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ABSTRACT Autonomous air drones, known as unmanned aerial vehicles (UAVs), often accomplish
missions with real-time video streaming leveraging the available cellular network. Video streaming is a
typical application with stringent quality of service (QoS) requirements, which are not always supported in
the whole mission area. In this paper, we address the offline path planning problem of finding the optimal
path from a source to a destination in 2-D space in order to maximize the communication quality, given
a cellular coverage, and thus providing throughput guarantees to the video streaming. In addressing the
problem, the restricted amount of available energy, the wind effect, and the path post-smoothing problem
are considered. We propose two innovative path planning algorithms and we show that our algorithms
outperform classical approaches that are oblivious of communication network coverage. Both algorithms
are variants of classical A∗ algorithm and they optimize the path jointly in terms of distance and of
the experienced throughput by the drone: in this way, the quality of the video streaming along the path
is optimized while preserving the energy budget for the flight. We describe both of the algorithms and
investigate their performance. Moreover, we introduce a novel path smoothing method that outperforms
classing approaches in terms of distance and computation cost. Finally, in order to prove that our algorithms
can be practically utilized in the real-world path planners, we integrate our proposed path planning algorithms
into the popular QGroundControl (QGC) control station.

INDEX TERMS Unmanned aerial vehicles (UAVs), autonomous navigation, path planning algorithms.

I. INTRODUCTION
Autonomous air drones are becoming increasingly popular
and typically are equipped with real-time video streaming for
surveillance and safety purposes. In recent years, the UAVs’
excessive variety of applications including delivery, search
and rescue, and inspections, require a highly secure and reli-
able connection. Focusing on this objective leads to support
the UAVs on cellular network coverage. Wireless technol-
ogy can bring many privileges to UAVs such as ubiquitous
coverage, high-speed mobile support, robust security, high
reliability and quality of service (QoS). This aim has been
attracted the attention of industry and companies [1], to pro-
vide cellular connectivity for UAVs. For instance, telecom-
munications leading companies like Qualcomm and AT&T
have set up to develop the connectivity technologies, includ-
ing optimization of LTE networks and advancement of 5G
technology for drones [2]. The 3rd Generation Partnership
Project (3GPP) is started the study on enhanced LTE support
for UAVs in 2017 [3]. Accordingly, UAVs can leverage the
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cellular network infrastructure to support the video streaming
communication, in case of long-distance flights. When plan-
ning an autonomous path between a set of distant way-points,
we advocate the adoption of path-planning algorithms which
are aware not only of the obstacles (as in classical approaches)
but also of the cellular coverage, in order to guarantee the
stringent requirements of Quality of Service (QoS) in the
communication for video streaming.

In this work, an offline path planning problem between two
generic way-points, taken into account the provided budget
of energy and the required bandwidth in terms of either
average or minimum throughput is addressed. In addition,
the cellular coverage map and possible effects of the wind
that could have an impact on the path trajectory is considered.
Moreover, we address the smoothing problem of the resulting
paths of our path-planning algorithms, for the purpose of
compensating for the spatial sampling of the graphs needed
for computation and obtaining straight flying trajectories.

Our main contributions are manyfold.
1) We propose two innovative path-planning algorithms,

which are variants of the popular A∗ algorithm.
The main focus of AT-PP (Average Throughput Path
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Planning) algorithm is to maximize the average
throughput along the path, with the purpose of guar-
anteeing an average level of communication QoS. The
main focus of MT-PP (Minimum Throughput Path
Planning) algorithm is instead to maximize the min-
imum throughput along the path, with the purpose
of guaranteeing a minimum level of communication
QoS. Each of the two algorithms take into account the
on-board accessible amount of energy for the flight
and lengthen the path for the sake of optimizing the
communication quality.

2) By simulation, we evaluate the performance of the
MT-PP and AT-PP algorithms, in both presence and
absence of the wind. It is numerically shown that
our communication aware approach is capable of out-
performing classical approaches (oblivious of cellular
coverage) significantly, concerning throughput, with-
out exceeding the constraint of energy. Furthermore,
we investigate the effect of energy budget on the result-
ing paths of MT-PP and AT-PP, and we show how the
energy budget can affect the resulting path.

3) A novel path post-smoothing approach (IPS) is pro-
posed that leads to a reduction in the computation time
comparing with classical approaches.

4) We integrate seamlessly our path planning algo-
rithms into the open-source QGroundControl control
station [46], in order to modify the path between
way-points considering the cellular coverage map.
We prove that our algorithms are practical, by employ-
ing them in a real-world path planner.

The paper is organized as follows. The related works are
discussed in Sec. II. The path planning problem is described
in Sec. III. Our innovative communication aware path plan-
ning algorithms are proposed in Sec. IV. The achievable per-
formance resulting from our proposed approach is assessed
in Sec. V. In Sec. VI, we describe the integration of our
algorithms in QGroundControl control station. Ultimately,
we conclude the paper in Sec. VII.
A preliminary version of this work appeared in [4].

II. RELATED WORK
Up to now, various path-planning methods and algorithms
for UAVs have been developed [5], but they are entirely
unaware of the cellular network coverage. The algorithm
in [6] is a heuristic search based on A∗, which iteratively
optimize the path during the available search time. Lazy
Theta∗, proposed in [7], is an any-angle path finding algo-
rithm in which the resulting paths are not constrained to the
form of graph edges and is faster than Theta∗ algorithm [8].
In [9], a heuristic-based re-planning algorithm (AD∗) is pre-
sented that continuously improves its solution while time
allows, and corrects its solution when updated information is
received. In [10], inspiring by A∗ algorithm and Dubins path,
a path planning method to discover the shortest, flyable and
safe path for fixed wing UAVs with obstacle escape is pre-
sented. In [11], the authors discussed any-angle path planning

algorithms that are variants of classical A∗ algorithm. In their
method, through propagating information along grid edges,
short paths are found without constraining the resulting paths
to grid edges. In [12], a path planning method to create
trajectories for aerial vehicles in a two dimensional space is
proposed in order to avoid risky areas, conflict, and no-fly
zones. In sampling based algorithms like Rapidly-exploring
Random Trees (RRT) that is introduced in [13], the algorithm
is able to find a sub-optimal path in a high dimensional
space while some pre-defined information about the robot
operating space is required. The RRT has no optimization
process and re-planning procedure. Therefore, an improved
version RRT∗ [14] is proposed to bridge this gap.

