
Received March 14, 2019, accepted April 9, 2019, date of publication April 15, 2019, date of current version April 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2911012

Fast Asymptotic Square Root for Two
Types of Special Pentanomials
YU ZHANG , YIN LI , AND QING CHEN
Department of Computer Science and Technology, Xinyang Normal University, Xinyang 464000, China

Corresponding author: Yin Li (yunfeiyangli@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61402393 and Grant 61601396, and in
part by the Nanhu Scholars Program for Young Scholars of XYNU.

ABSTRACT Inspired by the Montgomery and generalized polynomial basis (GPB) squaring operation,
we introduce and study the notion of asymptotic square root over binary extension fields GF(2m). This new
notion is a natural generalization of Montgomery-like square root, a special form of square root that was
recently introduced by Li et al. Given an arbitrary elementA ∈ GF(2m) and a fixed elementω, the asymptotic
square root is defined as A1/2 · ω. We show that, by choosing a proper parameter ω regarding different kind
of irreducible polynomials that define GF(2m), such square root operation can achieve better space and time
complexity. Meanwhile, we have proved that the complexity of asymptotic is linear with the generating
polynomials. Specifically, for the field GF(2m) is defined by two type of specific irreducible pentanomials,
i.e., Type C.1 and Type C.2 pentanomials, we derived explicit formulae for space and time complexities
associated with the asymptotic square root operator. On top of that, a practical application of the asymptotic
square root in exponentiation computation is also presented.

INDEX TERMS Finite field, square root, exponentiation, cryptography.

I. INTRODUCTION
Arithmetic operations in finite field GF(2m) have many
important applications such as public key cryptography and
coding theory [1], [2]. These applications usually require
high efficient implementations of such arithmetic operations,
e.g., field addition, multiplication, inversion and squaring.
Besides, field square root is also an important building block
in the design of some elliptic curve primitives, and thus
it has attracted some attentions during recent years [4], [5].
Additionally, because of the similarity and independence
of squaring and square root, square root operator has been
applied in some parallel exponentiation algorithms [6], [8],
where both squaring and square root are utilizing as the main
building blocks. The authors have shown that, if squaring and
square root computation costs the same circuit delay, the par-
allel algorithm will achieve twice implementation efficiency
compared with classic squaring based exponentiation.

Generally speaking, the efficiency of hardware implemen-
tation of field arithmetic is typically evaluated by space
and time complexity. The space compleixty is defined as
the amount of hardware resources, usually expressed as

The associate editor coordinating the review of this manuscript and
approving it for publication was Remigiusz Wisniewski.

the number of logic gates (XOR and AND). Accordingly,
the time complexity is often expressed as the total logic gates
delay of the circuit, denoted by TA (delay of a XOR gate) and
TX (delay of an AND gate), respectively.

Let f (x) be an irreducible polynomial over F2. The finite
field GF(2m) generated with f (x) is defined as GF(2m) ∼=
F2[x]/(f (x)). An arbitrary element A ∈ GF(2m) here in poly-
nomial basis (PB) can be recognized a polynomial over F2 of
degree less than m. Then, the field square root computation
of A, denoted as

√
A or A1/2, is to find D ∈ GF(2m) such

that D2
= A. Please note that the algorithms [13]–[15] for

computing square root in Fp, (p > 2) can not apply here,
as GF(2m) has different algebra structure compared with Fp.
Based on Fermat’s Little Theorem [3], we know that the
identity A2

m
= A holds. Obviously,

√
A = D = A2

m−1
.

Under normal basis (NB) representation, such an operation is
simply a circular operation and does not cost any logic gates.
However, in PB representation, the direct computation of
A2

m−1
requires m− 1 field squares, which is rather expensive

compared with the squaring operation.
A more practical algorithm for field square root computa-

tion was proposed by Fong et al. [7]. They split A into two
parts according to the parity of the exponent of x and utilize
the pre-computation value x1/2. As a result, the square root of

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

50255

https://orcid.org/0000-0001-8261-0627
https://orcid.org/0000-0002-9529-8481


Y. Zhang et al.: Fast Asymptotic Square Root for Two Types of Special Pentanomials

A can be obtained by Aeven+ x1/2Aodd , where Aeven and Aodd
are polynomials of degree m/2 and they consists of the even
or odd coefficients of A only. Besides, Rodríguez-Henríquez
et al. proposed an alternative algorithm based upon the inver-
sion of the Mastrovito matrixM, which is constructed for the
squaring operation. Theoretically, one can obtain the square
root formulae for any type of generating polynomials using
Rodríguez-Henríquez approach. Nevertheless, classic square
root is relatively more complicated than squaring operation,
even for certain type of trinomials. For example, given an
irreducible trinomial f (x) = xm + xk + 1 with m odd k even,
the corresponding square root operation costs 3TX delay,
while the squaring of same case only cost 1TX delay. If f (x)
is pentanomial or contains more coefficients, the formulation
of the square root will become more complicated.

Recently, Li et al. proposed a new type of square root
operator for all trinomials [17]. Instead of computing a
square root directly, they actually compute a square root
multiplying a specific parameter. Following the definition
of Montgomery squaring, such a operation is named as as
Montgomery-like square root operation. It is demonstrated
that, the Montgomery-like square root for trinomial is better
than the class one, and cost almost the same space and time
complexity as Montgomery squaring.

In this contribution, we extend the work of [17], present-
ing two types of results. First, we generalize the notion of
Montgomery-like square root. Second, we study such square
roots for more types of irreducible polynomials. More con-
cretely, we obtain the following main results:
• We presented a general definition of such square root
for all the polynomials. To avoid ambiguity with the
definition presented in [16], we renamed this opera-
tion as asymptotic square root. We also prove that the
computation complexity for asymptotic square root is
linear with the number of terms included in irreducible
polynomials.

• We investigate the asymptotic square root for two
recently proposed pentanomials, i.e., Type C.1 and
Type C.2 pentanomials, which exist for all degrees of
practical interest [11]. Explicit formulae for correspond-
ing asymptotic square root are given, and their space
and time complexities are investigated. As a result,
it is shown these formulae are quite simple and have
small space and time complexities in parallel implemen-
tation. Coincidentally, this type of square root opera-
tor has at least the same circuit delay compared with
generalized polynomial basis (GPB) squarings [11] for
Type C.1 and C.2 pentanomials.

• Based on previous observation, we describe a new paral-
lel exponentiation algorithm that uses the GPB squaring
and asymptotic square root operation as the main build-
ing blocks.

The rest of this paper is organized as follows: in Section II,
we briefly introduce the elementary knowledge about square
root and some other notations. Then, we give the gener-
alized definition of asymptotic square root in Section III.

