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ABSTRACT In the past few years, China’s space science and application has entered the stage of the
space station with large-scale space science experiments. The number of flight missions related to space
science grows rapidly, meanwhile, the corresponding payloads from various fields of science become more
complicated. This paper breaks through the traditional management mode in which the payloads of space
science are usually monitored by space-ground telemetry links and proposes an approach to utilize workflow
net models to monitor the experimental processes of on-orbit payloads in real time. This approach can
effectively offload the pressure of space-ground communication as well as the pressure of ground monitor
stations. In this approach, spectral graph clustering is used in decomposing a workflow net model when
the model is too huge to be processed in parallel on one single GPU (graphic processing units) device,
and hybrid parallel computing algorithms are designed to carry out conformance checking operations based
on observed events from on-orbit payloads in real time. The algorithms are implemented with a gather-
apply-scatter model in CUDA 9.0 (compute unified device architecture) on Jetson TX2i module and are
benchmarked. The performance of the algorithms is acceptable for practical use on orbit.

INDEX TERMS Petri nets, parallel processing, parallel algorithms, partitioning algorithms, network
theory (graphs).

I. INTRODUCTION
With the development of process modeling theory and data
mining technology, process mining technology is widely
applied in many fields, e.g. financial industry [1], manufac-
turing industry [2], business management [3]. Moreover, this
technology is also applied in the field of scientific research to
assist different scientists in coping with complicated exper-
iment workflows (a.k.a. scientific workflows) [4], [5], such
as Astrophysics, Heliophysics and Biomedicine. Scientific
workflows (a.k.a. data-intensive workflows) are routinely
used in the majority of data-driven research disciplines,
to serve computational, experimental, and observational sci-
ences. The related experiments are often exploiting rich
and diverse data resources and are conducted on large-
scale, parallel, distributed and heterogeneous computing plat-
forms [6], [7]. As described in [8], scientific workflow system
provides an easy-to-use environment for individual applica-
tion scientists and helps them to create their own workflows;
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it helps the scientists to execute their workflows and view
their results in real time; it simplifies the process of shar-
ing and reusing workflows between the scientists; it enables
scientists to track the provenance of the workflow execu-
tion results and the workflow creation steps. The research
hotspots related to conventional scientific workflows include
the scheduling strategies of workflow tasks and data move-
ment, programming and usability of workflow tools, work-
flow execution monitoring and the validation of workflow
executions [7]. Nevertheless, to the best of our knowledge,
the scientific workflows for space science experiments on
orbit have never been focused.

For the past few years, China’s space science and appli-
cation has entered the stage of the space station with large-
scale space experiments. Thus, it poses a great challenge
to the management of space science experiments, especially
experiment process monitoring. Commercial-Off-The-Shelf
(COTS) devices are competing with conventional radiation-
hardened (rad-hard) components by offering the vari-
ous advantages [9], such as ‘‘higher performance, ease
of maintenance, faster/cheaper development, off-the-shelf
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development systems and processing/communications libra-
ries,’’ etc. Thus, COTS devices are widely used in space sci-
ence experiments on orbit. An emerging trend toward COTS
adoption is presented in European Space Agency (ESA)
roadmaps [10], while National Aeronautics and Space
Administration (NASA) is moving aggressively to accept
COTS chips in space. However, COTS devices can be
severely harmed by the harsh environmental conditions of
high vacuum, extreme temperatures, and high levels of ion-
izing radiation, or the vibrations during launch [9]. Since a
malfunction inside of one COTS device may interrupt the
process of the corresponding space science experiment or
have an uncertain impact on the experimental results, various
methods should be studied and implemented to detect the
discrepancies between the process of the on-orbit experi-
ment and the process designed by scientists in real time.
These monitoring or detecting methods can guarantee the
validation of the experimental results on orbit and signifi-
cantly improve the efficiency of tele-science. The provenance
data [11] of the experiment on orbit can be compared with the
corresponding experiment on the ground or used to aid the
design of similar experiments for subsequent space missions.
There are many space science experiments which have the
potential demand, such as the experiment of thermocapillary
convection in liquid bridge on Tiangong-2 [12], the scientific
condensation experiment on TZ-1 [13], the experiment of
solidification and crystal growth on SJ-10 [14], etc.

During the development process of space science payloads
and related on-orbit supporting platforms, software devel-
opers produce many design materials in addition to soft-
ware products, including documents, models, test vectors and
results. It is significant to utilize these materials to supply the
maintenance service when the corresponding devices or sys-
tems are running on orbit. Extending the ideas of conventional
scientific workflow management, the design materials above
can be fully utilized by process mining technology. The two
most prominent process mining tasks are [3]:

i. Process discovery: extracting a process model from
observed behavior recorded in an event log.

ii. Conformance checking: diagnosing and measuring dis-
crepancies between observed behavior and modeled
behavior.

