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ABSTRACT Fuzzing (Fuzz testing) can effectively identify security vulnerabilities in software by providing
a large amount of unexpected input to the target program. An important part of fuzzing test is the fuzzing
data generation. Numerous traditional methods to generate fuzzing data have been developed, such as model-
based fuzzing data generation and random fuzzing data generation. These techniques require the specification
of the input data format or analyze the input data format by manual reverse engineering. In this paper,
we introduce an approach using Wasserstein generative adversarial networks (WGANs), a deep adversarial
learning method, to generate fuzzing data. This method does not require defining the input data format.
To the best of our knowledge, this study is the first to use a WGAN-based method to generate fuzzing data.
Industrial security has been an important and pressing issue globally. Network protocol fuzzing plays a
significant role in ensuring the safety and reliability of industrial control systems (ICSs). Thus, the proposed
method is significant for ICS testing. In the experiment, we use an industrial control protocol such as the
Modbus-TCP protocol and EtherCAT protocol as our test target. Results indicate that this approach is more
intelligent and capable than the methods used in previous studies. In addition, owing to its design, this model
can be trained within a short time, which is computationally light and practical.

INDEX TERMS Automated vulnerability mining, deep adversarial learning, fuzzing, security testing,
industrial security, industrial control protocol, protocol format learning.

I. INTRODUCTION
Industrial security [1] has been a concerning issue in vari-
ous countries. It involves the vital infrastructure and a large
number of manufacturing industries in the country, affecting
national stability and the survival of its people. For instance,
the notorious Stuxnet virus attacked a nuclear power plant
in Iran, causing substantial damage. Thus, industrial safety
has to be maintained. The industrial control industry has
various supervisory control and data acquisition (SCADA)
systems. To ensure the safety of industrial control systems,
we must ensure the safety of industrial control protocols
in SCADA systems. As one of the effective methods of
identifying vulnerabilities, fuzzing [2], [3] plays a vital role
in vulnerability discovery. Most software bugs published by
well-known organizations were discovered by fuzz testing.

The associate editor coordinating the review of this manuscript and
approving it for publication was Siddhartha Bhattacharyya.

The main idea of fuzzing is to use malicious inputs to stress-
test the target program in order to cause abnormal behaviors,
such as crashes or exceptions. Fuzzing can also be used to
discover vulnerabilities in industrial control protocols. Tradi-
tional fuzzing usually builds test cases based on the specifi-
cations of the software or the protocol that needs to be tested.
However, this method has several limitations. On the one
hand, the specification and implementation of the software
may not be entirely consistent. Thus, if we test it according to
the specification, some details might be disregarded, leaving
the details vulnerable to attack. On the other hand, current
fuzzing data generation methods rely too much on manual
analysis, which is tedious and time-consuming. Accordingly,
a fuzzing method that can fully consider actual implementa-
tion and reduce test costs needs to be developed.

To address the problems encountered during fuzz test-
ing, we use a WGAN-based [4] approach to generate
fuzzing data. WGAN is well known for generating simulated
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pictures [5], [6] in particular. We can innovate by using
WGAN to generate sequence data such as data frames
in the ICS. Thus, there is no need to know the protocol
specification [7]. TheWGAN-based model can learn the spa-
tial structure of the data frames without manual analysis and
subsequently generate test data with the same structure as
the real ones but has random differences in other aspects
such as the variable values. This approach presents many
advantages. On the one hand, it requires less effort than usual,
which significantly simplifies the fuzzing process, and does
not require that the tester be an expert in the field. On the other
hand, it is highly adaptable and can be conveniently applied to
test other similar protocols. The reasons for choosingWGAN
as the basic architecture include the following: (i) WGAN
is more stable during the model training process; (ii) The
generated data are more diverse and thus exhibits a more
extensive test coverage; and (iii) It provides an indicator of
the training progress, which can indicate the training degree
of the model. We use the method to test the Modbus-TCP [8],
one of the widely used industry network protocols. The exper-
imental results are satisfactory. It has a high test case pass rate,
requires short training time, and can effectively identify vul-
nerabilities. In addition, to prove its generality and protocol
independence, we also apply it to test EtherCAT protocol [9],
another widely used industrial control protocol. The critical
contributions of this study include three aspects:

1. We propose a technique based on WGAN for fuzz test-
ing and analyze its application potential. During imple-
mentation of the method, in accordance with Occam’s
razor, we elaborately design the architectural model that
would provide lightweight computing on the premise of
achieving its goal.

2. Given the similarities of industrial control protocols,
we propose a general fuzz testing process that can be
used in most industrial control protocols.

3. We demonstrate the superiority of the proposed method
by experimental comparison and successfully discover
bugs.

The remainder of this paper is organized as follows:
Section II discusses the related works. Section III details the
analysis of WGAN and its specific application. Section IV
presents the specific architectural design based on WGAN
for testing industrial control protocols. Section V shows the
evaluation results. Section VI concludes this paper.

II. RELATED WORKS
Fuzzing has more than 20 years of development, and prac-
tice has proven its effectiveness. Vulnerabilities in Word
and Excel programs have been identified using this technol-
ogy. Despite many contributions to this area over the years,
research is ongoing.

In 1983, Vos and Aho [10] formally investigated the effec-
tiveness of feeding a program with random inputs. The result
shows that this stochastic input strategy is low-cost and effec-
tive. Their study is regarded as the earliest research on fuzz

testing. Professor Barton Miller at the University of Wis-
consin was the first to propose the term ‘‘fuzzing’’ in 1988.
Miller et al. developed a fuzzing tool to test the robustness of
Unix programs [2]. These are the original developments of
this technology.