Recently, a lot of research has been done to optimize the
path for UAV communication systems for different setups.
In [15], the authors used an aerial wireless coverage 3-D
modeling in mission planning of aerial vehicles for moni-
toring and surveillance of vast areas like long linear utility
infrastructures. In [16], the flying trajectory of UAV is opti-
mized for up-link communications. In [17], the authors used
a UAV-based mobile relay in order to send data to different
group of users. They optimized the data volume and relay
trajectory based on the visiting sequence to the different
group of users. In [18] and [19], the UAVs’ movement is opti-
mized to improve the network connection of a UAV assisted
ad-hoc network. In [20], a multi-antenna UAV flying over a
collection of single-antenna mobile ground nodes for provid-
ing relay services for mobile ad hoc networks is considered.
They optimized the heading of UAV in order to optimize the
up-link communication performance. In [21], they investi-
gated a communication system with multi-antenna UAVs as
relays between ground-based terminals and a network base
station. They developed a closed form expression to optimize
the UAV heading based on knowledge of the user terminal’s
future position, in order to maximize the uplink data rate.
They attempted to keep the rate of each individual link above
a certain threshold. In [22], the authors employed the UAVs
as aerial base stations as a promising solution to enhance the
performance of existing cellular systems. They exploit the
UAV’s high mobility to serve a group of users on the ground
in order to maximize the minimum average rate among all
the users, by jointly optimizing the trajectory of the UAVs,
controlling the transmit power, and scheduling the user asso-
ciation and communication. In [23], a UAV-enabled orthog-
onal frequency division multiple access (OFDMA) system
is studied, where the UAV is dispatched as a mobile base
station to serve a group of users on the ground. The minimum
average throughput of all ground users is maximized while
meeting a given set of constraints, by jointly optimizing the
UAV trajectory and OFDMA resource allocation. In [24],
a comprehensive framework for hyper-dense small-cell net-
works assisted by caching UAVs is proposed, its feasibility is
analyzed, and the secure transmission is discussed. UAVs are
utilized to provide data traffic to mobile users cooperatively
with small-cell base stations, due to their lower cost and
higher mobility. The work in [25] studies a hybrid cellular
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network with UAV-aided offloading at the edges of multiple
cells, by accounting for the interference between ground base
stations andUAV. TheUAV trajectory is selected tomaximize
the sum rate of edge users by avoiding the interference, while
the rate requirements of all the users are guaranteed.

However, in none of the above works the energy con-
sumption of the UAVs and the effect of wind on the energy
consumption has been considered.

In general, UAV communication systems may encounter
various new challenges [26]. In fact, the performance of UAV
communication networks are highly confined by on-board
energy. Thus, maximizing the information bits while min-
imizing the energy consumption in the same time is of
paramount importance. Furthermore, minimizing the energy
consumption of UAV systems regarding the energy expendi-
ture in propulsion power consumption to support the move-
ments and maintaining the UAV in the sky, is more important
than reducing the energy consumption in communication
circuits and signal transmission.

Moreover, in many researches trajectory optimization
has been studied, but not particularly for communica-
tion purposes. Many algorithms have been developed on
energy-aware UAV path planning. For instance in [27], path
optimization problem is studied considering the energy con-
sumption of UAV, but the communication performance is not
covered. In [28], the task of seeking out the goal while consid-
ering the total energy consumption of UAV to beminimized is
studied. This optimization depends on unknown disturbances,
like wind. In this study, the communication is neglected as
well.

In [29], the authors represented a multi-layer architecture
for intelligent navigation of Remotely Piloted Aircraft Sys-
tems (RPAS) in urban environments. In the path planning
layer, the planner computes an optimal way point-based path,
then the on-line planner continuously updates the offline path.
Their algorithm searches for an optimal path that minimizes
the cost function. It minimizes the risk-cost, the estimated
energy consumption, and the length of the path. Another
example is [30] which proposes a shortest trajectory planning
for UAVs on an embedded GPU. A fast, energy-efficient
global planner for multi-rotor UAVs has been developed
supporting human operator during rescue mission. The plan-
ner is suitable for real-time path re-computation in dynami-
cally varying environments but of small area (no more than
200 m2). The work in [31] proposes a multi-objective path
finder that can discover Pareto-optimal solutions concerning
energy consumption and length of the path. Their solution
is on the basis of NAMOA∗ search algorithm that exploits
a monotone heuristic cost function. Unfortunately, in all of
these works the effect of network coverage is completely
neglected.

Several recent works have targeted the path planning for
UAVs considering the energy efficiency and network yield,
simultaneously. But the absence of wind as a crucial factor
on the UAV’s energy consumption and trajectory planning
is sensible. In [32], the energy-efficient designs for drone

communication is studied, where a drone is exploited to
communicate with the base station. In this work, the energy
efficiency maximization via path optimization is performed.
The work in [33] proposed a computationally efficient subop-
timal algorithm that can saves energy by 50 percent, increases
network throughput by 15 percent, and extend network life-
time by 33 percent compared to the-state-of-the-art. In [34],
the offline path finding problem for UAVs is addressed.
The authors in this work attempted to discover paths that
meet mission objectives, are safe considering collision and
grounding, are fuel efficient, and satisfy criteria for com-
munication. In [35], they proposed a joint UAV trajectory
and power control scheme that significantly enhances the
achievable rate of UAV communication system comparing to
benchmark schemes. Particularly, they maximized the aver-
age achievable rate from the UAV to the ground receiver over
a finite communication period by jointly optimizing the UAV
trajectory and transmit power allocation. These are subject to
maximum speed of UAV, initial/final locations, and average
transmit power constraints. Nevertheless, in all of the above
cited works, the wind effects on the energy consumption is
neglected.