In the phase of design and implementation on the ground,
space science payloads and related on-orbit supporting plat-
forms could be developed while being synchronized with the
design of workflow net models. On one hand, the process dis-
covery methods and tools can extract the workflow net model
from the remote-control commands and operating statuses of
payloads or platforms. On the other hand, designers can build
workflow net models to guide the designing of payloads or
platforms. When the payloads and supporting platforms are
running on orbit, the corresponding workflow net models and
conformance checking algorithms execute synchronously to
monitor the events of space science experiments for scientists.
The procedures are shown in Figure 1 and Figure 2.

FIGURE 1. Design and implementation work on the ground.

FIGURE 2. On-orbit monitoring operations.

This paper focuses on accelerated computing algorithms
for conformance checking operations, on the assumption
that workflow net models have been extracted in advance.
It means that the accelerated computing algorithms are
required to determine whether the observed behaviors (‘‘con-
trol flows’’) which are captured in real time conform to the
process model. In the scenarios on orbit, the workflow net
models of space science experiments are given in advance.
Only a portion of an observed event trace is captured from
every sampling period, and there are multiple event traces
changing in real time. This paper proposes a set of hybrid par-
allel computing algorithms for conformance checking based
on workflow nets, supposing the duplicate transitions and
invisible transitions of the workflow nets have been pre-
processed on the ground. Workflow net models are treated
as graph data processed with vertex-centric model which
is shown in [15], [16]. As workflow net is a subclass of
petri net, the input matrix and output matrix of workflow net
model [17] and the related intermediate results are stored in
texture memory and surface memory of GPU for high perfor-
mance accessing as it is suggested in [18]. A single observed
event (or multiple observed events) is captured by CPU and
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is sent to GPU. Then the mark of the model is computed in an
optimized paralleled manner to determine fitness of the cur-
rently observed event in the order of event occurrence. When
the input and output matrixes with the related intermediate
results are too huge to be processed in parallel on one single
GPU device, spectral graph clustering method [19], [20] is
used to partition themodel into small components beforehand
in a coarse-grained manner. Then all the model components
are suggested to be dynamically loaded into different GPU
devices before conformance checking tasks, so as to avoid
unnecessary model data exchanging operations and enhance
real time performance. This paper concentrates on the con-
formance checking algorithms on one single GPU device,
and the algorithms are benchmarked on NVIDIA Jetson
TX2i System-on-Module. The scheduling strategy of several
model components among multiple GPU devices is not the
focus of this paper, because it can be easily designed based
on [21]–[22] and the decomposing method proposed in this
paper.

The main contributions of this paper are as follows:
i. This paper proposes a feasible approach to monitor the

working status of the on-orbit space science payloads
in real time.

ii. This paper takes advantage of spectral graph clustering
method to decompose the workflow net models for
conformance checking. Thismethod can adapt the huge
net models to multiple GPU devices while keeping the
degree of subnets’ coupling at a low level. The small
subnets resulting from decomposition are merged into
a new subnet with proper size. Then these subnets with
proper size can be assigned to different streams inside
of one single GPU device or multiple GPU devices,
so as to enhance the resources utilization ratio of each
single GPU device. The implementation of the decom-
position method of this paper is simpler than SESE
decomposition method [22], [23], and the decompo-
sition results of this method are more optimized than
SESE decomposition method.

iii. Gather-Apply-Scatter model with parallel computing
power of GPU is firstly utilized to accelerate the
conformance checking operations in real time. The
performance of conformance checking is significantly
improved.

This paper is organized as follows. Section II presents
related work. Section III illustrates the preliminaries about
petri net and workflow net, spectral graph clustering the-
ory, and graph processing strategy with GPU. The spec-
tral graph clustering method for decomposing workflow
net models is described in section IV. The vertex-centric
conformance checking algorithms and certain program-
ming advice in CUDA 9.0 are presented in section V,
and pseudo codes of the algorithms are presented in
section VIII. The algorithms above are benchmarked against
the dataset of [24] in section VI. Section VII concludes this
paper.

II. RELATED WORK
Over the last decades, the management systems inside
of satellites and spacecraft have evolved from ‘‘pre-
programmed automata performing a priori known tasks and
unable to react against unforeseen events, to smart embedded
systems able to take pre-programmed decisions on event
occurrence or able to react against context changes’’ [25].
On the International Space Station (ISS), there is a soft-
ware tool commonly referred to as ‘‘Timeliner’’, which is
employed to ensure the scientific and engineering data gen-
erated by the systems onboard are handled properly [26].
During a ground Loss of Signal (LOS) data outage, pay-
load developers have no insight into their experiments state,
and benefit greatly from ‘‘Timeliner’’ running on ISS to
perform telemetry monitoring and commanding operations.
Besides, there are similar systems in European missions,
which support On-Board Control Procedures (OBCPs) [27].
The on-board part of the OBCP execution environment con-
sists of one or more OBCP engines which provide monitor-
ing and control services for interfacing with the ground or
onboard services. The monitoring approach of this paper is
designed based on the combination of the above concepts and
scientific workflow technologies, to serve for space science
payloads on orbit. The state-of-the-art literature related to this
paper is as follows.