Subsequently, researchers proposed an increasing number
of fuzzing techniques. Using these strategies, they developed
a large number of fuzzing test suites. The PROTOS [11]
test suite proposed by researchers at the University of Oulu
uses protocol specifications to produce more structured test
data. Aitel improved the SPIKE [12] by using the protocol
specifications. The specification describes the format of the
data blocks. They generate fuzzing data by filing those blocks
with randomly generated data. Other researchers [13], [14]
also attempted to establish a specific model to guide data
generation. These methods improve the effectiveness and
automation of the fuzzing test. However, these methods
operate under the condition that the internal operation of
the test target has to be understood. From this perspective,
researchers design models based on the specification to guide
the test data generation. This approach has two shortcomings.
First, in practice, understanding the protocol requires time
and manual effort. Second, during the implementation of
the specification, some engineering details may be added,
causing inconsistencies between implementation and speci-
fication. Therefore, the methods tend to ignore some details
in the fuzzing process.

In a recent study, Rajpal et al. [15] from Microsoft
applied the sequence-to-sequence neural network [16] model
to enhance the AFL [17] (American Fuzzy Lop) fuzzer in
which the model attempts to learn the optimal mutation loca-
tions in the input files. It helps the AFL fuzzer improve the
test effectiveness toward stand-alone programs. They com-
bined deep learning techniques with traditional fuzz testing
tools using deep learning as accessorial technology. However,
we use it as a core method and apply it to the industrial
network protocol fuzzing test. More recently, Lv et al. [18]
use machine learning to generate high valued binary seed
files. Böttinger et al. [19] use the Q-learning algorithm to
determine which mutation action to perform on a given input.
Godefroid et al. [20] studied how to leverage neural-network-
based learning techniques to learn the grammar for non-
binary PDF data objects. These studies enhanced fuzzingwith
machine learning from different perspectives.

In general, the state-of-the-art method [21] of fuzzing is the
model-based fuzzing, which leverages the model extracted
from the grammar or format of the regular input to guide the
fuzzing data generation. Model extraction usually requires
human intelligence to analyze. However, our method does
fuzz testing from another perspective, which is different
from the state-of-the-art method in methodology. It hardly
needs manual analysis to extract models. Therefore, it has
some corresponding advantages. To show it more clearly,
we tabulate the advantages of the proposed method com-
pared to the model-based method. The details are shown
in Table 1.
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TABLE 1. Advantages of the proposed method.

III. BACKGROUND
As the foundation of both GAN and WGAN, the background
of deep learning [22] is presented. Other preliminary knowl-
edge of GAN and WGAN are then introduced.

A. DEEP LEARNING
Deep learning, a branch of machine learning, devel-
oped slowly in the early stages. Its rapid growth started
in 2006 when Hinton and Salakhutdinov published an
article [23] providing a solution to key problems. Krizhevsky
et al. also proposed ImageNet [24], a neural network structure
for image classification, in 2012, which marked the revolu-
tionary development of deep learning.

Deep learning is currently drawing interest from the tech-
nology community, exhibiting great prospects for appli-
cation and even surpassing their human counterparts in
some areas. Most industries use this technology in intrusion
detection [25], [26], self-driving cars [27], [28], robots [29],
speech recognition [30], [31], machine translation [32], [33],
and so on. With its critical role in the era of intelligence,
it tends to liberate human brains. Its rapid development
benefits from advances in recent hardware equipment such
as Graphics Processing Unit (GPU) [34]. These pieces of
equipment have markedly improved computing capacity. The
massive empirical data brought about by the development of
information technology also accelerated its development. The
neural network is the base of deep learning. As presented
in Fig. 1, a simple neural network includes one input layer,
one or several hidden layers, and one output layer. Complex
networks such as the widely known Deep Residual Nets [35]
reach 152 layers deep. The neural network [36] learns from a
large amount of data and forms a model that serves a specific
purpose. With regard to the image classification problem,
the trained model outputs the image category on the basis
of an input image. The amount of data significantly affects
the formation of an effective neural network model. The
larger the data, the stronger the ability of the trained model
to generalize. In the current study, we use the deep neural
network as the basic model architecture.

B. GENERATIVE ADVERSARIAL NETS
In 2014, Goodfellow et al. proposed generative adversar-
ial nets [37]. This innovation is considered a controversial
subject in deep learning and has been widely applied in
numerous applications, such as image generation and super-
resolution [38]. With regard to image generation, the trained

FIGURE 1. A simple multilayer perceptron.

GAN model uses random noise as its input and then outputs
simulated pictures. However, simulated pictures vary from
real pictures. Thus, we use this feature to generate simulated
sequence data frames. By training the model with a large
number of data frames, the model can grasp the format of the
data frames. A GAN framework consists of the generative
model and the discriminative model. The generative model
generates data, sharing the same characteristics with the real
data. The discriminative model distinguishes between the
real data and fake data. After constant game and adjust-
ment between the two models, a Nash equilibrium [39] is
finally reached between the two models, and the discrim-
inator does not distinguish between the real data and the
generated data. When we train a single neural network, a loss
function [40] indicates how well the model is trained. The
training process continuously optimizes the loss function.
In this process, we determine the global optimum only for
one loss function. However, in training the GAN model,
we need to dynamically optimize two loss functions at the
same time. The following formula formalizes the objective
function that needs to be optimized for the generator and the
discriminator:

min
G

max
D

V (D,G) = Ex∼pdata (x)
[
logD(x)

]
+Ez∼pz (z)

[
log(1− D(G(z)))

]
(1)

where D represents the discriminator, and G represents the
generator.D(x) denotes the probability that x is real data, and
G(z) is the probability distribution of the sample data z. The
overall optimization goal is to play a minmax game with the
value function V (D,G), which needs to maximize the prob-
ability of making correct discrimination as well as minimize
the probability that the generated samples are discriminated.

