoint) the back surface, and the positive values
are behind.

We finally employ a simple volume denoising scheme for
cleaner mesh outputs (Algorithm 1, lines 4∼12). For each
voxel P at time k , when η < −δa, we check the values of
both Wk and W ′k . If Wk is below φ and the corresponding
pixel is away from image edges (λ ≥ 3) or if W ′k is not
zero, we gradually decrease their values by one. This strategy
is simple but effective in the presence of highly uncertain
depth measurements, e.g., at depth discontinuities or grazing
viewing regions.

FIGURE 5. The new scanned objectives added to our CU3D dataset,
including (a) a Stegosaurus, (b) a Spinosaurus, (c) a Pterosaur,
(d) a Diplodocus, and (e) a small thin cardboard box. The yellow arrowed
dashed lines in each subfigure indicate the manually chosen distance to
measure with a Vernier caliper.

IV. EVALUATION
A. DATASET
In our previous work [18], we released a dataset, CU3D,
consisting of three synthetic depth image sequences with
ground-truth camera trajectories and ground-truth meshmod-
els and six real-world noisy data sequences with 3D-printed
ground-truth models but no ground-truth camera trajectories.
We extend the dataset with several new depth sequences by
scanning some models obtained from daily life, including
four dinosaur toys (a Stegosaurus, a Spinosaurus, a Pterosaur,
and a Diplodocus; the former three are soft rubber products,
but the last one has a rigid body) and a small cardboard
box, as shown in Fig. 5. We choose these objects because of
their challenging structural details, e.g., the sharp claws, tail
tips, thin spines of the toy dinosaurs and the thin cardboard
walls. Since we have no per-vertex ground-truth for these
objects, we measure the distances between manually selected
points or the thickness of thin structures with a Vernier
caliper (to 0.02 mm) for a quantitative evaluation of the
compared algorithms. These measurements include the dis-
tance from nose to tail tip of the Stegosaurus (abbreviated as
‘‘stego-n2t’’), the Spinosaurus (abbrev. ‘‘spino-n2t’’), and the
Diplodocus (abbrev. ‘‘diplo-n2t’’), the distance from the cra-
nial crest tip to tail tip of the Pterosaur (abbrev. ‘‘ptero-c2t’’),

TABLE 1. Physical distances between the manually chosen points
measured with a vernier caliper.

TABLE 2. Comparison of ATE on the synthetic sequences of CU3D.

the thickness of the right forelimb of the Diplodocus (abbrev.
‘‘diplo-r-forelimb’’), and the thickness of the wall of the
cardboard box (abbrev. ‘‘box-wall’’). The measured results
as ground-truth are listed in Table 1. Note that the scale of
our measured objectives varies from hundreds of millimeters
to only a few millimeters, which challenges the performance
of the compared algorithms.

B. CAMERA TRAJECTORY ACCURACY
Our reference-based odometry algorithm is compared with
the following: KinectFusion [1] (PCL’s Kinfu implementa-
tion [54]), the boundary odometry of Zhou and Koltun [33],
the SDF-2-SDF algorithm of Slavcheva et al. [17] (our
implementation), and our previous work CuFusion [18].
We compute the absolute trajectory error (ATE) of the 6DOF
camera poses on the synthetic depth image sequences – the
armadillo, dragon, and bunny sequences from the CU3D
dataset. Although planar surfaces of the cuboid occupy
the majority of the depth images, the compared algorithms
achieve decent camera trajectories without prominently accu-
mulating drift, as listed in Table 2. The ATE of the proposed
algorithm in this work is slightly larger (less than 0.5 mm)
than that of our previous version of CuFusion, which has
little impact on the accuracy of reconstruction. Note that
the truncation distance is set to a small value (5 mm) for
most of the cases, whereas when testing Kinfu on sequence
‘‘armadillo’’, it is set to 25 mm because the small truncation
distance in this test case results in severe camera drift and thus
failure of the reconstruction. We discuss this phenomenon in
section V.

C. COMPARISON WITH POSE GRAPH OPTIMIZATION
We further compare our online results with those optimized
with pose graph optimization. The camera poses where a
triplet of mutually orthogonal planes of the reference cuboid
is observed are selected as keyframes and added as fixed
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FIGURE 6. Comparison of per-frame ATE between our algorithm and the
graph optimized result on sequence ‘‘lambunny’’.

FIGURE 7. Qualitative comparison of the algorithms, namely, (a) Kinfu,
(b) Zhou et al., (c) SDF-2-SDF, (d) CuFusion, and (e) our proposed method,
on sequence ‘‘buddhahead’’. Top row: the reconstructed mesh models,
bottom row: the heat maps corresponding to the C2M errors.

vertices into the pose graph, between which the poses are
added as floating vertices and optimized with the ‘‘g2o’’
framework. We test the optimization results on real-world
noisy sequences and find that they have little accuracy gain
compared with our online results. Fig. 6 shows the per-frame
trajectory difference on the sequence ‘‘lambunny’’ of CU3D.
The maximum difference is less than 0.1 mm, demonstrating
that our algorithm outputs camera trajectories comparable to
the graph optimized ones.