A lot of research has been done on following certain tra-
jectories by UAVs under some circumstances. They mostly
investigate the effect of wind on following a generated path
accurately in order to accomplish the assigned tasks. This
effect can be considered in the control loop design of the
UAVs to keep the position error of flight path under a
determined error with respect to the desired path. Therefore,
the wind disturbances are not considered in the path gener-
ation. The work in [36] considered the effect of wind that
causes the aircraft to drift in a certain direction. A method is
designed based on an accelerated A∗ algorithm that follows
the trajectory planner to take into account the wind effects.
In [37], UAV path following in cluttered environments under
windy conditions in a two dimensional configuration space
is investigated. They designed a novel guidance law with low
computational complexity which allows the UAV to follow
the path with minimum deviation. In [38], the authors pre-
sented an algorithm based on the idea of following a vector
field that converges smoothly to the desired path. Their work
includes the technique of dealing with wind disturbances
when following a generic sufficiently smooth 2-D path.

There is not a unique approach to compensate for wind
effects in trajectory planning for UAVs. For instance, in [39],
the authors dealt with the wind disturbances on trajectory
planning by iteratively solving a no wind case problem with a
moving virtual target. In most of the work like in [40]–[42],
the authors usually compensate the wind in the control loop
design of the UAVs to keep the position error of flight path
as minimum as possible with respect to the desired path.
However, we are compensating for the wind disturbances
during the path computation, before the flight. This method
helps us to be able to explore the effect of the wind in
energy consumption of the drone. Accordingly, we are able
to precisely calculate the energy consumption of the drone
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and plan the most appropriate path for it. We calculate the
near-optimal path offline, considering the expectedwind. The
drone internal flight controller compensates in real time for
the actual wind conditions experienced while following the
path computed according to the expected wind.

III. THE PATH PLANNING PROBLEM
In this work, the problem of generating the near-optimal path
from an initial way-point to another one in a 2-D space for an
autonomous UAV is addressed. We maximize the quality of
the video streaming application during the flight in our inno-
vative communication-aware approach by considering the
accessible energy on-board and the expectedwind conditions.
Noteworthily, we compute the trajectory offline and upload it
to the drone flight controller. Then, it follows the offline path
and compensates for the actual disturbances during the flight.

A. FLIGHT AREA
We modelled the flight area, as shown in Fig. 1, based on
a grid graph. Indeed, we subdivided the cellular coverage
area into parts with a regular tessellation and placed each
node at the center of each square. We associated each node
with a throughput value which is an average throughput
value experienced within the corresponding square. An edge
connects the nodes corresponding to adjacent squares. In our
study, 8-degree grid graph is considered, i.e. eight neighbors
for every node. It is notable that our approach is extendable
to any other type of grid graph.

FIGURE 1. 8-Degree grid graph and the corresponding coverage map.

Formally, we define the flight area with an undirected
grid graph G = (V ,E). We associate node i ∈ V with a
physical position (xi, yi) and the throughput bi. bi is the drone
experienced throughput in the area in the proximity of node i
when uploading the streaming data to the cellular network.
The physical distance dij is associated with the edge (i, j) ∈ E
connecting nodes i to j.

This work is focusing on the path planning for the UAVs.
We are concentrating on how to design a path for a mission
that the drone experience the maximum throughput while the
throughput map is given. Therefore, in this work, the aver-
age throughput experienced in each square is assumed to be
known in advance. This information can be obtained through
some coverage maps obtained by means of on-field measure-
ments or on some channel model applied into the square area.

For the sake of simplicity, obstacles are not considered
in the flight area, even though we can easily extend the
methodology to this scenario by removing the corresponding
nodes and edges.

B. DRONE MOBILITY MODEL
The drone is assumed to fly at constant air speed vd , and its
power consumption is equal to P. The drone’s total available
on-board energy is E0. The required energy due to traveling
from node i to node j is Eij. The source node is is the node
that the drone departs from as the starting way-point, and the
destination node id is the node that the drone terminates the
mission as the destination way-point. A path comprised of
multiple way-points decomposes into several segments, and
the algorithm runs for each segment.

Let P be the set of all possible loop-less paths connecting
is to id and let p ∈ P be a generic path. The path planning
aim is finding a path p ∈ P that connects is to id such that
maximizing the communication performance, contingent on
the following amount of energy:∑

(i,j)∈p

Eij ≤ E0 (1)

C. MOBILITY PLANNING BETWEEN TWO NODES
Considering the problem in which the drone needs to move
from way-point i to j. Let vdx be the drone air speed, along
the x-axis and vdy be the drone air speed, along the y-axis.
Let vgx and vgy be the drone ground speed, along the x-axis
and y-axis, respectively. Let tij be the flight time from i to j.
The wind speed is assumed to be constant and its speed along
the two axes are vwx and vwy.

Now the following system of equations can be written:

vgx = vdx + vwx (2)

vgy = vdy + vwy (3)

xj − xi = vgx · tij (4)

yj − yi = vgy · tij (5)

v2dx + v
2
dy = v2d (6)

where the effect of wind and the actual ground speed are
related by (2) and (3); the traveled physical distance is related
to the ground speed by (4) and (5); eventually, the air speed of
drone is related to its two components by (6). The drone speed
and its flight time are calculable by solving the above equa-
tions. Therefore, the flight distance travelled by the drone is
vd · tij, and the energy consumption between node i and j is:

Eij = P · tij (7)

The ground distance from node i to j is equal to the
Euclidean distance between them. The total transferred data
along the path from node i to j is bi · tij. Table 1 contains the
introduced parameters and their descriptions altogether.