Despite its wide use, the application of GAN has sev-
eral disadvantages, such as non-convergence, vanishing
gradient [41], and mode collapse [42]. To avoid these prob-
lems, a rational architectural design of the neural network
model is needed. In addition, various model training strate-
gies have to be adopted. In the aforementioned problems,
the mode collapse indicates that the generated data lose
some categories compared with the raw data. This problem
needs more attention because, in fuzz testing, the diversity of
generated data affects the test coverage. Improving the test
coverage helps discover more bugs.
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C. WASSERSTEIN GAN
Studies [43] attempting to solve the aforementioned prob-
lems have been conducted. Arjovsky et al. [4] proposed
Wasserstein GAN, which solved this problem. Compared
with GAN, Wasserstein GAN has the following characteris-
tics:

First, Wasserstein GAN uses the Earth Mover’s Dis-
tance (EMD) to measure the difference between two distri-
butions. The definition is as follows:

W (Pr ,Pg) = inf
γ∈
∏
(Pr ,Pg)

E(x,y)∼γ [‖ x − y ‖] (2)

where Pr and Pg represent two distributions, γ represents
the joint distributions of the two. We need to calculate the
expectation value for the minimum distance between the two
samples under the joint distribution γ . This expectation value
is the Wasserstein distance. The Wasserstein metric is an
efficient indicator to guide the training process. The smaller
the value, the smaller the Wasserstein distance between the
true distribution and the generated distribution, indicating
that the two models are better trained. In Wasserstein GAN,
the loss function of the discriminator is

−Ex∼Pr
[
logD(x)

]
− Ex∼Pg

[
1− logD(x)

]
(3)

and the loss function of the generator is

Ex∼Pg
[
1− logD(x)

]
(4)

During training, the losses of the generator and the discrim-
inator are continuously minimized. These losses eventually
become optimal.

Second, weight clipping is used to satisfy the Lipschitz
continuity, which can accelerate the model convergence and
stabilize training. Generally, after each parameter is updated,
weight clipping truncates the weight parameters to no more
than a fixed constant C .
Third, an optimization method [44] may be selected from a

wide range of techniques to optimize the loss function. Differ-
ent methods have different characteristics. Momentum-based
optimization algorithms, such as Momentum SGD [45] and
Adam [46], cannot keep the training stable in all situations;
thus, they are not used in selecting the optimization method.

IV. FUZZING SYSTEM DESIGN
In this section, we first present an overview of the general
fuzzing method based on WGAN and then elaborate on the
main aspects. The overall architecture of the entire running
process is illustrated in Figs. 2 and 3.

A. OVERVIEW
Our method aims to intelligently learn the format from raw
network packets fetched from given industrial control net-
works. After learning, we can obtain a concrete generation
model that can generate well-formed data frames similar to
the real ones. We then send the generated data frames into the
target system and monitor the entire system in time to record
abnormal behaviors. This processing approach can be used

FIGURE 2. General fuzz testing process towards industrial control
protocols.

FIGURE 3. Architecture design of generator (left) and discriminator
(right).

to test most current industrial control protocols. The various
stages of this method are described as follows:

1) DATA FRAMES PREPROCESSING
The raw network data packets are in a hexadecimal form
which cannot be directly inputted into the neural network for
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processing. Preprocessing the raw data requires two steps.
First, we transform the raw network data packets into digital
vectors. Second, we use clustering strategies as well as data
augmentation strategies to process the data packets, which
can help improve the diversity of the final generated data.

2) ADVERSARIAL TRAINING
We formalize this learning problem into a process of solving
a mathematical function. Our initial goal in training a gen-
erator model based on WGAN is to obtain a function that
can generate fake data sharing the same data format with
the real world data. Ultimately, we aim to conduct attack
testing and discover the vulnerability of the target system.
To achieve this goal, we need a specially designed neural
network architecture. Thus, the final trained model does not
only generate more aggressive testing data but also calculates
lightweight.

3) FUZZ TESTING AND RETRAINING
When the generator model is achieved as planned, we can
obtain any number of test cases by running the model.
We then use these test cases to attack the target system. After
this attack, we retrain the model with test cases that cause
anomalies.

We elaborate on the aforementioned three stages in the
following sections.

B. DATA FRAMES PREPROCESSING
Prior to model training, numerous real-world data frames
are first obtained. The method of performing preliminary
processing on these data can affect the capability of the
final model to discover vulnerabilities. Ultimately, we aim to
obtain desirable fuzzing results. Therefore, data preprocess-
ing should also help achieve this goal. A common approach is
to improve the test width and depth, which can help achieve
enhanced fuzzing results. A useful technique to increase the
test depth and width is by increasing the diversity of the test
cases. We adopted the following methods to preprocess the
data frames. These methods can not only make the model
learn the data format but also maintain the diversity of data.

• Data Frame Clustering. For the model to enhance its
learning of themessage format, we use several clustering
methods, such as frame length clustering and K-means
clustering, to cluster the data. These techniques can
classify data frames in similar formats. Frame length
clustering is effective because data frames with the
same length always tend to share the same frame type.
K-means clustering is more inclined to group frames
with the same function. Adopting these clustering meth-
ods during preprocessing can contribute to the estab-
lishment of a model that can elucidate the data frame
structure.