Specifically, explicit formulae of asymptotic square root
operation for Type C.1 and C.2 pentanomials are given,
the space and time complexities are also evaluated in
Section IV. Section V describes a parallel exponentiation
algorithm based on GPB squaring and such square root oper-
ators. Finally, some conclusions are drawn in Section VI.

II. PRELIMINARY
In this section, we briefly review Fong et al. and Rodríguez-
Henríquez square root computation approaches as well as
some related notations. In fact, these algorithms are two main
ways for square root computation so far. We briefly review
their approach and then analyze the limitation of square root
operation.

A. THE FONG ET AL. METHOD
Fong et al. [7] provided explicit formulations for the square
root operator, where the finite fieldGF(2m) is generated with
an irreducible trinomial f (x) = xm + xk + 1. However, their
approach works only if m is odd, k is even and dm−14 e ≤

k < b
m−1
3 c. Their algorithm is based on the following

observation: Let A =
∑m−1

i=0 aix i be an arbitrary element in
GF(2m) and D ∈ GF(2m) be the square root of A. We know
that

D = A
1
2 = (

n∑
i=0

a2ix2i +
n−1∑
i=0

a2i+1x2i+1)
1
2

= (A2even + x · A
2
odd )

1
2

= Aeven + x
1
2 · Aodd ,

where n =
m−1
2 ,Aeven =

∑n
i=0 a2ix

i and Aodd =∑n−1
i=0 a2i+1x

i. Therefore, the square root ofA can be obtained
by

A
1
2 = Aeven + x

1
2Aodd mod f (x). (1)

It is obvious that the computation of x1/2 is crucial to the
square root computation. Recall that in this case m is an odd
number, Fong et al. found the following handy equation

x
1
2 =

{
x
m+1
2 + x

k+1
2 , k is odd,

x−
m−1
2 (x

k
2 + 1), k is even.

(2)

Based upon (2), it is clear that if the middle coefficient k
is odd, the square root computation can be calculated using
a few additions and shift operations. However, if k is even,
the square root computation becomes a little more computa-
tionally intensive. When put the limitation that dm−14 e ≤ k <

b
m−1
3 c to f (x), the square root of A finally has the form [7]:

D = Aeven + Aodd
(
x2k−n + xn+1 + xk+n+1

+ x
5k
2 −n + xn+

k
2+1 + x

3k
2 +n+1

)
.

The work in [7] did not give all the square root formula-
tions as other cases of m, k will lead to more complicated
expressions.

50256 VOLUME 7, 2019



Y. Zhang et al.: Fast Asymptotic Square Root for Two Types of Special Pentanomials

B. INVERSIVE MULTIPLICATIVE MATRIX APPROACH
Rodríguez-Henríquez et al. proposed an alternative method
for deriving the square root formulae [8]. Their main strategy
is based on an inversion of the Mastrovito matrix for square.
In fact, field squaring is a special type of field multiplication,
which can be performed by a matrix-vector multiplication.
Let A be defined as previous subsection, and we have

C = A2 mod f (x) =MA · A,

where A is the coefficient vector of A and MA is the
Mastrovito matrix derived from A2. Moreover, based on
above identity, it follows that computing the square root of
A means finding a field element D = A1/2. Clearly, since
A = D2

=MD · D, we have

D =M−1D · A.

Since the Mastrovito matrix construction has been fully stud-
ied in [9], [10], we can construct any corresponding MD
according to f (x). The inverse matrix M−1D can also be
obtained easily. Thus, this approach can apply to any type
of f (x) theoretically. Based on this approach, Rodríguez-
Henríquez et al. had given all the square root formulation for
all trinomials.

C. LIMITATION OF SQUARE ROOT
To sum up, Rodríguez-Henríquez approach can compute the
classic square root efficiently. Nevertheless, it is easy to
check that the computations ofM−1D of subsection II.B highly
rely on the terms contained in f (x). If f (x) is an irreducible
trinomial, the organization ofMD is relatively simple, so that
its inverse matrix M−1D can be obtained easily. But, with the
increase of the terms contain in one irreducible polynomial,
the square root computation became harder. Here, we give a
toy example to illustrate the fact.

Given an irreducible pentanomial f (x) = x15+ x13+ x5+
x2 + 1, A =

∑14
i=0 aix

i
∈ F2[x]/(f (x)) is an arbitrary field

element. Its square root formula is given by

A1/2= (a7 + a9 + a11 + a5 + a3 + a1 + a13)x14 + (a7 + a9
+ a11+a5 + a3 + a1)x13 + a11x12 + a9x11 + a7x10

+ a5x9 + (a13 + a3)x8 + (a11 + a1 + a13 + a14)x7

+ (a9 + a11 + a12 + a13)x6 + (a7 + a9 + a11 + a10
+ a13)x5 + (a1 + a3 + a8)x4 + (a1 + a6)x3 + a4x2

+ (a7 + a9 + a11 + a5 + a3 + a2 + a1 + a13)x + a0
+ a7 + a9 + a11 + a5 + a3 + a1 + a13.

In addition, the ordinary square formula is

A2= (a10 + a11 + a13 + a7 + a8 + a9)x14 + (a13 + a14)x13

+ (a11 + a12 + a13 + a14 + a6)x12 + a12x11 + (a10
+ a11 + a12 + a13 + a14 + a5)x10 + a11x9 + (a10
+ a11 + a12 + a13 + a4 + a9)x8 + a10x7 + (a10 + a11
+ a12 + a14 + a3 + a8 + a9)x6 + a9x5 + a2x4 + (a13
+ a14 + a8)x3 + (a1 + a14)x + (a10 + a11 + a12
+ a14 + a8 + a9)x + a0 + a14.

In parallel implementation, one can check that this square
root costs 39 XOR gates and square costs 35 XOR gates
(ignore the reused gates). Both square and square root require
at least 3TX . Conversely, there exist a GPB squaring [19] in
this field. By choosing ω = x10+x8+1 as a GPB parameter,
the GPB squaring only requires 27 XOR gates with 2TX
delay.

A2ω = a2x14 + (a13 + a14 + a8)x13 + (a1 + a14 + a2)x12

+ (a12 + a7 + a8)x11 + (a0 + a1 + a13 + a14)x10

+ (a11 + a6 + a7)x9 + (a0 + a12 + a13)x8 + (a10
+ a5 + a6)x7 + (a11 + a12)x6 + (a14 + a4 + a5
+ a9)x5 + (a10 + a11 + a2)x4 + (a3 + a4)x3 + (a1
+ a10 + a14 + a9)x + a3x + a9 + a0 + a14.