Considering the energymodel employed in [27], the energy
consumption of the drone depends on different operating con-
ditions, such as speed, horizontal and vertical acceleration,
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TABLE 1. Variable definitions.

and turning angle. We do not consider the consumed energy
in climbing and descending, since it is common in all path
plannings and does not affect the path. Moreover, we do
not have any hovering period in our applications. Therefore,
we consider the energy consumption during the rotations
based on the work in [27]. The energy required to cover all
the n turns (with angles θk , k ∈ {1, 2, . . . , n}) included in the
path is computed as:

Eturns =
n∑

k=1

Pturn
θk

ωturn
(8)

where ωturn represents the angular rotation speed, Pturn rep-
resents the power consumed during the rotations. Therefore
the total consumed energy is computed considering also all
the energy spent for all the turns along the path:

Etot = Eisid + Eturns (9)

IV. NEAR-OPTIMAL COMMUNICATION-AWARE
PATH PLANNING
Our propounded approaches approximate the optimal path
founded on the classical A∗ search algorithm for path plan-
ning, adopted in many contexts as robotics and video games.
A∗ was designed for finding the shortest (or approximately
shortest) path in amuch shorter computation time than canon-
ical Dijkstra’s algorithm, by considering a smaller search
subspace. Actually, A∗ employs a cost function which is the
summation of two functions. Function g (in common with
Dijkstra’s algorithm) represents the cost of the path from the
source to the current node, and function h is a user provided
heuristic function that estimates the cost of the path from the
current node to the goal. Computation time and optimality is
conditional on the choice of heuristic function. Particularly,
if the estimated cost by the heuristic function is equal to the
real cost, the algorithm only expands the nodes on the least
cost path from the start to the goal.

A. PATH PLANNING ALGORITHMS
In this section, we present our path planning algorithms as
variants of the A∗ algorithm.

1) AT-PP ALGORITHM
This algorithm is a modified version of A∗ on grids. We pro-
vided the pseudo-code of the algorithm in the Algorithm 1.

Algorithm 1 Average-Throughput Path Planning (AT-PP)
1: function AT-PP(N , {bv}v∈N , S,D,P, vd ,E0, β)
2: for each vertex v ∈ N do F Initialization, for each vertex
3: path_bw[v] = −1 F Throughput from S to v
4: acc_path_bw[v] = −1 F Cumulative throughput from
S to v

5: parent[v] = −1 F Parent of node v
6: ground_path_distance[v] = ∞ F Ground distance

from S to v
7: flight_path_distance[v] = ∞ F Flight distance from S

to v
8: path_hops[v] = −1 F Number of nodes from S to v
9: path_time[v] = −1 F Flight time from S to v
10: path_energy[v] =∞ F Energy from S to v
11: path_cost[v] =∞ F Cost based on A∗

12: path_bw[S] = acc_path_bw[S] = bS F Setting the values
for S

13: parent[S] = S
14: ground_path_distance[S] = flight_path_distance[S] =

path_hops[S] = 0
15: path_time[S] = path_energy[S] = 0
16: path_cost[S] = GROUNDDISTANCE(S,D)
17: U = N \ {S} F Unvisited nodes
18: F = {S} F Frontier nodes
19: V = ∅ F Visited nodes
20: while F is not empty do F Visit all the frontier nodes
21: u = argminv∈F {path_cost[v]} F Find the min cost

node in F
22: move u from F to V
23: if path_energy[u]> E0 then F Check the required

energy to reach u
24: continue F If greater than E0, consider a new

node in F
25: if u = D then F Check if arrived to destination
26: return F End. Return the whole state, from line

4 to 11
27: for each neighbor v /∈ V of u do F Check all the

neighbors of u that are in U or F
28: if v ∈ U then
29: move v from U to F FMove v to the frontier,

if is not there
30: bw = (acc_path_bw[u]+bv) / (path_hops[u]+1) F

Average throughput along the path
31: path_bw[v] = bw
32: acc_path_bw[v] = acc_path_bw[u] +bv
33: parent[v] = u
34: ground_path_distance[v] =

ground_path_distance[u] + GROUNDDISTANCE-TANCE(u, v)
35: flight_path_distance[v] = flight_path_distance[u]
+ FLIGHTDISTANCE(u, v, vw,wdir )

36: path_hops[v] = path_hops[u] + 1
37: path_time[v] =

path_time[u]+FLIGHTDISTANCE(u, v, vw,wdir )/vd
38: path_energy[v] = path_energy[u] +P× tuv
39: path_cost[v] =

(flight_path_distance[u]+FLIGHTDISTANCE (u, v, vw,wdir ))
+ FLIGHTDISTANCE(v,D, vw,wdir ) +β/ path_bw[v] FMain cost
function

40: return error - unreachable destination
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For the sake of readability, degenerate cases are neglected.
In this algorithm the average throughput along the path is
maximized, as:

max
p∈P

∑
(i,j)∈p

bi
|p|

(10)

contingent on the budget of energy. Accordingly, wemodified
the cost function of A∗ as is shown in ln. 39. Our cost function
combines the estimated distance to the final destination D
and the inverse of the average throughput (‘‘path_bw’’) up to
some node. Therefore, by increasing the average throughput,
an average level of communication QoS is guaranteed.

AT-PP algorithm maintains several values for every ver-
tex v (ln. 3-11):
• path_bw(v) is the throughput from the start node to node
v found so far. It is used in the cost estimation of node v
in the cost function.

• acc_path_bw(v) is the cumulative throughput from the
start node to node v, and it is utilized for average
throughput calculation.

• parent(v) allows to retrieve the resulting path when the
algorithm terminates.

• ground_path_distance(v) contains the ground distance
from the start node to node v.

• flight_path_distance(v) contains the flight distance from
the start node to node v considering the effect of wind.
This value is used in the estimate of the cost of node v in
the cost function.

• path_hops(v) contains the number of nodes from start
node to node v.

• path_time(v) is the flight time from the start node to node
v, considering the wind.

• path_energy(v) is the flight energy consumption from
the start node to node v, considering the wind.

• path_cost(v) is the cost of the path from start node to
node v.