• Data Frame Augmentation. In training deep learn-
ing models, data augmentation [47] methods are often
used to prevent overfitting. In this study, we use this

strategy to maintain the generated data diversity. In real-
life scenarios, collected data are not evenly distributed-
some data frames are very few and can even be
ignored. For more diverse generated data, we deliber-
ately increase the proportion of these data frames. Main-
taining data diversity can help increase test depth and
test breadth.

We performed these methods during the experiment.

C. ADVERSARIAL TRAINING
In this section, we focus on the adversarial learning process.
We first abstract the mathematical expression of this data
frame learning problem. We then detail the specific structure
of the designed WGAN-based model. Finally, we present the
training process.

1) PROBLEM ABSTRACTION
The raw data frames we obtain from the ICS is in the form
of a sequence. We can naturally extract the mathematical
expression S1:n = (e1, e2, . . . , ex , . . . , en), ex ∈ E and S1:n ∈
S∗, where E represents a collection of hexadecimal numbers
and S∗ is the sequence set, including S1:n. Most elements are
English letters and numbers. We aim to find a function fT that
captures the distribution of these real-world data frames and
can generate data frames with the same characteristics.

The WGAN model includes the generator model and the
discriminator model. We formalize the generator model as a
function fG which uses Gaussian noise as its input and then
outputs a sequence Sg|1:n. We view the discriminator as a
function fD, which distinguishes between real data Sr and
generated data Sg. The EMD, as described in Equation (2),
can indicate the training degree. The purpose of the training
process is to continuously optimize the loss function of the
discriminator and the loss function of the generator. Finally,
the function fG almost shares the same distribution as the
function fT .
The aforementioned formal description is the modeling of

the adversarial learning problem in this study.

2) MODEL DESIGN
This subsection details the structural design of the two mod-
els. One of our design philosophies is to simplify the model
as much as possible on the premise of attaining its effect.
Owing to its ability to reduce the consumption of computing
resources, the simplifiedmodel can be conveniently deployed
to embedded devices in the future. Fig. 3 illustrates the archi-
tecture of the discriminator and generator.

The generator in this experiment consists of an input
layer, three hidden layers, and an output layer. Regarding
the neural network structure of the discriminator, in each
layer, we use a fully-connected neural network structure as
described in Fig. 3. This structure can make the generator
model much lighter in calculations. Regarding the size of
the data input to the neural network, we set it according to
the max frame length in the ICS. We will align frames of
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different lengths to the same length. Thus, the neural network
can uniformly process the data. In themiddle layers, we select
rectified linear units (ReLU) as the activation function [48].
The reason for choosing ReLU as the activation function lies
in these aspects. First, it can avoid vanishing gradient problem
in the backpropagation ofmodel training. Second, it canmake
the output of some neurons become zero, which can help
avoid overfitting. Third, it can reduce computational cost.
In the output layer, we select the sigmoid function [49] as
the activation function because its output is between 0 and 1.
The input for the generator is Gaussian distributed noise,
which is a common practice. We initialize the weight matrix
according to a specific standard deviation. We remove the
last log operation in accordance with the theory of WGAN.
We choose the Root Mean Square Prop algorithm to optimize
the loss function. The algorithm can perform jitter reduction
during parameter adjustment and accelerate the training.

The discriminator includes one input layer, one hidden
layer, and one output layer. Regarding the neural network
structure of the discriminator, we also use a fully connected
neural network. The entire discriminator contains only three
layers. This relatively shallow network can save computing
resources. The input data size of the discriminator is the same
as the output size of the generator. The output layer of the dis-
criminator removes the sigmoid function in accordance with
the theory of WGAN, which varies from most discriminator
models. In each training epoch, after updating the weight
matrix, we clip all weight values to a fixed range to satisfy
the Lipschitz continuity.

One of the purposes of this architecture design is to reduce
the computational cost [50] of the model. In this study, two
factors are closely related to computational cost. (i) One is
the model architecture complexity [51] such as the network
structure and the parameter amount. (ii) The other is the
data set complexity. Complex data sets contain more features
to learn. Here, we focus on the model architecture com-
plexity. First, since deeper networks increase the amount of
basic multiply-accumulate operations, the above designing
adopts a shallower network structure, which can contribute
to reducing the computational cost. Second, if we encode
the one-dimensional ICP data frame into a two-dimensional
matrix, the matrix will be very sparse. Dealing it with con-
volution network will increase the computational cost. More-
over, the convolutional operation involves a large number of
parameters, which takes up much memory. Therefore, with-
out convolutional operations, our model design can reduce
the computational cost. Regarding the quantitative analysis
of the computational cost, we show the time consumed under
the same computing hardware and the same computing target
in the experiment.

3) MODEL TRAINING
Once the architecture of the model is designed, we begin
to train the model. Adversarial training [52] is conducted to
continuously optimize the loss function of the discriminator
and the loss function of the generator. In this optimization

process, the values in the weight matrix are adjusted contin-
uously, leading to a stable model that can learn the structure
of real-world data frames. Owing to the proper design of the
architecture based on WGAN, both models can be trained
simultaneously without elaborately arranging the training
order. We divide the training data into equal-sized batches as
inputs until all training data are exhausted. This process runs
for several epochs until highly realistic data can be generated.

Generally, we want the generated data to be similar to the
real data as much as possible. However, our ultimate goal is
to achieve effective fuzzing results and identify as many bugs
as possible. To obtain improved fuzzing results, we need to
maintain the difference between the generated data and the
real data. Therefore, we deliberately save the generator model
for each 10 training epochs and not only the final best-trained
model. Using this strategy, we can generate test data with
different degrees of similarity. In addition, we cannot only
influence the data to conform to the protocol-specific data
packet structure but also improve the diversity in content of
the test data. Thus, we can increase the fuzz testing width and
depth [53].