In the perspective of fault management methods [28],
the monitoring approach of this paper is similar to analytical
redundancy [29], [30]. It is obviously that hardware redun-
dancy on orbit is very costly in terms of size, weight, and com-
plexity, and physically redundant is adopted in only a few of
the most critical components. Thus, analytical redundancy is
considered as a powerful alternative means of ensuring func-
tional reliability. Analytical redundancy uses a mathematical
model of the system together with some estimation tech-
niques, and involves comparing the behavior of a systemwith
a model of its expected behavior. The models corresponding
to different analytical redundancies can be executed on a
common hardware platform on orbit. It is just like the case in
this paper that several models are running on GPU platform
and monitoring the corresponding space science experiments
on orbit. However, the monitoring approach of this paper can
just detect the discrepancies between the control-flow model
and the operating status of the related space science experi-
ments. Fault isolation and recovery methods are beyond the
scope of this paper.

In the perspective of runtime monitoring [31], the mon-
itoring approach of this paper is based on a lightweight
formal method (event-based conformance checking on work-
flow nets), compared to exhaustive verification methods such
as model checking, which may be infeasible to apply for
complex practical systems. Runtime monitoring involves a
collection of approaches to evaluate formal specifications on
traces of systems in order to verify the correctness of the
system. Thus, runtime monitoring is also known as runtime
verification, which is an area of formal methods that studies
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the dynamic analysis of execution traces against formal spec-
ifications [32]. The runtime monitoring or runtime verifica-
tion techniques play an important role in many application
domains, such as distributed systems; hybrid and embedded
systems; hardware; security & privacy; transactional infor-
mation systems; contracts & policies; huge, unreliable or
approximated domains [32]. These techniques are usually
used to enhance the reliability of onboard or on-orbit systems,
and related to health management in the field of aerospace.
For instance, an approach of integrating responsive runtime
monitoring of temporal logic system safety requirements with
model-based diagnosis and Bayesian network-based proba-
bilistic analysis, is proposed to implement the health man-
agement function for unmanned aerial systems [33]. The
researchers of German Aerospace Center (DLR) present a
formal approach for log-analysis and monitoring for the DLR
ARTIS framework so as to implement intelligent system
health management [31]. A conformance checking method
based on colored Petri nets is used to implement a satellite
network control protocol signaling dynamic conformance
verification framework, which can capture runtime protocol
signaling from protocol execution environment and assure
that the interaction behaviors of protocol nodes conform to
the expectation of protocol specification [34]. To the best of
our knowledge, the combination of on-orbit runtime moni-
toring and process mining technology in our paper is a novel
research subject.

In the perspective of process mining technology, the mon-
itoring approach of this paper is designed based on confor-
mance checking of workflow nets, so as to determine whether
the observed behaviors fit the expected behavior model of
an on-orbit experiment. Replay-based conformance check-
ing and align-based conformance checking are two primary
strategies to cope with the conformance checking problems
based on conventional process models, such as petri nets,
petri nets with data, workflow nets. Thus, the two strategies
are introduced as follows.

i. Replay-based strategy takes one trace as input at a time
and play ‘‘token games’’ to determine the maximal
prefix of the trace that can be parsed by the model.
Paper [35] proposes the initial fitness approaches based
on replaying log traces in a model in order to assess
whether a trace can fit a model. Then small or medium-
sized problem instances are undertaken [3], while the
problems of industrial size cannot be handled due
to computation complexity and performance limita-
tion. When divide-and-conquer strategies are applied
in petri net (workflow net) model [22], workflow nets
are decomposed into Single-Entry Single-Exit (SESE)
components [36], [37] which satisfy the definition of
valid decomposition [21]. Then the captured event
sequences are projected into different components to
carry out conformance checking operations in lower
computation complexity. Paper [23] also presents the
conformance checking strategy based on SESE decom-
position to cope with real time observed events.

Nonetheless, there is no implementation detail for that
real time strategy. Moreover, the replay-based strategy
is also used in paper [38], where inexistent (so-called
negative) events are inserted into the traces in the
log. The traces extended with negative events are
then replayed on the model to carry out conformance
checking.