As in usual Dijkstra and A∗, AT-PP algorithm creates three
sets of nodes. The frontier nodes (F) are stored in a priority
queue and the visit procedure expands from them. The visited
nodes (V) are the nodes that have been already visited and
will not be visited anymore. The unvisited nodes (U) are the
remaining nodes, i.e. not frontier nodes and not yet visited.
As long as the frontier nodes list is not empty (ln. 20) (if it
is empty, it announces that the destination is unreachable
(ln. 40)), the algorithm selects the node with minimum path
cost (ln. 21) from the frontier nodes as the current visiting
node. First, it moves the current visiting node from frontier
nodes to visited nodes (ln. 22), then it checks the required
energy to reach the current visiting node (ln. 23). In case
of exceeding the energy budget, the algorithm fetches a new
node from the frontier nodes (ln. 22). Otherwise, in the next
step, it checks if the current visiting node is the destination or
not (ln. 25). If yes, the algorithm extracts the obtained path
and terminates. Otherwise, it updates all the neighbors of the
current visiting node which are not already visited (ln. 27).
It checks each neighbor if it is in frontier nodes or not (ln. 28).

If that neighbor is not included in frontier nodes, it will
be moved there (ln. 29), and all the values will be updated
(ln. 31-38). In this algorithm, throughput is the average along
the path (ln. 30). Finally, the path cost will be updated in
(ln. 39). This procedure continues until the algorithm reaches
to the destination.

The fundamental difference in our algorithm from A∗ is
that our algorithm does not examine whether the value of the
g function of visiting node plus the length of the straight line
from the visiting node to the next neighbor node is smaller
than the value of the g function of the next neighbor node.
In our algorithm, distance is considered in the cost func-
tion plus the inverse of the bandwidth of the next neighbor.
Afterwards, the neighbor of the visiting node with minimum
cost will be sent to the frontier nodes list of the algorithm.
Therefore the node with minimum cost from the frontier
nodes list will be the next visiting node. Then, the algorithm
searches for the path with minimum cost. Consequently, both
the throughput and the distance are optimized in the resulting
path.

In the cost function, the bandwidth is weighted by a fac-
tor β. This coefficient is tuned to be a comparable value with
the other part of the cost function. As shown in Sec. V-C, β is
numerically tuned to maximize the throughput in different
scenarios for a specific coverage map.

The available on-board energy E0 is taken into account by
pruning the visit as long as the energy consumption over-
shoots E0 (see ln. 23). Notably, it is probable not to find any
path due to the incompatibility of the energy consumption and
E0 (see ln. 40).

2) MT-PP ALGORITHM
In this algorithm the minimum throughput along the path is
maximized, contingent on the budget of energy. We modified
the cost function of A∗ and defined the worst-case throughput
cost function for the algorithm as following:

max
p∈P

min
(i,j)∈p

bi (11)

Therefore, by keeping the throughput above a minimum
level, a minimum level of communication QoS is guaranteed.

We provided the pseudo-code of the algorithm in the
Algorithm 2. This is an iterative algorithm and functions as
follows, mimicking a dichotomic search. At the beginning,
the algorithm finds the shortest path while the minimum
throughput is maximized. In this situation, if the calcu-
lated energy consumption is less than the available on-board
energy, the resulting path is the best and final path. On the
contrary, if the calculated energy consumption for the result-
ing path is greater than the energy budget of UAV, an initial
threshold value th is assumed by the algorithm. th could be set
equal to the average throughput achievable in the area. In this
part, the algorithmmaintains three variables: throughput level
(blevel), which contains the highest throughput value that the
algorithm could obtain in the first stage for the resulting path,
throughput step (bstep), which contains the decrement value
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Algorithm 2Minimum-Throughput Path Planning (MT-PP)
1: function DronePathPlanMT-PP()
2: (Graph, S,D,P, bn, vd , (xn, yn),E0, β,N , bstep, bres, blevel ):
3: PATHMT-PP() F Compute the path
4: while bstep >= bres do F As steps are greater than resolution
5: if path_energy > E0 then
6: bstep = bstep/2 F Each step will be half of previous step
7: blevel = blevel −bstep F Throughput decreases by one step
8: if blevel < bres then
9: blevel = min{bn} F Throughput is minimum

10: PATHMT-PP()
11: else if path_energy < E0 and blevel < min{bS , bD} then
12: bstep = bstep/2
13: blevel = blevel + bstep F Throughput increases by one step
14: PATHMT-PP()
15: else
16: break
17: function PathMT-PP()
18: for each vertex v ∈ N do F Initialization, for each vertex
19: path_bw[v] = −1 F Throughput from S to v
20: acc_path_bw[v] = −1 F Cumulative throughput from S to v
21: parent[v] = −1 F Parent of node v
22: ground_path_distance[v] =∞ F Ground distance from S to v
23: flight_path_distance[v] =∞ F Flight distance from S to v
24: path_hops[v] = −1 F Number of nodes from S to v
25: path_time[v] = −1 F Flight time from S to v
26: path_energy[v] =∞ F Energy from S to v
27: path_cost[v] =∞ F Cost based on A∗

28: path_bw[S] = acc_path_bw[S] = bS F Setting the values for S
29: parent[S] = S
30: ground_path_distance[S] = flight_path_distance[S] =

path_hops[S] = 0
31: path_time[S] = path_energy[S] = 0
32: path_cost[S] = GROUNDDISTANCE(S,D)
33: U = N \ {S} F Unvisited nodes
34: F = {S} F Frontier nodes
35: V = ∅ F Visited nodes
36: // Visit all the frontier nodes
37: while F is not empty do
38: u = argminv∈F {path_cost[v]} F find the min cost node in F
39: move u from F to V
40: if u = D then F Check if arrived to D
41: return All parameters from line 4 to 11