D. SURFACE RECONSTRUCTION ACCURACY
We quantitatively evaluate the algorithms in the following
three ways – the per-vertex error, the physical scale fidelity,
and finally the mesh noise of the reconstructions.

1) CLOUD-TO-MESH DISTANCE
We first test the cloud-to-mesh (C2M) distance from the
reconstructions to the ground-truth models on the three
synthetic depth streams and six scanning sequences of the
3D-printed models. Surface reconstructions are first aligned
against the ground-truth models, and the C2M distances in
millimeters between the reconstructed and ground-truth mod-
els are computed using the CloudCompare software [57].
The C2M distance is quantified by two standard statistics:
the mean and standard deviation (Std.). Fig. 7 plots the
reconstructions of the ‘‘buddhahead’’ sequence and the cor-
responding heat maps of the C2M distance. Table 3 provides

TABLE 3. Surface reconstruction accuracy on our synthetic and
real-world data, with the C2M error metric (Mean ± Std.) in millimeters.

the error evaluation details of the five compared algorithms
on the nine data sequences.

2) PHYSICAL SCALE OF THE RECONSTRUCTION
As seen in Table 3, on the reconstruction of small-sized
objects, it is hard to determine which method has a significant
advantage over the others as long as no noticeable camera
drift occurs. To test the reconstruction fidelity, we also mea-
sured the physical scale of the reconstructions (total length
or body part thickness) of the five newly added scanning
sequences. Distance in millimeters is measured using the
point-picking tool of the CloudCompare software. We com-
pare the measuring results with the corresponding ground-
truth values listed in Table 1 and use the absolute distance
(listed in the parentheses) between the measurements and the
ground-truth values as an indicator of the accuracy of the
tested algorithms, as illustrated in Table 4. Fig. 8 qualita-
tively demonstrates the reconstruction of the ‘‘Diplodocus’’
and ‘‘cardboard box’’ sequences. Note that the SDF-2-SDF
method fails to create the Diplodocus model due to drift
in the camera trajectory estimation, and neither the Kinfu
nor the Zhou et al. method successfully reconstructs the
Diplodocus’s right forelimb.

3) MESH NOISE
We finally compare the mesh and point cloud generated by
the evaluated algorithms. For applications such as 3D print-
ing, clean and topologically consistent mesh output are of
vital importance. Due to the accurate camera pose estimation
and the denoising strategy during the data fusion process,
our method can generate globally consistent mesh models
superior to other methods. Fig. 9 qualitatively demonstrates
the reconstruction of the compared methods on sequence
‘‘Spinosaurus’’, where sectional views are provided for visu-
alizing both sides of the surface. As seen from the sectional
views, our mesh model contains the least noise and outliers
among the compared algorithms.

Table 5 quantitatively illustrates the number of triangu-
lar faces and vertices (listed in the parentheses) of each
model generated by the algorithms for each depth stream of
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TABLE 4. Measurement results of the manually chosen object parts in millimeters. The absolute distance between the measurements of the mesh models
and the real objects are shown in the parentheses behind (smaller is better).

FIGURE 8. Qualitative comparison of the algorithms, namely, (a) Kinfu, (b) Zhou et al., (c) SDF-2-SDF, (d) CuFusion, and (e) our proposed method,
on sequence ‘‘Diplodocus’’ (top row) and sequence ‘‘cardboard box’’ (bottom row).

FIGURE 9. Sectional views of the algorithms, namely, (a) Kinfu, (b) Zhou et al., (c) SDF-2-SDF, (d) CuFusion, and (e) our proposed method, on the
reconstruction of sequence ‘‘Spinosaurus’’.

our CU3D dataset (currently 14 sequences in total). On the
first three synthetic sequences, the statistical differences are
approximately 1% since there is no noise in the input depth
images. On the real-world data, however, the differences
reach up to 10%∼30%. Our algorithm generates the fewest
outliers in the point clouds as well as the triangle meshes
on all of the noisy sequences, proving the effectiveness of
our denoising scheme. The column ‘‘no denoising’’ is an
ablation experiment with the denoising functionality removed
from our approach, which will be discussed in detail in the
following ‘‘Ablation Study’’ subsection.

E. COMPUTATIONAL PERFORMANCE
We maintain a volume of 0.6m3 with a resolution of 2563

throughout our experiments. All methods are tested on a PC

with a 3.2 GHz Intel Core i5-3470 CPU and NVidia GTX
960 GPU. To speed up the method, we follow the coarse-
to-fine iterative registration scheme but reduce the maximum
number of iterations in the finest level from 10 to 1. In addi-
tion, we also reduce the edge-to-contour optimizations to only
once at the end of each iteration level. Due to the compelling
constraints of the reference cuboid, these two simplifications
do not hinder the camera tracking performance. In Table 6,
we present the average execution times in milliseconds for
each step of our framework. Note that we solve Ee2c on the
CPU during camera pose estimation, slightly slowing down
the iteration. The generation of the cuboid’s depth maps is
also implemented on the CPU. Our integration of depth maps
into the global volume is much slower than the simplemoving
average strategy at 10.6 ms versus 2 ms. The total processing
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TABLE 5. Face and Vertex (listed in the parentheses) count of the surface models generated by the compared algorithms. A smaller value is better if no
drastic failure of the reconstruction occurs, indicating cleaner model output, as demonstrated in Fig. 9.