We can check that both square and square root for irreducible
pentanomial are less efficient than those of trinomials, but
a square multiplying a specific parameter can be computed
more efficiently. It is interesting to investigate whether or
not there exist a square root with a parameter that can be
easily computed. In [17], Li et al. proposed an alternative
type of square root by multiplying a specific parameter to the
classic square root. Such a type of square root imitates the
Montgomery squaring operation and can achieve a relatively
lower space and time complexity for all trinomials. In the
following section, we generalize this notion and investigate
such a square root for more kind of irreducible polynomials.

III. ASYMPTOTIC SQUARE ROOT
Consider a finite field GF(2m) defined by an arbitrary irre-
ducible polynomial f (x) = xm+xks−1+xks−2+· · ·+xk1+1,
where ks−1 > ks−2 > · · · > k1 > 0. Let A =

∑m−1
i=0 aix i

be an arbitrary element of GF(2m)∗ using PB representation.
According to (1), to compute the square root of A, we first
partition A into two parts according to the degree parity
of its intermediate, i.e., A = A2even + xA2odd . Once again,
the element x1/2 is a constant that can be pre-computed. Thus,
the square root operation can be implemented as performing
a field multiplication between Aodd and x1/2, and then adding
withAeven. However, the pre-computation of x1/2 relies on the
form of f (x). More explicitly, we have the following identity:

1 = xm + xks−1 + xks−2 + · · · + xk1 ,

⇒ x = xm+1 + xks−1+1 + xks−2+1 + · · · + xk1+1.

When we calculate square root of x, it is necessary to know
the parity ofm+1, ks−1+1, · · · , k1 + 1. If all these numbers
are even, then the formula of x1/2 is direct, i.e.,

x
1
2 = x

m+1
2 + x

ks−1+1
2 + x

ks−2+1
2 + · · · + x

k1+1
2 .

Except this, even one of these numbers is odd, the formulation
of x1/2 is not straightforward. Provide that there are t ≤ s
odd numbers c1, c2, · · · , ct ∈ {m+1, ks−1+1, · · · , k1 + 1},
while ct+1, ct+2, · · · , cs ∈ {m+1, ks−1+1, · · · , k1 + 1} are

VOLUME 7, 2019 50257



Y. Zhang et al.: Fast Asymptotic Square Root for Two Types of Special Pentanomials

even, then we have

x
1
2 = x

c1−1
2 +

1
2 + · · · + x

ct−1
2 +

1
2 + x

ct+1
2 + · · · + x

cs
2 ,

⇒ x
1
2 (1+ x

c1−1
2 + · · · + x

ct−1
2 ) = x

ct+1
2 + · · · + x

cs
2 ,

⇒ x
1
2 = (x

ct+1
2 + · · · +x

cs
2 ) · (1+ x

c1−1
2 + · · · +x

ct−1
2 )−1.

Special case: If k1 = 1, the deduction of x1/2 is a slightly
different:

x = xm + xks−1 + xks−2 + · · · + xk2 + 1,

⇒ x
1
2 = x

m
2 + x

ks−1
2 + x

ks−2
2 + · · · + x

k2
2 + 1.

Analogous with previous deduction, assume that c1, c2, · · · ,
ct ∈ {m, ks−1, · · · , k2} are odd numbers, while ct+1, ct+2,
· · · , cs−1 ∈ {m, ks−1, · · · , k2} are even numbers. Then,

x
1
2 = x

c1−1
2 +

1
2 + · · · + x

ct−1
2 +

1
2 + x

ct+1
2 + · · · + x

cs−1
2 + 1,

⇒ x
1
2 (1+x

c1−1
2 + · · · +x

ct−1
2 ) = 1+ x

ct+1
2 +· · · + x

cs−1
2 ,

⇒ x
1
2 = (1+ x

ct+1
2 + · · · + x

cs−1
2 )

· (1+ x
c1−1
2 + · · · + x

ct−1
2 )−1.

From the above expression, it is obvious that in this case,
the formula of x1/2 depends on the inversion of 1 + x

c1−1
2 +

· · · + x
ct−1
2 , where c1, c2, · · · , ct are odd. Clearly, with

the increase of these odd numbers, the formulation of x1/2

became more complicated. Accordingly, the complexity of
square root formulae also increases. Therefore, if we can
simplify the form of x1/2, the square root computation will
be simplified as well. Inspired by SPB squaring, we multiply
the square root by a proper factor and introduce a new type
of square root operation. In above case, we compute A1/2 · ω
instead of A1/2, where ω = 1+ x

c1−1
2 + · · · + x

ct−1
2 . Clearly,

one can check that

A
1
2 · ω = Aeven · ω + x

1
2Aodd · ω

= Aeven · ω + Aodd · ε, (3)

where ε = x
ct+1
2 +· · ·+ x

cs
2 . Please note that this square root

is not equal to the original one. We call this square root as
‘‘Asymptotic Square Root’’. Its definition is given by
Definition 1: Assume that f (x) is an irreducible polyno-

mial over F2. Let A be an arbitrary element of GF(2m)∗,
which is generated by f (x), and ω is defined as above. Then
the asymptotic square root of A is defined as A1/2 · ω, while
ω is named as the asymptotic factor.

As shown in (3), one can check that the computation of
asymptotic square is relatively easy. More explicitly, for the
space complexity, we have following proposition:
Proposition 1: If the degree of f (x) is fixed, the space

complexity of asymptotic square root computation is linear
with the number of terms including in f (x).

Proof: As shown previously, f (x) consists of s + 1
nonzero terms. Based on the formulation of ω, ε, it is note-
worthy that ω and ε totally contain s nonzero terms. Mean-
while, from (3), we can note that the computation of A

1
2 ·ω is

equivalent to adding s parts which consist of aboutm/2 terms.

We immediately know this calculation costs at most m(s−1)2 ,
which is linear with s. Thus, we conclude the proposition.

In addition, in parallel implementation, its circuit delay
highly relies on the number of terms in ω and ε. If ω and ε

consist of the same number of terms, i.e., s/2 terms, the com-
putation of (3) in parallel costs at most (dlog2 se − 1)TX .
Thus, one can roughly check that the less terms contained
in f (x), the more efficient asymptotic square root will be. It is
straightforward that the asymptotic square root for trinomial
is efficient. In the following sections, we show that besides
trinomials, some specific type of polynomial can also develop
efficient architecture for asymptotic square root computation.
More explicitly, we investigate the explicit formulation of
asymptotic square root for two newly proposed pentanomials
and describe their application.