42: // Check all neighbors
43: for each neighbor v /∈ V of u do F Check all the neighbors of u

that belongs to U or F
44: if v ∈ U then
45: move v from U to F F Enter v to the frontier, if its not
46: if (flight_path_distance[u] + FLIGHTDISTANCE(u, v) <

flight_path_distance[v]) then F Update, in case of better flight distance
47: bw = min{path_bw[u],bv} F Throughput is min along

the path
48: path_bw[v] = bw
49: parent[v] = u
50: ground_path_distance[v] = ground_path_distance[u] +

GROUNDDISTANCE(u, v)
51: flight_path_distance[v] = flight_path_distance[u] +

FLIGHTDISTANCE(u, v)
52: path_time[v]= path_time[u]+ FLIGHTDISTANCE(u, v)/vd
53: path_energy[v] = path_energy[u] + P× tuv
54: path_cost[v] = (flight_path_distance[u] +

FLIGHTDISTANCE (u, v)) + FLIGHTDISTANCE(v,D) + β/ path_bw[v]
F Cost function

55: return error - unreachable destination

in each iteration, and throughput resolution (bres), which
determines the final resolution for the solution. At the begin-
ning, bstep is set equal to half of the maximum achievable
throughput in the coverage map. On the basis of a variant of
AT-PP, the algorithm selects the path such that the throughput
at some visited node is computed as the minimum along the
path (unalike to ln. 30 of AT-PP).
On the termination of each iteration, th increases in order to

maximize the minimum throughput. The algorithm may not
find a path with a minimum throughput ≥ th (possibly due
to the energy restriction), then it decreases th in the following
iteration. A dichotomic search is adopted in order to optimize
the selection procedure of th values. The process terminates
as long as the algorithm achieves a given precision on the
minimum throughput along the path.

The obtained path approximates the onewith themaximum
throughput possible compatible with the available energy.
However, when the resulting path corresponds to the mini-
mum distance path, and the calculated energy consumption
is still not compatible with the available energy, then there
does not exist any path for this mission that meets the energy
budget.

B. PATH SMOOTHING
The MT-PP and AT-PP resulting paths are constrained to grid
edges since their headings are actually restricted to be along
the edges of the grid graph. Consequently, the resulting paths
are longer than the shortest path on the free 2-D space. This
shortcoming led to smooth the resulting paths, by employ-
ing a post-smoothing process leading to an increase in the
run-time.

1) POST-SMOOTHING METHOD
We take into account the A∗ post-smoothing algorithm
(A∗PS) presented in [43]. The smoothing procedure starts
from the first node of the obtained path by A∗. It checks
if the current node has line of sight to the successor of its
successor in the path or not. We say node u and u′ have
line-of-sight (LOS) if and only if the straight line from u
to u′ neither passes through the low throughput (less than
a specified minimum network throughput) nodes nor passes
between low throughput nodes that share an edge. If so,
the algorithm removes the intermediate node and connects the
current node to the successor of its successor. A∗PS continues
this procedure until the current node does not have a LOS to
the successor of its successor. The resulting paths of A∗PS are
usually shorter than A∗ on grids. In this method, implemented
in our approach, the well-know line-drawing algorithm of
Bresenham in computer graphics [44] is used to check LOS
between two nodes [45]. Notably, we tailored specifically the
Grid function to consider only nodes with a throughput larger
than a minimum specified value.

2) IMPROVED POST-SMOOTHING METHOD
In this section, we introduce an innovative improved
post-smoothing process (A∗IPS). The resulting paths of our
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FIGURE 2. The difference between A∗IPS vs A∗PS shown in an example.

FIGURE 3. The GUI of QGroundControl integrated with our approach.
The orange path is the original path, whereas the red one is the one
computed by MT-PP and uploaded to the drone.

method are shorter than A∗PS in some cases. A∗IPS functions
similar to A∗PS, but the difference arises when the A∗PS,
during the graph visit, is checking the LOS from the visiting
node to the successor of its successor. At this stage, A∗IPS in
parallel, is additionally checking the LOS from the successor
of its successor to the goal node. A∗IPS terminates the whole
process as long as the LOS is discovered to the goal and the
shortest path is achieved. In Fig. 2, we show an example to
be more clear about the process. If we consider the point A as
the starting point, the A∗PS checks the LOS from point A,
node by node, towards the goal. Since A∗PS has no LOS
(observing from point A) to any node located between point
C and D, the process ends in point C and then starts over from
point C to the goal. However, A∗IPS is checking the LOS
from both the starting point A and its following node to the
goal simultaneously. As a result, A∗IPS detects the LOS from
point B to the goal and ends the process immediately. Notice
that in this work, LOS is defined in terms of throughput
values; we consider two points in LOS if all the closest nodes
in the direct path among them possess throughput values of
greater or equal to the current value.

In our algorithms, the post-smoothing process executes
after finding the path in each iteration, enabling us to calculate
the real energy consumption after smoothing (making the
path shorter) and also considering the final turning angles of
the path in calculating the energy consumption.

It will be shown inn Sec. V-C that the A∗IPS resulting paths
are shorter or equal to the A∗PS, with a possible reduction in
computation time.

V. PERFORMANCE EVALUATION
A. SCENARIOS
Fig. 4 reports the two coverage maps on a 4 km×4 km
area that we tested our algorithms on them. In the first map
denoted as ‘‘cone’’ (left side of Fig. 4), maximum throughput
shows in the center, then linearly it decreases to a minimum
value, and finally it remains constant in the whole border
with a higher value than the minimum. The performance of
greedy approaches may be impaired by such discontinuity
in the coverage (as the one considered in our work). There-
fore, we can consider the cone map as a simple worst-case
coverage scenario. In the second map denoted as ‘‘valleys’’
(right side of Fig. 4), the coverage is continuous with four
low throughput valleys.

FIGURE 4. The valleys map (right), and the cone map (left).

The UAV mission starts from a starting point to an end-
ing point. We tried to combine the selection of various
source-destination pairs with the coverage map, defining the
following scenarios:

FIGURE 5. Scenario A, B (left) and scenario C (right). ‘‘S’’ stands for source
position. ‘‘D’’ stands for destination position.