4) MODEL VALIDATION
In the formation of the final model, another important step
is model validation. This step is carried out at the end of the
model training.We use it to assess themodel performance and
adjust the hyper-parameters. Model validation validates the
model with validation data set which shares the same distri-
bution with the training data set. On the one hand, it prevents
the model from over-fitting the training data. On the other
hand, it helps us determine the optimal hyper-parameter such
as the learning rate and the boundary value of weight clipping
in this study.

After the model training and validation, we obtain the
generator model that can generate data frames sharing the
same format with the real ones. Simultaneously, a specific
difference in variable values exist. Formally, the function fG
that represents the trained generator almost exhibit the same
distribution as that of the target function fT .

D. FUZZ TESTING AND RETRAINING
At this point, we can generate any number of test data frames
by using the trained generator model. These data frames vary
in type similar to the real-world data frames.We send test data
frames to the test target and record any possible responses.
During this sending and receiving process, one of the program
modules outputs the log files recording all communication
processes and abnormal behaviors. This log file provides the
basis for experimental analysis.We alsomanually analyze the
entire process, in addition to programmonitoring, to discover
potential anomalies. During fuzzing, data frame sequences
that cause system anomalies are found and then recorded
separately for model retraining.

After the first round of fuzz testing, we retrain the model
with error-triggering sequences. The logical basis for this
operation is the principle of temporal locality and spatial
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locality in computer science. To conduct the retraining,
we perform two steps on the recorded sequences. First,
we apply the mutation operation to the sequence, including
single-point mutation and multi-point mutation. In detail,
the mutation operation refers to the random modification of
the sequence data on one or more random positions. Second,
we use data augmentation to increase the effect of these
particular sequences because a small data ratio exerts no
substantial effect on retraining the model. After these steps,
we train the model again with the updated training data set.

V. EXPERIMENT
In this section, we evaluate the effectiveness of the
proposed method by experimentation. In a previous
study [54], we trained a GAN-based fuzzing data gen-
eration model. Therefore, the subsequent analysis com-
pares the WGAN-based approach with the GAN-based
approach. To analyze the experiment results from various
dimensions, different Modbus-TCP implementations, includ-
ing MOD_RSSim v8.20, Modbus Slave v6.0.2, and Diasalve
v2.12 are used as fuzzing targets in our experiment. These
programs are designed in accordance with the Modbus proto-
col specification. Lastly, to show the aforementioned adapt-
ability of the method, we employ it to test the EtherCAT
protocol, another industrial control protocol.

A. EVALUATION METRICS
In this subsection, we introduce the performancemetric about
the training and the fuzzing comparison. The evaluation [55]
of deep adversarial learning, especially the GAN, is not
an easy task [56]. Some quantitative criteria [57]–[59] have
emerged only recently assessing GAN on image generation.
There is no unified validation metrics and benchmarks in this
field. Therefore, in accordance with our research purpose and
specific situation, we proposed the flowing metrics. Among
them, TIAR and DGD serve as the training performance met-
rics, and the rest serve as the fuzzing effectiveness metrics.

1) TEST INPUTS ACCEPTANCE RATE (TIAR)
TIAR refers to the percentage of test cases accepted by the
test target. It reflects the efficiency of test data generation.
A higher TIAR indicates a higher similarity of the generated
test case to the real-world data frames with respect to format.
Conversely, a lower TIAR indicates a lower quality of the
generated data, requiring adjustment of the model architec-
ture or retraining the model. Therefore, we select it as one
of the performance metrics in model training and validation.
We defined TIAR as follows:

TIAR =
nAccept
nSent

× 100% (5)

where nSent is the total number of test cases sent, and
nAccept is the total number of test cases accepted. In the
experiment, we adjust two hyperparameters to obtain a higher
test pass rate. These two factors are the number of training
epochs and the value of the loss function. Moreover, during

the model training or validation, we use it as an indicator to
adjust other hyperparameters such as the learning rate and the
boundary value of weight clipping.

2) ABILITY OF VULNERABILITY DETECTION (AVD)
AVD [54] refers to the ability to find vulnerabilities, which is
the most straightforward measure of the effectiveness of the
method. We counted not only the number of vulnerabilities
found in the fuzzing test but also the number of test cases used
identify these vulnerabilities. It is the average number of test
cases required to reveal a bug. The discovered vulnerabilities
are also closely related to the testing target. If the target has
more vulnerabilities, this value may increase accordingly.
To facilitate a comparative analysis, we only focus on the
effectiveness of the method itself in the experiment. The
specific formula is as follows:

AVD =
nBugs
nCases

× 100% (6)

where nBugs indicates the number of bugs found, and the
denominator nCases is the number of test cases used. It can
be informally regarded as the number of bugs found per
hundred test cases. The larger the value, the greater the ability
to discover vulnerabilities; the lower the value, the less the
ability to discover vulnerabilities.

In addition, not all the fuzz testing techniques can find all
the vulnerabilities in a target system. The proposed approach
does not guarantee the discovery of all vulnerabilities in
the testing target. Therefore, this metric just count on the
occurred vulnerabilities.

3) DIVERSITY OF GENERATED DATA (DGD)
DGD refers to the ability to maintain the diversity of the
generated data. More diverse generated data frames are likely
to cause an exception. This indicator focuses on the number
of data types in the generated data. When the number of the
generated data types is significantly smaller than that of the
training data types, it means that the model performs poorly
and needs to be adjusted. Therefore, we select it as another
model performance metric. Furthermore, studies [60], [61]
consider that diversity-based approach is a useful test case
selection criterion. Thus, it is also an important indicator of
the method effectiveness in this study. Code coverage is also
a good test case selection criterion. However, the test target
in this study has no source code. Therefore, we use the DGD
to evaluate the method.