IV. ASYMPTOTIC SQUARE ROOT FOR
TYPE C.1 AND C.2 PENTANOMIALS
In 2013, Cilardo [11] proposed two new types of irreducible
pentanomials, i.e.,

• Type C.1: xm + xm−1 + xk + x + 1, (m− 1 > k > 1),
• Type C.2: xm + xm−k1 + xk2 + xk1 , (m − k1 > k2 >

2k1 > 1).

One of the main reasons to recommend such pentanomials
is that they are extremely abundant. There exists at least
one Type C.1 or C.2 pentanomial for any degree less than
m ≤ 10000. On top of that, the bit-parallel multipliers using
these types of pentanomials combined with GPB match or
outperform the best multipliers for other commonly used pen-
tanomials, e.g., Type I and II pentanomials [20], [21] from
both the area and time point of view. Efficient squarer for
Type C.1 pentanomial [18] and Type C.2 pentanomial [19]
are also proposed. These squarers only require 2TX delay for
parallel implementation, which is faster than classic squaring.

In this section, we study the asymptotic square root for
these types of pentanomials in order to build a parallel expo-
nentiation algorithm which uses GPB squarer and square root
simultaneously. Additionally, consider the reciprocal prop-
erty of these types of pentanomials [11], in this contribution,
we only investigate the case of k < m − 1 (Type C.1 pen-
tanomial) or the case ofm−k1 > 2k2 (Type C.2 pentanomial).

A. ASYMPTOTIC SQUARE ROOT FOR TYPE
C.1 PENTANOMIAL
Firstly, let us consider finite field generated by an irreducible
Type C.1 pentanomial xm + xm−1 + xk + x + 1. Based on
related analysis in Section III, it is clear that

x = xm + xm−1 + xk + 1.

Thus, the formulation of x1/2 depends on the parity of m,

m − 1 and k . Note that in this case, the parity of m also
determines the parity of m − 1. Combined with previous
description in Section III, there are four cases need to be
considered:

50258 VOLUME 7, 2019



Y. Zhang et al.: Fast Asymptotic Square Root for Two Types of Special Pentanomials

TABLE 1. Asymptotic factor ω and ε for different cases of Type
C.1 pentanomial.

Case 1: m even, k odd. In this case, we know that 2 | m,
but 2 - m− 1 and 2 - k . Let n = m/2, then we have

x
1
2 = xn + xn−1 · x

1
2 + x

k−1
2 · x

1
2 + 1

⇒ x
1
2 (1+ xn−1 + x

k−1
2 ) = 1+ xn,

⇒ x
1
2 = (1+ xn) · (1+ xn−1 + x

k−1
2 )−1.

Let ω = 1+ xn−1 + x
k−1
2 and ε = 1+ xn, then

A
1
2 · ω = Aeven · ω + Aodd · ε

= Aeven · (1+ xn−1 + x
k−1
2 )+ Aodd · (1+ xn),

where Aeven =
∑n−1

i=0 a2ix
i and Aodd =

∑n−1
i=0 a2i+1x

i. Note
that both Aeven and Aodd consist of n terms. There is no
overlap between Aodd and Aoddxn. Meanwhile, Aeven overlaps
Aevenxn−1 with only one bit. Furthermore, since the degree of
Aeven and Aodd are n − 1, deg(Aevenω) = n − 1 + n − 1 =
2n−2 < m−1 and deg(Aodd+Aoddxn) = n+n−1 = m−1.
Therefore, no further reduction is needed in above expression.

Now, we can write the explicit formulation for asymptotic
square root of A in this case. Let D =

∑m−1
i=0 dix i denote the

result of A1/2 · ω. Then, the coefficients of D are given by

di =



a2i+1 + a2i, 0 ≤ i ≤
k − 3
2

,

a2i−k+1 + a2i+1 + a2i,
k − 1
2
≤ i ≤ n− 2,

am−k−1 + am−1 + am−2 + a0,
i = n− 1,

a2i−k+1 + a2(i−n+1) + a2(i−n)+1,

n ≤ i ≤ n− 1+
k − 1
2

,

a2(i−n+1) + a2(i−n)+1,

n+
k − 1
2
≤ i ≤ m− 2,

am−1, i = m− 1.

(4)

It can be verified that above expression has an associated cost
of 3m

2 XOR gates and two TX delays in parallel implementa-
tion. The asymptotic square root computation for the rest of
cases of Type C.1 pentanomial follows the same line as we did
in Case 1. For simplicity, we do not present all the deduction
details. The following table gives the values of ω and ε for
different cases:

Then, the explicit asymptotic square root formulae are
given in details.

Case 2: m even, k even, n = m/2.

di =



a2i+1 + a2i, 0 ≤ i ≤
k
2
− 1,

a2i−k+1 + a2i+1 + a2i,
k
2
≤ i ≤ n− 2,

am−k−1 + am−1 + am−2 + a0,
i = n− 1,

a2i−k+1+a2(i−n+1)+a2(i−n)+1,

n ≤ i ≤ n−1+
k
2
,

a2(i−n+1)+a2(i−n)+1,

n+
k
2
≤ i ≤ m−2,

am−1, i = m− 1.

(5)

Case 3: Both m and k are odd, n = (m− 1)/2. Let Aeven =∑n
i=0 a2ix

i and Aodd =
∑n−1

i=0 a2i+1x
i, then,

di =



a2i+1 + a2i, 0 ≤ i ≤
k − 3
2

,

a2i−k+1 + a2i+1 + a2i,
k − 1
2
≤ i ≤ n− 1,

am−k + a1 + am−1 + a0,
i = n,

a2i−k+1+a2(i−n)+a2(i−n)+1,

n+1 ≤ i ≤ n+
k − 1
2

,

a2(i−n) + a2(i−n)+1,

n+
k − 1
2
+1≤ i ≤m−2,

am−1, i = m− 1.

(6)

Case 4: m odd, k even, n = (m− 1)/2.

di =



a2i+1 + a2i, 0 ≤ i ≤
k
2
− 1,

a2i−k+1 + a2i+1 + a2i,

k
2
≤ i ≤ n− 1,

am−k + a1 + am−1 + a0,

i = n,

a2i−k+1+a2(i−n)+a2(i−n)+1,

n+1 ≤ i ≤ n+
k
2
− 1,

a2(i−n)+a2(i−n)+1,

n+
k
2
≤ i ≤ m−2,

am−1, i = m− 1.