ii. Align-based strategy identifies, for each trace in the
log, the closest corresponding trace parsed by the
model and compute an alignment that shows the posi-
tions of discrepancy between these two traces. The
result is a set of pairs of traces with discrepancies. Each
pair contains a trace in the log that cannotmatch exactly
any single trace in the model, together with the corre-
sponding closest trace(s) produced by the model [39].
Paper [40] formalizes the notion of alignments between
the observed behavior in an event log and the mod-
eled behavior in a process model, and considers an
alignment as a pairwise comparison between executed
activities in the trace and the activities allowed by
the model. In paper [40], instances of a petri net
are constructed to match the prefixes of an observed
event trace, A∗ algorithm is executed to find a pair
of net instance and event trace with optimal cost. The
approach [40] is not suitable for online conformance
checking because of the computational complexity of
A∗ algorithm. Formal language theory is used to speed
up conformance checking operations in paper [41].
In paper [41], an Integer Linear Programming (ILP)
algorithm is designed to find the solution frommarking
equation of petri net, while maximizing the similarity
between the Parikh vectors of the solution and the
observed event trace. Then the observed event trace
is filtered and is used to compute an approximate
alignment. The approach [41] requires a full firing
sequence of themodel and a full observed event trace as
input, and it makes a compromise between computation
complexity and quality. Paper [42] improve [40] in
two aspects, pruning the search space of A∗ algorithm
with the estimated cost based on the current prefix
and the incoming activity, proposing partially revert
strategy to cope with disabled transitions in a petri
net. Then an incremental framework is proposed for
online conformance checking based on event streams.
However, it is still difficult to determine an appropriate
set of parameters (such as threshold values for prun-
ing the search space of A∗ algorithm, the size of the
partially revert window) to guarantee the performance
of the framework [42] can satisfy real-time constraint,
while taking precision into consideration. The method
proposed in paper [39] relies on the construction of
an event structure from the model, an event structure
from the log, and the computation of a synchronized
product between these two event structures, fromwhich
a set of differences are extracted and verbalized. The
computation of the partially synchronized product is
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also based on A∗ algorithm. The construction of event
structures makes the approach [39] more suitable for
offline conformance checking. Decomposition strat-
egy [21] is used with align-based conformance check-
ing in paper [43], and a new fitness metric is presented
to facilitate the aggregation of conformance results
from the costs of alignment based on subcomponents
to an overall conformance result.

iii. The combination of replay-based strategy and align-
based strategy is used in papers [44], [45]. The prob-
lem of process conformance checking is transformed
to trace consistency analysis (based on trace depen-
dence graphs) between the input traces and the corre-
sponding reference traces of the process in paper [44].
The exhaustive computation of finding the reference
trace is alleviated by process decomposition and trace
replaying. Nonetheless, the computation complexity
makes the approach [44] unsuitable for online scenar-
ios. In paper [45], a bounded petri net is converted into
a labeled transition system by constructing reachabil-
ity graph of the petri net, and the cost value of each
transition inside of the system is zero. Then regions
are computed inside of the transition system, and extra
transitions with positive cost values are added into
the transition system to indicate deviations in con-
formance checking. The extended transition system is
constructed beforehand, the concept of which is similar
to align-based strategy. The observed event traces are
replayed on the extended transition system to compute
conformance checking online in a suboptimal manner.
Meanwhile, it is noteworthy that the extended transition
system occupies a lot of memory space.

Besides, there are a few research works based on declara-
tive models, such as papers [46]–[48], in which the proposed
approaches cope with constraint-based process models in the
offline manner due to the computational complexity. With
the development of data mining technology, MapReduce
is used to accelerate conformance checking operations in
papers [49], [50].

To recap, the align-based approaches are usually compu-
tationally more expensive compared with the replay-based
approaches, and as the primary viewpoint of the process
models, ‘‘control flow’’ is the research hotspot.While consid-
ering the real-time constraints of monitoring and the resource
constraint of hardware on orbit, the monitoring approach of
our paper is based on replay-based strategy with the fitness
of ‘‘control flow’’ as focus. GPU devices are used instead of
distributed systems, to accelerate the conformance checking
operations. Moreover, it is notable that SESE decomposi-
tion is the dominating decomposition method in confor-
mance checking. However, the use of SESE decomposition
method [22], [23] has some limitation, because it cannot
partition workflow nets into ‘‘balanced’’ subparts while con-
sidering the coupling degree of the subparts in according to
the detailed analysis in subsection III.B and VIII.A of this
paper.

III. PRELIMINARIES
A. PETRI NETS AND WORKFLOW NETS
1) MODEL DEFINITION
According to papers [22], [54], the basic definitions related
to Petri net and event are presented as follows.
Definition 1 (Petri Net [22], [54]): A Petri net is a 3-tuple

PN = (P,T ,F), where P is the set of places, T is the set of
transitions, and P ∩ T = ∅, F ⊆ (P × T ) ∪ (T × P) is the
set of flows. Besides, a Petri net is also a directed bipartite
graph, where the set of vertexes is P ∪ T , the set of directed
arcs (edges) is F . For a vertex v of a Petri net, · v is the
predecessor set of v, with · v = {v′|(v′, v) ∈ F , and v · is
the successor set of v, with v · = {v′|(v, v′) ∈ F .
Definition 2 (Petri Net Semantics [22], [54]): Let PN =