4) TEST CASE GENERATION PER HOUR (TCGPH)
TCGPH directly indicates the test cases that the model can
generate per hour.

TCGPH =
generatCases
hoursSpent

(7)

where generatCases indicates the number of test cases gener-
ated by the model, and hoursSpent indicates the time it takes
to generate these test cases. This equation reflects the speed
of test case generation.

VOLUME 7, 2019 49333



Z. Li et al.: Intelligent Fuzzing Data Generation Method Based on Deep Adversarial Learning

FIGURE 4. The architecture of the entire fuzzing system.

FIGURE 5. Message format of modbus-TCP.

5) TRAINING TIME (TT)
TT refers to the time consumed to establish the final model.
A shorter training time can improve the test efficiency. Differ-
ent neural network structures, different training data volumes,
different computing hardware, and different calculation algo-
rithms typically influence the training time. In this study,
we only focus on the effect of different model architectures
on training time.

B. MODBUS-TCP AND ETHERCAT
1) MODBUS-TCP
Modbus is a serial communications protocol initially pub-
lished by Modicon in 1979 for use with its programmable
logic controllers. This protocol has become a de facto stan-
dard communication protocol and is currently the avail-
able means of connecting industrial electronic devices. Its
safety is of great significance to the security of the indus-
trial control industry. Modbus protocols have many variants,
including Modbus TCP and Modbus UDP. In this study,
we use Modbus-TCP as the fuzzing target. To elucidate this
study, we briefly introduce the Modbus-TCP frame struc-
ture. As illustrated in Fig. 5, the data have a fixed format.
In the communication process, if the data format is incorrect,
the receiver does not accept the data. TheModbus-TCP proto-
col is implemented by calling the TCP protocol. The message
with the format is transmitted as the data component of the
TCP data frame. This component is what the model needs to
learn and generate.

2) ETHERCAT
EtherCAT is a protocol offering high real-time performance
and provides a master-slave communication mode among

the industry devices. It has grown to be a market winning
technology due to its high real-time performance and open-
ness. A typical EtherCAT network consists of one master
and several slaves. The master generates telegrams and sends
them to the whole network. These telegrams are reflected at
the end of each network segment and sent back to the master.
Here, we apply our fuzzing method to learn and generate
these telegrams.

C. TRAINING DATA AND VALIDATION DATA
Training data and validation data in deep learning signif-
icantly influence the model forming. Thus, we need to
accurately collect and preprocess these data. In the experi-
ment, we separately collected data from two industrial con-
trol protocol communication environments. One is based on
Modbus-TCP protocol, and the other is based on EtherCAT
protocol. In the division of these data, we select 80% as the
training data, and the remaining 20% as the validation data.

1) MODBUS-TCP
In order to obtainModbus-TCP communication data, we built
a Modbus-TCP-based communication environment with
Modbus Poll 4.3.4, Modbus Slave 4.3.1 and VPSD. Modbus
Poll works as the Modbus-TCP master station, and Mod-
bus Slave works as the slave station. When the master sta-
tion communicates with the slave, we use Wireshark [62],
a widely-used network protocol analyzer, to capture the com-
munication data. Specifically, we captured 1000,000 pieces
of data, including various types, 80% as the training data and
20% as the validation data.

2) ETHERCAT
In order to capture the EtherCAT communication data,
we prepare an EtherCAT based industrial system as illustrated
in Fig. 6. The master station is a Beckhoff [63] industrial
PC and the slave station includes EK1100 [64], EL1004 [65]
and EL2004 [66]. We use ET2000 [67] as the online listener
between themaster and the slaves. TheWireshark, running on
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FIGURE 6. EtherCAT protocol communication environment.

a computer, can fetch and display themassive communication
data messages from the listener. After processing, massive
data messages will serve as the training data for the EtherCAT
protocol.

D. EVALUATION SETUP
1) EXPERIMENTAL ENVIRONMENT
In the deep learning problems, the model training often heav-
ily consumes computational resources. Thus, we introduce
the experimental environment to elucidate the proposed tech-
nique. The model is trained on a machine with 8 proces-
sors (Intel(R) Core(TM) i7-6700K CPU@4.00GHz) 16.0GB
memory(RAM) Nvidia GeForce GTX 1080 Ti(11GB),
and 64-bit Microsoft Windows 10 Professional Operating
System, x64-based processor. When launching an attack,
the simulators run on another machine with 4 proces-
sors (Intel(R) Core(TM) i5-5300U CPU@2.30GHz) 8.00GB
memory(RAM) and 64-bit Microsoft Windows 10 Profes-
sional Operating System, x64-based processor.

2) MODEL TRAINING SETTING
The adversarial networks contain two neural networkmodels,
which require different data inputs. Both the real-world data
messages and the generated data messages are input into the
discriminator model. Gaussian noise [0, 1] is input into the
generated model. The learning rate is set to 0.001 for a total
of 40 training epochs. After each parameter update, we clip
the weight value to [−0.01, 0.01]. We save the generator
model for every 10 epochs. These models can generate more
test cases. Using the CPU to train the model requires 10.7 h
of training time for 20 training epochs, with low requirements
for hardware resources and time resources. Using the GPU
requires only 90 min of training time for 20 training epochs,
which is highly efficient.

E. MODEL VALIDATION RESULT
At the end of model training, we use validation set to validate
the model performance. Thus, we can determine whether the
model is overfitting on the training set as well as select the
model hyperparameter. According to our research purpose
and the actual situation, we select the TIAR and the DGD as
the validation metric.