(7)

B. ASYMPTOTIC SQUARE ROOT FOR TYPE
C.2 PENTANOMIAL
Since Type C.2 pentanomial xm + xm−k1 + xk2 + xk1 + 1,
k1 > 1 has four uncertain parameters, the computation of x1/2

VOLUME 7, 2019 50259



Y. Zhang et al.: Fast Asymptotic Square Root for Two Types of Special Pentanomials

TABLE 2. Asymptotic factor ω and ε for different cases of Type
C.1 pentanomial.

is little more complicated than that of Type C.1 pentanomial,
which leads to more cases needed to be analyzed. Note that
x = xm+1 + xm−k1+1 + xk2+1 + xk1+1. Then,

x
1
2 = x

m+1
2 + x

m−k1+1
2 + x

k2+1
2 + x

k1+1
2 . (8)

Obviously, to obtain the formulae of ω and ε, we have to
consider the parity of m, k2, k1. Here, the parity of m− k1 is
determined by m and k1. In fact, irreducible Type C.2 pen-
tanomials can be divided into seven categories, which are
presented in the following table.

Analogous to Type C.1 pentanomial, we can give the
asymptotic square root formulation for each case according
to the parities ofm, k1, k2. Without loss of generality, we ana-
lyze the first square root computation and put the rest of the
cases in the appendices A and B.
Case 1: m, k2 and k1 are all odd. In this case, it is clear that

m+1, k2+1 and k1+1 are all even numbers, whilem−k1+1
is odd. Then, (8) can be rewritten as:

x
1
2 (1+ x

m−k1
2 ) = x

m+1
2 + x

k2+1
2 + x

k1+1
2 .

Thus, in this case we have ω = 1 + x
m−k1

2 and ε = x
m+1
2 +

x
k2+1
2 + x

k1+1
2 . The asymptotic square root here is

A
1
2 · ω = Aeven · (1+ x

m−k1
2 )+Aodd · (xn+1+x

k2+1
2 +x

k1+1
2 ),

in which Aeven =
∑n

i=0 a2ix
i, Aodd =

∑n−1
i=0 a2i+1x

i and
n = (m − 1)/2. One can check that degAeven · ω = n +
(m − k1)/2 = m − (k1 + 1)/2 ≤ m − 1 and degAodd · ε =
n−1+(m+1)/2 = m−1. The degree of these two expressions
are less than m − 1, which means no further reduction is
needed. Once again, we compute D =

∑m−1
i=0 dix i such

that D = A1/2 · ω mod xm + xm−k1 + xk2 + xk1 + 1. Firstly,
notice that Aoddxn+1 does not overlap with Aeven. Therefore,
no logic gate is needed to compute Aeven + Aoddxn+1. Then,
m−k1 > 2k2, k2 > 2k1, we have

m−k1
2 > k2 > k2+1

2 > k1+1
2 .

The asymptotic square root formula is given by

di =



a2i, 0 ≤ i ≤
k1 − 1

2
,

a2i + a2i−k1 ,

k1 + 1
2
≤ i ≤

k2 − 1
2

,

a2i + a2i−k2 + a2i−k1 ,

k2 + 1
2
≤ i ≤

m− k1 − 2
2

,

a2i + a2i−k2 + a2i−k1+a2i−m+k1 ,

m− k1
2
≤ i ≤

m− 1
2

,

a2i−k2+a2i−k1+a2i−m+k1+a2i−m,

m+ 1
2
≤ i ≤

m+ k1 − 2
2

,

a2i−k2 + a2i−m+k1 + a2i−m,

m+ k1
2
≤ i ≤

m+ k2 − 2
2

,

a2i−m+k1 + a2i−m,

m+ k2
2
≤ i ≤

2m− k1 − 1
2

,

a2i−m,
2m− k1 + 1

2
≤ i ≤ m− 1.

(9)

TABLE 3. Space and time complexities of asymptotic square root
operations for Type C.1 and C.2 pentanomials.

Similarly, we can obtain all the asymptotic square root for-
mulations. In appendix A, Table A1 presents the explicit for-
mulations with respect to the factors ω and ε. In appendix B,
expressions (13-18) present the explicit asymptotic square
root formulations. One can check that all these formulae
can be implemented in only 2TX , with no more than 3m

2
XOR gates. In Table 3, we summarize the space and time

50260 VOLUME 7, 2019



Y. Zhang et al.: Fast Asymptotic Square Root for Two Types of Special Pentanomials

complexities of the asymptotic square root for all Type
C.1 and C.2 pentanomials. For simplicity, we combined some
cases with the same space and time complexities. Compared
with trinomial, the asymptotic square roots in these cases
have one more TX delay. But Type C.1 and C.2 pentanomi-
als are more abundant, this result will be interesting for
the m where corresponding irreducible trinomial does not
exist.

Furthermore, these operations coincidentally have at
least the same circuit delay compared with SPB
squarings [18], [19]. In the following section, we describe a
new parallel exponentiation algorithm for Type C.1 and C.2
pentanomials, which utilize asymptotic square root and SPB
squaring as mainly building blocks.
A Small Example: Still consider the finite field GF(215)
defined by x15 + x13 + x5 + x2 + 1. According to previous
analysis, we have ω = x + 1 and ε = x8+ x7+ x3. Given an
arbitrary element A =

∑14
i=0 aix

i, the asymptotic square root
of A is A1/2 · (x + 1) =

∑14
i=0 dix

i, where

d0 = a0, d5 = a5 + a10 + a8, d10 = a5 + a7,

d1 = a0 + a2, d6 = a7 + a10 + a12, d11 = a9 + a7,

d2 = a2+a4, d7 = a14+a1 + a12 + a9, d12 = a9 + a11,

d3 = a1 + a4 + a6, d8 = a1 + a3 + a11 + a14,

d13 = a11 + a13, d4 = a3 + a6 + a8, d9 = a13 + a3 + a5,

d14 = a13.

Obviously, one can check that the computation of above
coefficients di requires 22 XOR gates and 2TX in parallel.
Specifically, such a square root has the same delay compared
with GPB squaring, as shown in Section II.

V. APPLICATION: EXPONENTIATION BASED ON SPB
SQUARING AND ASYMPTOTIC SQUARE ROOT
In general, the square root has several applications in
elliptic-curve cryptography (ECC), particularly as an impor-
tant building block for implementing the point halving prim-
itive. On top of that, square root can also be used to speed up
the field exponentiation [8], which is important to scalar mul-
tiplication in ECC. In this section, we show that asymptotic
square root can substitute the ordinary one in exponentiation
algorithm under a slight modification.