(P,T ,F) be a Petri net. A marking M is a multiset (Bag)
of places, i.e. M ∈ Bag(P). A transition t ∈ T is enabled
in a marking M , denoted as (PN ,M) [t >, if · t ≤ M .
Firing transition t in M , denoted as (PN ,M) [t > (PN ,M ′),
results in a new marking M ′ = M − · t + t ·, i.e., tokens are
removed from · t and added to t ·. The firing rules of mark is
related to input matrix and output matrix, which are defined
in Definition 10.
Definition 3 (Transition Sequence [22]): A transition

sequence σ t = 〈t1, t2, . . . , tn〉 ∈ Kleene closure(T ) of
Petri net PN is represented as (PN ,M) [σ t > (PN ,M ′).
It indicates that when the transitions of σ t is fired in sequence,
there is a set of markingsM0,M1, . . . ,Mn such thatM0 = M ,
Mn = M ′ and (PN ,Mi−1) [ti > (PN ,Mi) for 0 < i ≤ n.
A marking M ′ is reachable from M if there exists a trace σ t

such that (PN ,M) [σ t > (PN ,M ′).
Definition 4 (Event, Trace, Event Log [3], [22]): LetE be

the event universe, indicates the set of all possible event iden-
tifiers. Events may have various attributes, e.g., a timestamp,
an activity, etc. A single event e ∈ E, is usually corresponding
to a transition in Petri Net. A trace σ is finite sequence of
events, with σ ∈ Kleene closure(E). An event log is a
multiset (Bag) of traces, i.e. L = Bag(Kleene closure(E)).
Definition 5 (Labeled Petri Net [3], [22]): A labeled Petri

net PN = (P,T ,F, l,A) is a Petri net (P,T ,F) , whereA is a
set of activity labels, l ∈ T 9 A is a labeling function,A ⊆ A

is some universe of activity labels. Multiple transitions with
the same activity label are duplicate transitions. A transition t
with l (t) = τ is unobservable and is an invisible transition.
Definition 6 (Activity Sequence [22]): A sequence σv =
〈a1, a2, . . . , an〉 ∈ universe of Kleene closure(A) is
an activity sequence of the Petri net PN , represented as
(PN ,M) [σv F (PN ,M ′) if and only if there is a transition
sequence σ t = 〈t1, t2, . . . , tm〉 ∈ Kleene closure(T ) in PN
such that (PN ,M) [σ t > (PN ,M ′) and 〈l (ti) |l (ti) 6= τ ,
0 < i ≤ m〉 = σv. The corner mark ‘‘v’’ of σv indicates
that activities are visible.
Definition 7 (Workflow Net [3], [22]): A workflow net is

a particular type of Petri net, denoted as WN = (P,T ,F, l,
psource, psink ), where psource is a special place without incom-
ing arcs, · psource = ∅, and psink is a special place with-
out outgoing arcs, psink · = ∅. WN is strongly connected.
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LetMsource be the initial mark ofWN ,Msink be the final mark
of WN .
Definition 8 (Fitting Trace of Workflow Net):A trace σv =
〈a1, a2, . . . , an〉 ∈ universe of Kleene closure(A) fits a
system SN = (WN ,Msource,Msink ) if and only if a full
firing sequence (WN ,Msource) [σ t > (WN ,Msink ) can be
found such that (WN ,Msource) [σvF(WN ,Msink ), where σ t =
〈t1, t2, . . . , tm〉 ∈ Kleene closure(T ), 〈l (ti) |l (ti) 6= τ , 0 <
i ≤ m〉 = σv.
Definition 9 (Free Choice [3]): A petri net model is free

choice if any two transitions sharing an input place have
identical input sets, i.e., ·t1 ∩ ·t2 6= ∅ implies ·t1 = ·t2 for
any t1, t2 ∈ T .

2) MATRIX ANALYSIS
Definition 10 (Input Matrix, Output Matrix [17]): The

input matrix is denoted as D−. It is a (nt × np) matrix, whose
generic element d−ij is equal to the number of directed arcs
from place pj to transition ti (0 < i ≤ nt , 0 < j ≤ np). d

−

ij is
corresponding to ·ti with Definition 1. Similarly, the output
matrix is denoted as D+. It is a (nt × np) matrix, whose
generic element d+ij is equal to the number of directed arcs
from transition ti to place pj (0 < i ≤ nt , 0 < j ≤ np). d

+

ij
is corresponding to ti· with Definition 1. nt is the number of
transitions inside the model, and np is the number of places
inside the model.

Petri Net Semantics can be indicated by matrix manipula-
tions as the following example.

FIGURE 3. A workflow net with one initial token in p1.

FIGURE 4. The input matrix and output matrix based on Figure 3.

Based on Figure 3, the input matrix and output matrix can
be derived in Figure 4. The row index is t1⇒ t8 from top to
bottom, and the column index is p1⇒ p7 from left to right.
Let V (ej) be a nt -dimensional row vector in which all the

entries equal to 0 except entry ej (0 < j ≤ nt ) equals to 1.
nt is the number of transitions in workflow net. The vector
is put into the following equation to simulate the firing rules

of Definition 2. Entry ej is corresponding to the transition tj
of workflow net. (PN ,M) [tj > (PN ,M ′), if M ≥ V (tj)D−,
whereM is a np- dimensional row vector in which the entries
indicate the number of tokens in each place. The correspond-
ing equation is (1).