• Scenario A (Fig. 5): A symmetric case on the cone map.
The source is positioned in (−1000,−1000) m and the
destination in (1000,1000) m.

• Scenario B (Fig. 5): An asymmetric case on the cone
map. The source is positioned in (−1000,−1000) m and
the destination in (2000,2000) m.

• Scenario C (Fig. 5): We positioned the source and the
destination at θ degrees from the peak of throughput on
the cone map. It allows us to investigate how a path is
deviated from its direction through the high throughput
region.

• Scenario D (Fig. 7): The source is positioned in
(−1000,−1500)m and the destination in (1000,1300)m,
on the valleys map. Regarding the two low throughput
regions between the source and destination on the direct
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FIGURE 6. β optimization under scenario C.

FIGURE 7. Resulting paths obtained by MT-PP and SP under scenario D.

path, this case enables us to demonstrate the deviation of
the resulting path from the low throughput regions.

In this work, wind is called ‘‘head wind’’ when it is in the
opposite direction of the direct path from source to destina-
tion, and is called ‘‘tail wind’’ when it is in the same direction.

B. METHODOLOGY
In this work, we compare the behavior of our algorithms with
the Shortest Path (SP) algorithm, both in dealing with the
wind presence and the on-board energy limit. SP is selected
since it represents all the cited state-of-the-art algorithms in
Sec. II, that compute the direct path from source to destination
and are oblivious of the coverage map.

In the simulations of this work, as depicted in Fig. 1,
8-degree graph on a 101 × 101 grid with a distance of min-
imum 40 meters between two nodes is considered. Notably,
the graph can simply be modified to represent the presence
of obstacles by removing the corresponding nodes and edges.
Thus, our algorithms can consider the presence of obstacles.
However, we did not consider any obstacle in this work for
the sake of simplicity.

We implemented our algorithms inMATLAB and executed
them on a 2.67 GHz Core i7 PC with 8 GByte of RAM
running Windows 10. We used tic and tac MATLAB
commands to evaluate the running times.

C. NUMERICAL EVALUATION
Firstly the choice of coefficient β which is employed in the
cost function of our algorithms is optimized. Towards this

end, under scenario C, we selected four destinations in θ =
45, 90, 135, and 180 degrees. In Fig. 6, throughput in function
of β is plotted. In order to obtain a high throughput value in
most of the cases, it is set to β = 1500 (shown with dashed
line in Fig. 6).

TABLE 2. Average throughput comparison.

TABLE 3. Minimum throughput comparison.

Table 2 compares the obtained average throughput and
Table 3 compares the obtained minimum throughput along
the resulting paths of our algorithms with SP, for all
the defined scenarios, in presence and absence of wind.
We employed the IPS method to smooth the resulting paths
of both the MT-PP and AT-PP algorithms.

Consider for now the performance without wind. Fig. 7
is verifying the expected performance of MT-PP under sce-
nario D. In this figure, the obtained paths by MT-PP and
SP are depicted. Considering the Table 2 and 3, MT-PP and
AT-PP both achieved a greater average throughput compar-
ing with SP (50% greater for MT-PP) whereas the achieved
minimum throughput is much greater than SP (9 times greater
for MT-PP.)

Fig. 8 shows the path found by AT-PP under scenario C
(θ = 135◦), verifying the algorithm behavior. Specifically
the resulting path tends to pass the close proximity of the
cone vertex with maximum throughput. This path is opti-
mal, considering that the average throughput is maximized.
Thus, the average throughput of the path is ameliorated up to
1.3 Mbit/s comparing with SP.
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FIGURE 8. Resulting paths obtained by AT-PP and SP under scenario C
(θ = 135◦).

FIGURE 9. Resulting paths obtained by MT-PP and SP under scenario A.

FIGURE 10. Resulting paths obtained by MT-PP and SP under scenario B.

In addition, in scenarios A in Fig. 9, and in scenario B
in Fig. 10, MT-PP achieves a minimum throughput that out-
performs the SP by about 20 times.

Now, we consider the wind effect. MT-PP and AT-PP gain
less in the presence of head wind, comparing with either
the tail wind or the wind absence. The reason behind is the
restricted amount of on-board energy that prevents the drone
from flying into the high throughput regions and compen-
sating for the wind concurrently. The throughput of the path
in scenario A and B is not influenced by the wind in either
case, since MT-PP has a tendency to keep away from the low
throughput regions so far as energy is provided. The resulting
paths of AT-PP andMT-PP in scenario C andD, in presence of
headwind, are approaching to SP leavingmore energy behind
for the wind compensation. As a consequence, the throughput
of resulting paths are lower than the tail wind or no wind
cases.

In the considered offline path-planning scenario, the wind
can be taken into account just based on some forecast weather
model. For an area of few km squares (or at most tens of them)
where the UAV will fly, we expect to know in advance only
an average wind value for each tile.

Nevertheless, the algorithm is compatible, without any
modification, with variable winds, i.e. wind intensity

FIGURE 11. Comparing the performance of MT-PP in presence of variable
wind (solid line), and absence of wind (dashed line).

different for each point of the grid map. In Fig 11, we con-
sidered variable wind in the field. In this scenario, the MT-PP
algorithm planned a longer path comparing with the dashed
line path which is the shorter path in the absence of wind.
The resulting path of MT-PP in presence of variable wind
is longer, but the energy consumption of the drone is lower,
compared to the no wind case, because of the presence of tail
wind during the path. Moreover, the energy consumption of
the dashed line path in presence of variable wind is higher
because of the presence of cross wind in half of the path.

TABLE 4. Path length and computation time comparison.