FIGURE 7. Model validation under different learning rates.

FIGURE 8. Model validation under different weight clipping values.

TABLE 2. Triggered exceptions and triggered frequency in Modbus-TCP.
A comparison between GAN-based model and WGAN-based model. The
fixed variable is the amount of test cases sent and the same test target,
and the indicator is the number of abnormalities triggered.

In detail, we run the model on the validation set and
count the TIAR metrics under different learning rates such
as 0.02 and 0.001. Results in Fig. 7 shows that the TIAR
index can be steadily improved when the learning rate is
0.001. Therefore, it is appropriate to set the learning rate
to 0.001.

We also run the model on the validation set under different
weight clipping values. In detail, we set the weight clipping
values to [-0.01, 0.01] and [-0.02, 0.02] for the validation.
Fig. 8 shows the statistics of theDGD indicators. It shows that
the model is better at maintaining the DGD when the value is
set to [-0.01, 0.01].

VOLUME 7, 2019 49335



Z. Li et al.: Intelligent Fuzzing Data Generation Method Based on Deep Adversarial Learning

F. EXPERIMENT RESULTS
In this section, we elaborate on the experimental results in
two aspects to prove the effectiveness of the method. We first
present the exceptions in the experiment.We then reveal some
statistical results and its analysis. In these two aspects, a com-
parison with our previous study is conducted. We ultimately
compare our proposed method with the traditional method.
In addition, we show the testing results of the EtherCAT
protocol, another industrial protocol.

1) EXCEPTION FOUNDED
In this study, we have two kinds of model: the
GAN-based model and the WGAN-based model. For com-
parison, we send the generated data frames to the same
three types of Modbus slaves. We successfully triggered
exception by using both models. The WGAN-based model
exhibits enhanced capability and speed in finding errors,
as described in Table 2. We sent 30,000 test cases generated
by the two models. The WGAN-based model causes more
errors, compared with the GAN-based model. The following
describes some of these errors in detail.

Attacking the Modbus_Rssim causes it to crash. We send
about 700 data frames, and a pop-up window prompt box
pops up, indicating that the program has crashed. To identify
the cause, we pack the 700 data frames and then send them
to the Modbus Slave. However, no abnormality occurs. This
comparison indicates that the Modbus_Rssim has a defect in
its implementation.

In further attacks, we find that the Modbus_Rssim prompts
abnormal information displaying the message. ‘‘Station ID
XX off-line, no response sent.’’ Such an anomaly occurs
several times within a short period

In fuzz testing the Modbus Slave, we find another excep-
tion that after sending about 1000 data frames, the target
program automatically closes off the window itself. We iden-
tify memory overflow as the cause, which suggests that the
programmer may not consider the extreme situation when
implementing the simulator.

Other anomalies such as ‘‘file not found’’ and ‘‘debugger
memory overflow’’ are found when attacking the Diaslave.
These anomalies occurred only once or twice and thus are not
discussed in detail. It should be noted that different abnormal
behavior may be caused by the same cause. In the study, since
the test target has no source code, we do not further distin-
guish between the essential causes behind each anomaly.

In general, the WGAN-based model has more triggered
exceptions and more triggered frequencies, compared with
the GAN-based model.

2) TIAR
After counting the TIAR in the whole process, we can see
that TIAR rises with increasing training epochs, as depicted
in Fig. 7. This behavior indicates that an increasing volume of
generated data have the correct message format. These data
will be accepted by the fuzzing target. We choose Modbus

FIGURE 9. WGAN-based method vs GAN-based method on TIAR.

FIGURE 10. WGAN-based method vs GAN-based method on AVD.

Slave as the target. If it accepts the data normally, the data
format is potentially correct. Compared with the GAN-based
model, the WGAN-based model can reach a higher TIAR in
the final stages, which reveals that the customized WGAN-
based model exhibits higher format accuracy compared with
the GAN-based model. The highest point of TIAR increases
to about 85%. Part of the data format remains incorrect in
the experiment. Initially, TIAR increases significantly; with
further training, it tends to increase slowly and eventually
flattens, as shown in Fig. 9.

3) AVD
AVD increases with the increase in training time, which indi-
cates that an increasing number of errors are discovered.
It ultimately reaches a stable flat stage. In practice, the level
reached is not only related to the experimental method but to
the test objectives as well. If the target to be tested includes
numerous bugs, the peak of the line in the graph will be
higher. In the experiment, Modbus Slave is chosen as the
test target. Fig. 10 indicates that the customized WGAN-
based model for finding bugs is more capable than the
GAN-basedmodel when dealing with the same protocol. This
inference verifies the effectiveness and potential of our
approach.
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FIGURE 11. WGAN-based method vs GAN-based method on DGD.

4) DGD
To compare with GAN-based model, a total of 13 types
of data frames are prepared in the original training data.
Fig. 11 shows that the WGAN-based model maintains
the diversity of the original data. After training, the
WGAN-based model still generates 12 types of messages.
However, the GAN-based model does not maintain the diver-
sity as in the original data. Therefore, the WGAN-based
model has an advantage over the GAN-based model in main-
taining the diversity of data. Usually, the richer the data
type, the stronger the ability to detect anomalies. Thus, the
WGAN-based model can detect more bugs as presented
in Table 2.

5) TT
We use the same amount of training data and the same GPU
to train the two different models. Finally, we compare the
length of time consumed for the training. The results are
shown in Fig. 12. The GAN-based model requires longer
training time, compared with the WGAN-based model. This
difference is mainly attributed to the better design of the pro-
posed model compared with that of the GAN-based model.
Furthermore, this comparison proves that our targeted design,
to reduce the computational cost, has already achieved a
corresponding effect.