M ′ = M − V
(
tj
)
D− + V

(
tj
)
D+

= M + V (tj)(D+ − D−) (1)

Given a workflow net, a constant matrixD is obtained from
(D+−D−). Taking a closer look at the one-step loop between
t7 and p6 in Figure 3 and the corresponding matrix D, it is
clear that d+76 − d−76 = 0 (the indices of D starts with
1 logically). So, the matrix D is insensitive to the event
corresponding to t7, and it may generate some uncertainty
in conformance checking when handling one-step loops like
this. For the convenience of design, this paper calculates the
equation in the formM ′ = M−V

(
tj
)
D−+V

(
tj
)
D+ to check

whether the current marking M enables the firing of tj. The
multiplications such as V

(
tj
)
D− and V

(
tj
)
D+ are replaced

by search operations with tj as the input. Given a workflow
net, letM0 be the initial marking of the model, and ti→ tj→
tk → tl → tj be a firing sequence (Definition 3), Mcur is the
current marking after the firings. This paper calculates each
transition in order and in paralleled manner in subsection V.C
based on (2).

Mcur = M0 − V (ti)D− + V (ti)D+ · · · − V (tk)D−

+V (tk)D+ · · · − V
(
tj
)
D−

+V
(
tj
)
D+ (2)

B. PETRI NET DECOMPOSITION STRATEGIES
1) THE AIM OF DECOMPOSITION FOR
CONFORMANCE CHECKING
The concept of divide-and-conquer is usually used in algo-
rithm acceleration, and it also works in conformance check-
ing. In according to Definition 17 of paper [21], a valid
decomposition for conformance checking of petri net must
meet the following requirements. The resulting subnets must
‘‘agree’’ on the original labeling function. Each place must
appear in precisely one of the subnets, and each invisible tran-
sition must appear in precisely one of the subnets. Moreover,
if there are multiple transitions with the same label, each of
themmust appear in precisely one of the subnets. Only unique
visible transitions can be shared among different subnets.
If the model is petri net with data [55], the data dependency
should be considered in decomposition.

After decomposition, observed events of a sequence are
transformed into transitions and projected into different sub-
nets of the original petri net model. Then conformance
checking is executed in the context of subnets in lower com-
putational complexity. The result of the whole conformance
checking is based on the results from the corresponding
subnets. In an ideal state, the original petri net model should
be decomposed into ‘‘balanced’’ subnets with less shared
transitions, and these subnets can be processed in parallel.
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On one hand, ‘‘balanced’’ means that the complexity or the
size of each subnet approximates the same value, and the
total time cost by conformance checking operations of these
subnets in parallel can be effectively decreased. On the other
hand, the scheduling overhead among different subnets can be
effectively decreased when there are less shared transitions.
In real time scenarios, the captured events are usually a part of
a full trace, and these events are usually related to a limited
number of subnets due to Principle of Locality. After these
events are transformed into the transitions of the whole net
model, the whole time consumed for conformance checking
is determined by projecting operations which dispatch the
transitions to the corresponding subnets, as well as confor-
mance checking calculations in subnets. In the case of more
shared transitions, more different subnets are tightly coupled
with each other. It means that more subnets have to be sched-
uled to carry out conformance checking operations when the
observed event sequence is captured in the current period, and
the advantage of locality of events is not effectively utilized.
Thus, the decomposition strategy for real-time conformance
checking should consider the ‘‘balanced’’ factor, ‘‘coupling’’
factor as well as Principle of Locality at the same time.

Refined Process Structure Tree (RPST) based decomposi-
tion of workflow net is proposed in papers [22]–[24], taking
advantage of Single-Entry Single-Exit (SESE) characteristic
of RPST to reduce the number of shared transitions among
subnets. However, the decomposition strategy [22]–[24] is
affected by the structure of graph corresponding to the orig-
inal petri net model, in addition to the valid decomposi-
tion constraints above. Thus, it is difficult to keep subnets
‘‘balanced’’ in an optimized loose-coupling status. Then
the performance of conformance checking is often hindered
by complicated subnets. There is a detailed analysis about
RPST based decomposition (a.k.a. SESE decomposition) for
integrity of this paper in subsection VIII.A.

Therefore, this paper utilizes spectral graph clustering
method and merging strategies to decompose the confor-
mance checking of workflow net so as to make the size of
each subnet or each group of subnets suitable to be processed
by one single GPU device, while considering the ‘‘balanced’’
factor, ‘‘coupling’’ factor as well as locality of the captured
events.

2) SPECTRAL GRAPH CLUSTERING THEORY
Since workflow net is also a directed bipartite graph as shown
in Definition 1, this paper transforms the directed bipartite
graph into an undirected graph. Then spectral graph cluster-
ing method can be utilized to decompose the transformed net
models. The theory of spectral graph clustering or spectral
graph partitioning is widely applied in many fields, such as
text categorization [56], image processing [57], and analyses
of gene expression data [58]. This subsection introduces sev-
eral basic notations and formulas of this theory [19], [20].
Then, the details about the procedure of decomposing is
illustrated in section IV.