In Table 4, the effect of path smoothing methods is inves-
tigated. In this table, the path length and the corresponding
computation time for the resulting paths of MT-PP algo-
rithm alone (i.e., without any post-smoothing), MT-PP with
standard post-smoothing, and MT-PP with our improved
post-smoothing method under all the defined scenarios
are compared. By construction, the least computation time
belongs to MT-PP with no post-smoothing applied, while
applying standard PS increases the computation time by
3.4%, in scenario B (as the worst case). Alternatively, apply-
ing IPS to MT-PP in scenario B adds up to 1.0% additional
time. Regarding the path length, PS and IPS equally shorten
the path lengths by 5.1% in scenario A, whereas they shorten
the length of paths by 5.4% and 6.3% respectively, in scenario
B. Therefore, IPS has always priority over PS in terms of both
path length and computation time.

The effect of energy budget is investigated in Table 5.
We compared the energy consumption of theMT-PP resulting
paths of each iteration in scenario D with the SP, in one part
of table, and the output paths of AT-PP in case of setting an
energy bound for scenario C (θ = 135◦). In scenario D,
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TABLE 5. Comparison of energy consumption.

FIGURE 12. The effect of energy budget on the AT-PP (left), and
MT-PP (right).

MT-PP finds the path 1 in the first iteration. The energy
consumption limit is set to 91 kJ in this experiment. Since
the energy consumption is not reached the limit, it continues
to increase the threshold up to the path 4 which exceeds
the energy limit. Then the threshold is decreased and the
final MT-PP path is found. The path of each iteration is
shown in Fig. 12 (right). In Scenario C, each resulting path
is the output of AT-PP with a specified energy limit. It is
obvious in Fig. 12 (left) that as long as we set a greater
energy limit, the path will be longer and closer to the high
throughput region. It is notable to mention from Table 5
that the energy consumption of MT-PP and AT-PP paths are
clearlymore than the SP, but theymeet the energy budget con-
straint. In this experiment, the angular rotation speed (ωturn)
is considered 2.1rad/s, and the power consumed during the
rotations (Pturn) is considered 225W . Power consumption of
the drone (P) in all the experiments in this work is considered
200W [27].

VI. ALGORITHM INTEGRATION INTO THE
QGROUNDCONTROL PATH PLANNER
Our approach can be utilized in practice to plan an optimal
path for a drone in the real-world situations. As validation,
we integrated our algorithms in a popular, open-source,
offline path planner like QGroundControl (QGC) sta-
tion [46]. To achieve a seamless integration, we designed
a proxy between the QGC and the autopilot. All the data
sending from the QGC towards the drone and sending from
the drone to the QGC, are passing through the proxy. From
the point of view of QGC, the proxy acts as a standard drone;
from the point of view of the drone, the proxy acts as QGC.
This allows to achieve a transparent behavior, which does not
require any modification in QGC and the drone (except for
proper configuration settings).

FIGURE 13. Proof of concept for the path planner.

The proxy acts as a server, creating a TCP connection with
the QGC, and as a client, creating another TCP connection
with the drone. TCP connection is employed to provide reli-
able transport of drone configuration. Fig. 13 demonstrates
the adopted architecture.

In a standard situation (when the proxy is not present),
once the user is defining a mission on the QGC, the way-
points are transferred to the drone by uploading the mission
and the UAV starts the mission as long as a command is
received from the QGC side by the user. In this case, the drone
flies between each two way-points using the shortest path (a
direct path). Now, by considering the proxy between the QGC
and the autopilot, all the data sending and receiving from
both sides are passing through the proxy. The proxy relays
transparently all the data through, except if the data type is
MISSION_ITEM. Each MISSION_ITEM contains the GPS
coordinates of a way-point and all the other information (e.g.,
system ID) that are needed by the drone. These data are
packed based on the MAVLINK telemetry protocol. There-
fore, in the case that data are not way-points or not related
to the start or end of way-point transmission, the proxy acts
transparently and passes the data equivalent to a pipe. But,
if the data are involved in defining way-points, the proxy
acts double-faced. Whenever QGC is sending way-points,
the proxy acts as the drone. In this case, it sends requests
to the QGC for the way-points and receives them one by
one and sends the acknowledgment to the QGC when all
of the way-points are received. Then, the proxy feeds the
original way-points to our algorithms and a new path is
planned between each two original way-points. The new path
is typically different from the default path (shortest path)
and is designed according to our proposed network coverage
aware approach. As shown in Fig. 13, the coverage map is
fed to the proxy. In the event that the proxy requires to send
the new way-points to the drone, it acts as QGC. In this case,
the proxy asks for sending the new way-points and answers
to the requests of the drone for the way-points. When the
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transmission is finished, it receives the acknowledgement
from the drone. Now, the drone receives a path which is pass-
ing by all the defined way-points and the throughput of the
path is maximized considering the on-board energy budget
and the effect of wind. Fig. 3 demonstrates the resulting path
which is planned by MT-PP algorithm. The orange path is
the default path that the drone passes through, in the usual
direct connection (i.e., absence of the proxy) with the QGC.
The red path is the one which designed by MT-PP and passes
through the original way-points and high throughput regions.
Depending on the algorithm (MT-PP or AT-PP), the red path
may be different.

VII. CONCLUSIONS
Inspired by providing cellular connectivity for UAVs, in order
to guarantee the requirements of QoS in the communication
for video streaming, we investigated the path optimization
problem for an autonomous drone. In the study, the cellular
coverage map, the drone budget of energy, and the possible
presence of wind is considered. Two algorithms are presented
to maximize either the worst-case throughput (MT-PP) or
the average throughput (AT-PP) along the path. In addition,
a novel path smoothing method outperforming the classical
one in both terms of path length and computation time is
proposed. It is shown, through a numerical evaluation of
various scenarios, that our communication-aware approach
leads to ameliorate the throughput of the path comparing with
the classical approaches that are absolutely oblivious of the
cellular coverage maps, with a profitable impact on video
streaming applications. We evaluated the performance of the
MT-PP and AT-PP algorithms, in presence and absence of
the wind. We investigated the effect of the energy budget on
the resulting paths ofMT-PP and AT-PP. Finally, we validated
experimentally our approach by integrating our algorithms
in a popular offline path planner (QGC). We proved that
our algorithms can be practically utilized in real-world path
planners.
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