In fact, the algorithm proposed in [8] is a parallel expo-
nentiation algorithm over GF(2m). Such an algorithm com-
prises two sub-exponentiations that are based on squaring
and square root operation, respectively. For square root based
exponentiation, it mainly utilized the equation

A2
m−i
= A2

−i
, i = 1, 2, · · · ,m− 1,

where A ∈ GF(2m) is an arbitrary nonzero element. The
above equation can be easily proved using Fermat Little

Theorem [3]. Let e = (em−1, · · · , e1, e0)2 be a m-bit
nonzero integer. By substituting half the squaring operations
with square root operations, the exponentiation Ae can be
written as

Ae =
∏m−1

i=0
A2

iei =
∏m−1

i=n
A2

iei ·
∏n−1

i=0
A2

iei

=

∏m−1

i=n
A2
−(m−i)ei ·

∏n−1

i=0
A2

iei . (10)

where 0 < n < m. In [8], the parameter n is chosen as bm2 c.
One can check that the two sub-exponentiations presented in
the above expression can be performed simultaneously, thus,
the whole algorithm achieved better performance compared
with the classic one. However, it is clear that the performance
of such an algorithm depends on the efficiency of square root
as well as squaring. In our case, the asymptotic square root
has at least the same gates delay as SPB squaring [18], [19].
However, they both have extra parameters. Based on this fact,
Algorithm 1 describes an improved exponentiation algorithm
for Ae, which utilized SPB squaring and square root operator.
Proposition 2: The compensatory parameter ω∗ in Algo-

rithm 1 can be obtained as

ω∗ = ω2n−2
· (r)2

n
−1. (11)

Proof: According to steps 4-7 of Algorithm 1, it totally
performs m− n+ 1 asymptotic square root operations and n
SPB squarings. Each time we execute the body in the loops,
there are one r (for GPB squaring) and one ω (for asymptotic
square root) multiplying the results. In the end, it follows that
the extra parameter is

ω · ω
1
2 · ω

1
4 · · ·ω

1
2m−n · r · r2 · · · r2

n−1

= ω2−2−(m−n)
· r2

n
−1

= ω2−2n
· r2

n
−1. (12)

Since ω∗ is the compensatory parameter used to correct the
final result, we know that (12) is equal to the inversion of ω∗.
Then, the result is direct.

Algorithm 1 Exponentiation Based on SPB Squaring and
Asymptotic Square Root
Input: A ∈ GF(2m), f (x), e = (em−1, em−2, · · · , e1, e0)2
Output: B = Ae mod f (x)
1: B = C = 1;
2: em = 0;
3: n = bm2 c;
4: for i = n− 1 down to 0 do for j = n to m do
5: B = B2 · r ; C = C

1
2 · ω;

6: if ei == 1 then if ej == 1 then
7: B = B·A mod f (x); C = C ·A mod f (x);
8: end if end if
9: end for end for
10: B = B · C ;
11: B = B · ω∗;
12: return B;

VOLUME 7, 2019 50261



Y. Zhang et al.: Fast Asymptotic Square Root for Two Types of Special Pentanomials

Description: The parameter ω is the asymptotic factor
while r is the SPB factor. The two procedures presented in
steps 4-9 are running in parallel. Also notice that the choice
of n in step 3 is slightly different from [8], as we found that
this selection can make the number of squaring and square
root almost equal, which can save the whole algorithm delay.
Since we utilize the SPB squaring and asymptotic square
root operator instead of the original ones, ω∗ in step 11
is a compensatory parameter which is used to correct the
final exponentiation. The form of ω∗ is given in following
proposition.
Proposition 3: Algorithm 1 is correct and it returns the

exponentiation Ae.
Proof: According to the description in Algorithm 1 and

Proposition 1, since the compensatory parameter ω∗ will
correct the final result influenced by adding factors to the
squaring and square root, we can omit all these parameters
here. On top of that, we know that this algorithm recursively
computes A2

i
, i = 0, 1, ·, n−1 and A2

−i
, i = 1, 2, · · · ,m−n.

Note that n = bm2 c andm−n = d
m
2 e. Plus the finalmultiplica-

tion in Step 10, one can check that Algorithm 1 does compute
all the operations contained in (10). We immediately obtain
the conclusion.

Additionally, based on proposition 1, it is clear that the
explicit formula of ω∗ relies on the forms of ω and r , which
vary according to the explicit form of f (x). For example,
Type C.1 pentanomial x24 + x23 + x14 + x + 1 defines the
finite field GF(224). Please note that there is no irreducible
trinomials nor Type-II pentanomials for this degree. We have
ω∗ = x21 + x20 + x19 + x16 + x15 + x11 + x10 + x8 + x2.
Furthermore, the constant multiplication B · ω∗ can be

performed using Mastrovito approach. Since ω∗ is constant,
the corresponding product matrix is fixed, no AND gate is
needed. In the former example, ω∗ only contains 9 non-zero
terms, which lead to a little sparse Mastrovito matrix for
this constant multiplication. Anyhow, such a multiplication
requires no more than m2

− m XOR gates with at most
dlog2 me XOR gate delay.

APPENDIX A: THE ω AND ε OF ASYMPTOTIC SQUARE
ROOT FOR TYPE C.2 PENTANOMIALS

TABLE 4. Asymptotic factor ω and ε for different cases of Type
C.2 pentanomial.

APPENDIX B: ASYMPTOTIC SQUARE ROOT FORMULAE
FOR TYPE C.2 PENTANOMIAL
Case 2: m is even, k2 is even, k1 is odd.

di

=



a2i, i = 0, 1, . . . ,
k1 − 1

2
,

a2i + a2i−k1 ,

i =
k1 + 1

2
,
k1 + 3

2
, . . . ,

k2 − 2
2

,

a2i + a2i−k2 + a2i−k1 ,

i =
k2
2

,
k2 + 2

2
, . . . ,

m− k1 − 1
2

,

a2i + a2i−k2 + a2i−k1 + a2i−m+k1 ,

i =
m− k1 + 1

2
,
m− k1 + 3

2
, . . . ,

m− 2
2

,

a2i−k2 + a2i−k1 + a2i−m+k1 + a2i−m,

i =
m
2

,
m+ 2
2

, . . . ,
m+ k1 − 1

2
,

a2i−k2 + a2i−m+k1 + a2i−m,

i =
m+ k1 + 1

2
,
m+ k1 + 3

2
, . . . ,

m+ k2 − 2
2

,

a2i−m+k1 + a2i−m,

i =
m+ k2

2
,
m+ k2 + 2

2
, . . . ,

2m− k1 − 1
2

,

a2i−m,

i =
2m− k1 + 1

2
,
2m− k1 + 3

2
, . . . ,m− 1.