6) TCGPH
We use the same computing hardware to generate test cases.
We finally compare the TCGPH of different models. The
results are shown in Fig. 13. The proposed model shows
increased efficiency in generating test cases. Fast generation
suggests that we can obtain many test cases within a short
time, allowing the quick testing of the test targets. This capa-
bility can improve the testing efficiency.

7) COMPUTATIONAL COST
To quantify the computational cost, we make a comparison
between the two models on time consumption under the
same computing hardware and the same computing target.

FIGURE 12. WGAN-based method vs GAN-based method on TT.

FIGURE 13. WGAN-based method vs GAN-based method on TCGPH.

TABLE 3. Computational Cost under the same computing hardware.

The model consumes a short time in the calculation, indicat-
ing that it can reduce the computational cost. In the compari-
son, we show the time spent on training themodel for 30 train-
ing epochs. Regarding the computing hardware, we use CPU
and GPU separately. The specific time consumption is shown
in Table 3. It shows that our neural network structure uses
less computation time under the same computational goals.
Therefore, the model we designed can reduce the computa-
tional cost.

8) COMPARISON WITH THE TRADITIONAL METHODS
Traditional methods rely on professionals to design the test
cases based on the already known message format. The
entire process may take several days, whereas our proposed
method only takes several hours. Thus, the proposed method
is more automatic and faster than the manual method. In con-
trast to the traditional method, the proposed method mainly
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FIGURE 14. WGAN-based method vs traditional method on generating
Modbus-TCP data frame.

FIGURE 15. Frame structure of EtherCAT. A frame includes several
sub-messages.

compares the format and content of the test data generated
by the proposed method with those of manual methods.
Fig. 14 shows that the test data frames generated are similar
to the artificially designed data frames. The blue mark in the
sequence data shows some variations on the original data.
Although not all the generated data are as precise as those
generated by the manual design, they can compensate for
this deficiency in quantity. Therefore, our proposed approach
exhibits great potential to replace traditional methods.

9) APPLY THE METHOD TO ANOTHER INDUSTRIAL
PROTOCOL-EtherCAT
To demonstrate the versatility of the method, we retrained the
model with massive EtherCAT data frames for 20 Epochs.
With the newly trained model, we can generate massive test
cases to attack the EtherCAT protocol. The following will
introduce the relevant details.

a: COMMUNICATION BETWEEN THE MASTER AND THE
SLAVE IN EtherCAT COMMUNICATION SYSTEM
The master station sends a message Si containing multiple
sub-messages. The slave completes the communication by
reading or modifying the data of the corresponding sub-
message. Then, the updatedmessage Si will return to the mas-
ter as the message Ri. Each communication will correspond
to a message pair < Si,Ri >. As depicted in Fig. 15, a frame
includes several sub-messages.

b: RECORD THE TEST CASE SENDING AND RECEIVING
PROCESS
In order to record the data sent and received, we developed
a test EtherCAT master station based on the SOEM (Sim-
ple Open EtherCAT Master) [68], an open source EtherCAT

TABLE 4. Potential vulnerabilities and occurrences times in EtherCAT.

library. It can record the communication process for further
analysis.

c: DETECTED POTENTIAL VULNERABILITIES
We discovered and counted these potential vulnerabili-
ties including packet injection attack, man-in-the-middle
(MITM) attack, working counter (WKC) attack. The packet
injection means that the generated data message has changed
the value of sub-message, but the length field in the frame
header keeps unchanged. The MITM refers that a third-party
malicious station changed the data in transit, but the master
and the slave do not notice the change. In the experiment,
if the generated message only changes the data field without
change the address field and the slave still normally accept it,
we regard this situation as theMITM attack. TheWKC attack
denotes that if the WKC value does not change as the data
field changes. In the experiment, we send the generated data
messages Si to the slave stations and record the correspond-
ing received message Ri. We get massive message pairs <
Si,Ri >. According to the aforementioned rules, we analyzed
and compared the specified field values and obtained the
following statistical results. Experiments on the EtherCAT
protocol prove that our method can be conveniently applied
to other industrial control protocols without knowing the
protocol specifications ormessage format. Thus, it is effective
for security testing of other industrial protocol systems.

VI. CONCLUSIONS AND FUTURE WORKS
In this study, we propose an effective fuzzing method based
onWasserstein GAN to generate fuzzing data about industrial
control protocols. This method can learn the structure and dis-
tribution of real-world data frames and generate similar data
frames without knowing the detailed protocol specification.
Allowing the neural networks to learn themessage format can
save effort and reduce time. In this manner, when testing other
network protocols, we do not need to understand their specifi-
cations, which is convenient. Our careful architectural design
renders the model training more efficient. We ultimately
evaluate this method by comparison with previous methods.
The results obtained indicate the application potential of the
proposed method. Also, we proved its versatility by fuzzing
EtherCAT protocol.

In future studies, considerable research has to be con-
ducted toward creating amore intelligent andmore automated
fuzzing system. Considering the current situation, we intend
to perform the study in the following aspects. First, we will
use our method to test a series of industrial control protocols,
such as Profibus, Powerlink, and future TSN (Time Sensitive
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Networks) [69]. These protocols constitute an essential part
of most current industrial control systems. Second, we intend
to integrate each processing module to form a complete
software system, which can deal with most network proto-
cols. Finally, we intend to implement the model with FPGA
(Field-Programmable Gate Array) [70] for faster updating
when new data become available.
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