Let G = (V ,E) be an undirected graph with n vertexes,
where V is a vertex set V = {v1, v2, . . . vn}, E is an edge set
E = {〈vi, vj〉|vi, vj ∈ V }. Let ωij be the weight of 〈vi, vj〉, and
ωij = ωji. Let W be the corresponding adjacency matrix.

Wij =

{
ωij, if 〈vi, vj〉 ∈ E
0, otherwise

(3)

When the vertex set V is partitioned into two subsets
V1 and V2, the cut between them is defined as follow. There
is a coefficient ‘‘1/2’’, because Wij is calculated twice in the
undirected graph.

cut (V1,V2) =
1
2
×

∑
vi∈V1,vj∈V2

Wij (4)

An extended version of cut for k vertex subsets is defined
here. The mark ‘‘i < j’’ in (5) is used to prevent the double
counting of the vertex subsets.

cut (V1,V2, . . . ,Vk) =
∑

i<j,1≤i,j≤k

cut
(
Vi,Vj

)
(5)

Let D be the diagonal ‘‘degree’’ matrix of G, with

Dii =
n∑
j=1

Wij. Based on [59], the Ncut is defined as

follow, where V̄i is the complement of Vi in graph G,
Vol (Vi) =

∑
vj∈Vi

Djj.

Ncut (V1,V2, . . . ,Vk) =
k∑
i=1

cut(Vi, V̄i)
Vol(Vi)

(6)

The Ncut minimization problem is to partition the vertex
of G into ‘‘reasonably large’’ groups while keeping the edges
between different groups have very low weights. Given two
different partitions with the same cut value (when k = 2),
Ncut is smaller for the more balanced partitioning. From
random walks point of view, the partition in this manner will
have the property that the random walk does not have many
opportunities to jump between clusters [20].

Although the Ncut minimization problem is NP-complete,
the real relaxation of the problem can be transformed into a
generalized eigenvalue problem as [20].

Lz = λDz (7)

where L is the Laplacian matrix of G, L = D − W . z is a
generalized eigenvector related to eigenvalue λ. To partition
the vertex set V into k subsets, it needs to compute the first
k smallest generalized eigenvalues corresponding to the first
k generalized eigenvectors z1, . . . zk of (7). Let Z ∈ Rn×k

(R indicates real numbers.) be the matrix containing the vec-
tors z1, . . . zk as columns. For i = 1, . . . , n, let ri ∈ Rk be the
vector corresponding to the i-th row of Z . After clustering the
points (ri)i=1,...,n inRk with the k-means algorithm, the result
subsets V1, . . . ,Vk is determined.

There are various methods for choosing the number k of
subsets, but no one of them can solve problem perfectly [20].
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Hence, this paper utilizes the eigenvector corresponding to
the 2nd smallest eigenvalue λ2 to bipartition G in a recursive
manner [19].

C. GRAPH PROCESSING MODELS USING GPU
Due to massive degree of parallelism and the high memory
access bandwidth, GPU technology has been widely utilized
in big data processing acceleration, where graph processing
is a typical application. This paper treats a whole workflow
net or one decomposed subnet of a whole workflow net
inside one single GPU device as a directed bipartite graph
and concentrates on conformance checking acceleration with
graph processing models.

FIGURE 5. Example CSR representation of adjacency matrix W :
Column-indices array C , row offsets array R, non-zero values Valuearray .

In order to improve the utilization ratio of the memory
space in GPU while keeping graph data easy to be accessed,
data layout of graph should be compact and regular. There are
four typical data layout models [15], [16]: Adjacency Matrix
and Adjacency List, Vector Graph (V-Graph), Compressed
Sparse Row (CSR). Adjacency Matrix and CSR are used in
this paper to store workflow net models and other related
data. The adjacency matrix is a square matrixW . A non-zero
element ωij of the matrix indicates there is an edge from the
i-th vertex to the j-th vertex in an unweighted graph. A non-
zero element ωij stands for the weight of the edge in a
weighted graph. In order to achieve both compact storage
and regular memory access, some graph algorithms make use
of the CSR format. As illustrated in Figure 5, the column-
indices array C is formed from the set of the adjacency
lists Wi concatenated into a single array of m integers. For
example, W0 = 〈a, b〉, W1 = 〈c, d〉. The row offsets array
R contains n + 1 integers, and entry R [i] (0 ≤ i < n) is
the index of the adjacency list Wi in C . Valuearray is used
to store the non-zero values of W , and the position of non-
zero values inside W can be computed by R and C . R [n] is
the length of C and Valuearray. It is worthy of notice that the
indices of R,W ,C , and Valuearray used here are usually start
with 0 while being compatible with the addresses of physical
memory.

Vertex-centric model is frequently-used in existing graph
systems on GPU devices. Programmers need to define a few
functions that are executed on each individual vertex. There
are two popular parallel graph programming models, namely
Gather-Apply-Scatter (GAS) and Bulk Synchronous Paral-
lel (BSP) [16]. GAS model is used in this paper to accelerate
conformance checking operations. The operations occur in
three phases:

Gather Phase: Each vertex aggregates the information
from the adjacent vertices and edges by using the user-defined
gather function.
Apply Phase: Each vertex updates its state using the gather

result. The values or statuses of the vertex is updated in this
phase by calling the apply function.
Scatter Phase: The values or statuses of the vertex is

scattered to its adjacent vertices and edges.