(13)

Case 3: m is odd, k2 is odd, k1 is even.

di

=



a2i, i = 0, 1, . . . ,
k1 − 2

2
,

a2i + a2i−k1 ,

i =
k1
2

,
k1 + 2

2
, . . . ,

k2 − 1
2

,

a2i + a2i−k2 + a2i−k1 ,

i =
k2 + 1

2
,
k2 + 3

2
, . . . ,

m− k1 − 1
2

,

a2i + a2i−k2 + a2i−k1 + a2i−m+k1 ,

i =
m− k1 + 1

2
,
m− k1 + 3

2
, . . . ,

m− 1
2

,

a2i−k2 + a2i−k1 + a2i−m+k1 + a2i−m,

i =
m+ 1
2

,
m+ 3
2

, . . . ,
m+ k1 − 1

2
,

a2i−k2 + a2i−m+k1 + a2i−m,

i =
m+ k1 + 1

2
,
m+ k1 + 3

2
, . . . ,

m+ k2 − 2
2

,

a2i−m+k1 + a2i−m,

i =
m+ k2

2
,
m+ k2 + 2

2
, . . . ,

2m− k1 − 2
2

,

a2i−m,

i =
2m− k1

2
,
2m− k1 + 2

2
, . . . ,m− 1.

(14)

50262 VOLUME 7, 2019



Y. Zhang et al.: Fast Asymptotic Square Root for Two Types of Special Pentanomials

Case 4: m is odd, k2 is even, k1 is odd.

di

=



a2i, i = 0, 1, . . . ,
k1 − 1

2
,

a2i + a2i−k1 ,

i =
k1 + 1

2
,
k1 + 3

2
, . . . ,

k2 − 2
2

,

a2i + a2i−k2 + a2i−k1 ,

i =
k2
2

,
k2 + 2

2
, . . . ,

m− k1 − 2
2

,

a2i + a2i−k2 + a2i−k1 + a2i−m+k1 ,

i =
m− k1

2
,
m− k1 + 2

2
, . . . ,

m− 1
2

,

a2i−k2 + a2i−k1 + a2i−m+k1 + a2i−m,

i =
m+ 1
2

,
m+ 3
2

, . . . ,
m+ k1 − 2

2
,

a2i−k2 + a2i−m+k1 + a2i−m,

i =
m+ k1

2
,
m+ k1 + 2

2
, . . . ,

m+ k2 − 1
2

,

a2i−m+k1 + a2i−m,

i =
m+ k2 + 1

2
,
m+ k2 + 3

2
, . . . ,

2m−k1−1
2

,

a2i−m,

i =
2m− k1 + 1

2
,
2m− k1 + 3

2
, . . . ,m− 1.

(15)

Case 5: m is even, k2 is odd, k1 is odd.

di

=



a2i, i = 0, 1, . . . ,
k1 − 1

2
,

a2i + a2i−k1 ,

i =
k1 + 1

2
,
k1 + 3

2
, . . . ,

k2 − 1
2

,

a2i + a2i−k2 + a2i−k1 ,

i =
k2 + 1

2
,
k2 + 3

2
, . . . ,

m− k1 − 1
2

,

a2i + a2i−k2 + a2i−k1 + a2i−m+k1 ,

i =
m− k1 + 1

2
,
m− k1 + 3

2
, . . . ,

m− 2
2

,

a2i−k2 + a2i−k1 + a2i−m+k1 + a2i−m,

i =
m
2

,
m+ 2
2

, . . . ,
m+ k1 − 1

2
,

a2i−k2 + a2i−m+k1 + a2i−m,

i =
m+ k1 + 1

2
,
m+ k1 + 3

2
, . . . ,

m+ k2 − 1
2

,

a2i−m+k1 + a2i−m,

i =
m+ k2 + 1

2
,
m+ k2 + 3

2
, . . . ,

2m−k1−1
2

,

a2i−m,

i =
2m− k1 + 1

2
,
2m− k1 + 3

2
, . . . ,m− 1.

(16)

Case 6: m is even, k2 is odd, k1 is even.

di

=



a2i, i = 0, 1, . . . ,
k1 − 2

2
,

a2i + a2i−k1 ,

i =
k1
2

,
k1 + 2

2
, . . . ,

k2 − 1
2

,

a2i + a2i−k2 + a2i−k1 ,

i =
k2 + 1

2
,
k2 + 3

2
, . . . ,

m− k1 − 2
2

,

a2i + a2i−k2 + a2i−k1 + a2i−m+k1 ,

i =
m− k1

2
,
m− k1 + 2

2
, . . . ,

m− 2
2

,

a2i−k2 + a2i−k1 + a2i−m+k1 + a2i−m,

i =
m
2

,
m+ 2
2

, . . . ,
m+ k1 − 2

2
,

a2i−k2 + a2i−m+k1 + a2i−m,

i =
m+ k1

2
,
m+ k1 + 2

2
, . . . ,

m+ k2 − 1
2

,

a2i−m+k1 + a2i−m,

i =
m+ k2 + 1

2
,
m+ k2 + 3

2
, . . . ,

2m−k1−2
2

,

a2i−m,

i =
2m− k1

2
,
2m− k1 + 2

2
, . . . ,m− 1.

(17)

Case 7: m is odd, k2 is even, k1 is even.

di

=



a2i, i = 0, 1, . . . ,
k1 − 2

2
,

a2i + a2i−k1 ,

i =
k1
2

,
k1 + 2

2
, . . . ,

k2 − 2
2

,

a2i + a2i−k2 + a2i−k1 ,

i =
k2
2

,
k2 + 2

2
, . . . ,

m− k1 − 1
2

,

a2i + a2i−k2 + a2i−k1 + a2i−m+k1 ,

i =
m− k1 + 1

2
,
m− k1 + 3

2
, . . . ,

m− 1
2

,

a2i−k2 + a2i−k1 + a2i−m+k1 + a2i−m,

i =
m+ 1
2

,
m+ 3
2

, . . . ,
m+ k1 − 1

2
,

a2i−k2 + a2i−m+k1 + a2i−m,

i =
m+ k1 + 1

2
,
m+ k1 + 3

2
, . . . ,

m+ k2 − 1
2

,

a2i−m+k1 + a2i−m,

i =
m+ k2 + 1

2
,
m+ k2 + 3

2
, . . . ,

2m− k1−2
2

,

a2i−m,

i =
2m− k1

2
,
2m− k1 + 2

2
, . . . ,m− 1.

(18)

VOLUME 7, 2019 50263



Y. Zhang et al.: Fast Asymptotic Square Root for Two Types of Special Pentanomials

VI. CONCLUSION
In this paper, we introduce the notion of asymptotic square
root for all polynomials. Particularly, we have proposed a
new type of asymptotic square root operation for two classes
of irreducible pentanomials. By choosing a proper factor,
the proposed scheme has only 2 TX delays and its space
complexity matches the best squaring of the same kind. As an
important application, we show that this type of square root
combined with GPB squaring can speed up parallel exponen-
tiation algorithm, which is based on ordinary squaring and
square root.