TABLE 6. Computational performance results for each main step in our
pipeline.

time for one frame is approximately 50 ms, resulting in
approximately 20 FPS.

F. ABLATION STUDY
We further perform three experiments to evaluate the effec-
tiveness of each part of our algorithm.

Do the cuboid constraints help in odometry? To answer
this question, we qualitatively compare the odometry results
from our optimization objective Etrack with the baseline Ef 2m
on real-world sequences to show the effect of the cuboid con-
straints Ef 2c and Ee2c. This is achieved by plotting the edges
with common vertices of the cuboid in the global coordinate
frame when orthogonal trihedra are seen at each frame. Ide-
ally, these edges form a cuboid in the global space. However,
due to inaccuracies in the raw data and estimation of camera
poses, the edges are scrambled when transformed into the
global space to varying degrees. To visualize this result more
clearly, we scale these edges to 5 meters in Fig. 10. Our
method produces more consistent edges in the global space
than the baseline, proving its effectiveness.

Does our data fusion strategy help in reconstruc-
tion? To investigate the effect of our data fusion algorithm,
we replace it with the baseline moving average TSDF fusion
strategy. We use our cuboid odometry method in both exper-
iments to ensure the accuracy of camera trajectories. Fig. 11
shows the mesh reconstructions on the sequence ‘‘cardboard

FIGURE 10. Qualitative comparison between the (a) baseline and (b) our
odometry method on sequence ‘‘Diplodocus’’. We plot the detected edges
(scaled to 5 m) of the reference cuboid in the global frame as an
indication of the odometry accuracy. Note that although no noticeable
camera drift occurs with both methods, our approach produces more
consistent edges.

FIGURE 11. Qualitative comparison between (a) moving average and
(b) our data fusion strategy on sequence ‘‘cardboard box’’, both with the
same camera trajectory. Our method produces a surface free of
topological holes, preserving its manifoldness.

box’’ at frame 1379. Although the same camera trajectories
are provided, a simple moving average (Fig. 11(a)) produces
holes at the surface of the box’s thin wall due to the fusion
of highly noisy raw depth measurements into the global
TSDF volume. By contrast, our fusion strategy succeeds in
preserving the manifoldness of the surface (Fig. 11(b)).
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Does the denoising strategy help? As shown in the ‘‘no
denoising’’ column in Table 5, the results of removing the
denoising strategy perform similarly to the other methods but
inferior to our approach despite using the same odometry and
data fusion scheme as ours. This exhibits the effectiveness of
our denoising strategy, which is only weakly coupled with
our other two contributions and is mainly aimed at the topo-
logical consistency of the mesh outputs. As shown in Fig. 9,
topological noise, including isolated and dangling triangles,
mostly exists at the back of the surface. This problem is
primarily caused by the truncation of the SDF at the back
of the surface and is inevitable as long as the TSDF fusion
scheme is adopted within the framework.

V. DISCUSSION AND CONCLUSION
In this paper, we proposed an approach for accurate and
clean object reconstruction. Given a stream of depth images
and a known cuboid reference object present in the scene,
we maintained drift-free camera pose estimation with the
constraints added by the reference object without the need
for pose graph optimization.We then fused the living data into
one globally consistent model in real time by transforming the
problem of data fusion into a probabilistic binary classifica-
tion problem, ensuring the reconstruction fidelity, especially
in highly curved and concave zones.We preserved the surface
smoothness and cleanliness utilizing a simple denoising strat-
egy, especially in invisible areas near the back of the surface.
Our method went further for applications that demand fine-
grained reconstruction details, such as 3D printing.

Several limitations remain in our framework. First, our
method works under the assumption that the scanned objects
remain relatively static in the scene. Any deformation or
relative motion of the objects may lead to failure in the
reconstruction, especially in the presence of thin geome-
tries. Second, the need for the reference cuboid for accu-
rate odometry limits the generalization and scalability of
our method. Third, despite our data fusion and denoising
strategy, the manifoldness of the surface is not always guar-
anteed. Our system performs well in mitigating topological
noise of the mesh output but may still fail when the raw
input depth data are too noisy (e.g., severe motion blur).
Finally, the computational complexity and memory overhead
are not optimal in our current implementation. Cuboid depth
map generation and the optimization of Ee2c can be ported
from CPU to GPU to speed up the tracking process. Addi-
tionally, our volumetric representation still costs twice as
much GPU memory as KinectFusion at the same resolu-
tion; this can be further optimized with the voxel hashing
technique.

In the future, wewill first refine our code for improvements
in terms of time and memory usage. Second, we will explore
the fidelity preservation of thin geometry in motion to make
our system work with dynamic scenes. Furthermore, because
our system currently performs geometric reconstruction only,
we will explore the possibility of real-time high-quality color
mapping onto the model outputs.
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