REFERENCES
[1] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Appli-

cations. New York, NY, USA: Cambridge Univ. Press, 1994.
[2] R. Lidl and H. Niederreiter, Finite Fields. NewYork, NY, USA: Cambridge

Univ. Press, 1996.
[3] J. von Zur Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed.

New York, NY, USA: Cambridge Univ. Press, 2013.
[4] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve

Cryptography. New York, NY, USA: Springer-Verlag, 2004.
[5] R. Schroeppel, C. Beaver, R. Gonzales, R. Miller, and T. Draelos, ‘‘A low-

power design for an elliptic curve digital signature chip,’’ in Proc. 4th Int.
Workshop Cryptograph. Hardware Embedded Syst., in Lecture Notes in
Computer Science, vol. 2523, Feb. 2003, pp. 366–380.

[6] F. Rodríguez-Henríquez, G. Morales-Luna, N. A. Saqib, and
N. Cruz-Cortés, ‘‘Parallel Itoh–Tsujii multiplicative inversion algorithm
for a special class of trinomials,’’ Des. Codes Cryptogr., vol. 45, no. 1,
pp. 19–37, Jun. 2007.

[7] K. Fong, D. Hankerson, J. López, and A. Menezes, ‘‘Field inversion
and point halving revisited,’’ IEEE Trans. Comput., vol. 53, no. 8,
pp. 1047–1059, Aug. 2004.

[8] F. Rodríguez-Henríquez, G. Morales-Luna, and J. Lópz, ‘‘low-complexity
bit-parallel square root computation overGF(2m) for all trinomials,’’ IEEE
Trans. Comput., vol. 57, no. 4, pp. 472–480, Apr. 2008.

[9] B. Sunar and C. K. Koc, ‘‘Mastrovito multiplier for all trinomials,’’ IEEE
Trans. Comput., vol. 48, no. 5, pp. 522–527, May 1999.

[10] T. Zhang and K. K. Parhi, ‘‘Systematic design of original and modified
Mastrovito multipliers for general irreducible polynomials,’’ IEEE Trans.
Comput., vol. 50, no. 7, pp. 734–749, Jul. 2001.

[11] A. Cilardo, ‘‘Fast parallel GF(2m) polynomial multiplication for all
degrees,’’ IEEE Trans. Comput., vol. 62, no. 5, pp. 929–943, May 2013.

[12] H. Wu, ‘‘Montgomery multiplier and squarer for a class of finite fields,’’
IEEE Trans. Comput., vol. 51, no. 5, pp. 521–529, May 2002.

[13] R. Schoof, ‘‘Elliptic curves over finite fields and the computation of square
roots p,’’ Math. Comput., vol. 44, no. 170, pp. 483–494, Apr. 1985.

[14] S.Müller, ‘‘On the computation of square roots in finite fields,’’Des. Codes
Cryptogr., vol. 31, no. 3, pp. 301–312, Mar. 2004.

[15] E. Ozdemir, ‘‘Computing square roots in finite fields,’’ IEEE Trans. Inf.
Theory, vol. 59, no. 9, pp. 5613–5615, Sep. 2013.

[16] P. Nguyen, ‘‘A montgomery-like square root for the number field sieve,’’
in Proc. Int. Algorithmic Number Theory Symp. (ANTS), in Lecture Notes
in Computer Science, vol. 1423. Berlin, Germany: Springer, May 2006,
pp. 151–168.

[17] Y. Li, Y. Zhang, and X. Guo, ‘‘Fast montgomery-like square root compu-
tation for all trinomials,’’ IEICE Trans. Fundamentals,vol. E102.A, no. 1,
pp. 307–309, Jan. 2019.

[18] X. Xiong and H. Fan, ‘‘GF(2n) bit-parallel squarer using generalised
polynomial basis for new class of irreducible pentanomials,’’ Electron.
Lett., vol. 50, no. 9, pp. 655–657, Apr. 2014.

[19] Q. Chen, Y. Li, and C. Qi, ‘‘Efficient GF(2m) squarer for type C.2 pen-
tanomial,’’ Electron. Lett., vol. 54, no. 13, pp. 829–831, May 2018.

[20] F. Rodríguez-Henrìquez, and Ç. K. Koç, ‘‘Parallel multipliers based on
special irreducible pentanomials,’’ IEEE Trans. Comput., vol. 52, no. 12,
pp. 1535–1542, Dec. 2003.

[21] S.-M. Park, ‘‘Explicit formulae of polynomial basis squarer for pentanomi-
als using weakly dual basis,’’ Integration, vol. 45, pp. 205–210, Mar. 2012.

YU ZHANG received the B.Sc. degree from
the Henan University of Economics and Law,
in 2008, and the Ph.D. degree from the Huazhong
University of Science and Technology, in 2015.
Since 2016, he has been with the Department of
Computer Science and Information Technology,
Xinyang Normal University, where he is currently
a Lecturer. His major interests include information
security, cryptography, and information retrieval.

YIN LI received the B.Sc. degree in informa-
tion engineering and the M.Sc. degree in cryptog-
raphy from Information Engineering University,
Zhenzhou, in 2004 and 2007, respectively, and the
Ph.D. degree in computer science from Shanghai
Jiaotong University (SJTU), Shanghai, in 2011.
He held a postdoctoral position with the Depart-
ment of Computer Science, Ben-Gurion Univer-
sity of the Negev, Israel. He is currently a Lecturer
with the Department of Computer Science and

Technology, Xinyang Normal University, Henan, China. His current research
interests include algorithm and architectures for computation in finite field,
computer algebra, secure cloud computing.

QING CHEN received the B.Sc. degree in
mathematics from Xinyang Normal University,
in 2016, where she is currently pursuing the M.D.
degree with the Department of Mathematics. Her
research interests include computer algebra and
cryptography.

50264 VOLUME 7, 2019


	INTRODUCTION
	PRELIMINARY
	THE FONG ET AL. METHOD
	INVERSIVE MULTIPLICATIVE MATRIX APPROACH
	LIMITATION OF SQUARE ROOT

	ASYMPTOTIC SQUARE ROOT
	ASYMPTOTIC SQUARE ROOT FOR TYPE C.1 AND C.2 PENTANOMIALS
	ASYMPTOTIC SQUARE ROOT FOR TYPE C.1 PENTANOMIAL
	ASYMPTOTIC SQUARE ROOT FOR TYPE C.2 PENTANOMIAL

	APPLICATION: EXPONENTIATION BASED ON SPB SQUARING AND ASYMPTOTIC SQUARE ROOT
	CONCLUSION
	REFERENCES
	Biographies
	YU ZHANG
	YIN LI
	QING CHEN