IV. WORKFLOW NET DECOMPOSING BASED ON
SPECTRAL GRAPH CLUSTERING METHOD
A. COPING WITH DUPLICATE TRANSITIONS
AND INVISIBLE TRANSITIONS
There are several non-deterministic factors affecting detec-
tion of non-fitting situations in conformance checking: invisi-
ble or duplicate transitions of petri net (workflow net) models,
incorrectly captured events or abnormal behaviors. As it is
analyzed in [22], the duplicate transitions and invisible tran-
sitions (Definition 5) need to be pre-processed in order to
alleviate the negative effects in valid conformance checking
decompositions. This paper suggests that the duplicate tran-
sitions and invisible transitions of the workflow net models
are eliminated by pre-processing methods on the ground. For
example, the more detailed operating status of the monitored
payloads can be added into the housekeeping data to distin-
guish the duplicate transitions or match the invisible tran-
sitions. It means that the context containing each duplicate
transition or each invisible transition can be uniquely deter-
mined. Then there is a one-to-one correspondence between
the transitions of the workflow net models and the observed
events in conformance checking operations. Since the num-
ber of the non-deterministic factors affecting conformance
checking is decreased, the precision of conformance checking
is enhanced.

B. DECOMPOSING WORKFLOW NET WITH NCUT
In this paper, one workflow net is transformed into an undi-
rected bipartite graph (namely G) in the following manner.
It is supposed that the weight of each directed edge of the
directed bipartite graph is 1. If there are two directed edges
vi→ vj and vj→ vi between vi and vj (i, j > 0, i 6= j, such as
p6, t7 in Figure 3), they are merged into 〈vi, vj〉 inside of G,
and ωij is the sum of the weights of vi → vj and vj → vi.
If there is only one directed edge vi→ vj or vj→ vi between
vi and vj, then it is transformed into 〈vi, vj〉, and ωij is the
weight of vi→ vj or vj→ vi. Based on Definition 10 and (3),
the adjacency matrix of the undirected graph G transformed
from a workflow net is:

W =
[

0 (D− + D+)
(D− + D+)T 0

]
(8)

It is shown that the eigenvector corresponding to the 2nd
smallest eigenvalue of the generalized eigenvalue problem (7)
provides a real relaxation to the discrete optimization problem
of finding the minimum Ncut producing two subnets. The
problem (7) can be further transformed into the singular value
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decomposition (SVD) problem while taking advantage of
the property of undirected bipartite graph [19]. Here is the
computation of diagonal ‘‘degree’’ matrix D.

D =

[
D1 0
0 D2

]
(9)

In the equation above, D1 (i, i) =
∑np

j=1 (D
−
+ D+)ij,

D2 (i, i) =
∑nt

j=1 (D
−
+ D+)Tij , where np is the number of

places, and nt is the number of transitions in according to
Definition 10.

Based on the property of Laplacian matrix, there is the
following equation:

L = D−W

=

[
D1 −(D− + D+)

−(D− + D+)T D2

]
(10)

Then equation (7) can be rewritten as follow [19], where
A = (D− + D+).[

D1 −A
−AT D2

] [
x
y

]
= λ

[
D1 0
0 D2

] [
x
y

]
(11)

Since there is no isolated vertex inside the undirected
bipartite graph corresponding to workflow net, D1 and D2
are nonsingular. Then the equations set corresponding to (11)
is as follow, where u = D1

1/2x and v = D2
1/2y.{

D1
−1/2AD2

−1/2v = (1− λ)u
D2
−1/2ATD1

−1/2u = (1− λ)v
(12)

Then u is substituted with v in equations set (12), the
following equations can be derived.(

D2
−1/2ATD1

−1/2
) (

D1
−1/2AD2

−1/2
)

v

= (1− λ)2v H⇒(
D1
−1/2AD2

−1/2
)T (

D1
−1/2AD2

−1/2
)

v

= (1− λ)2v (13)

It is clear that the second equation of (13) defines
the singular value decomposition (SVD) of the matrix(
D1
−1/2AD2

−1/2
)
. u and v are the left and right singular

vectors respectively with (1 − λ) as the corresponding sin-
gular value. Thus the 2nd largest value of (1 − λ) should
be computed with the corresponding left and right singular
vectors, namely, u2 and v2. Then the second eigenvector of L
is given by:

z2 =
[
D1
−1/2u2

D2
−1/2v2

]
(14)

From the above, the procedure for partitioning the undi-
rected bipartite graph of workflow net is as shown in the
Algorithm 1.

In according to the constraint of valid decomposition for
conformance checking of workflow net, unique visible tran-
sitions are shared by the boundaries of different subnets.
Thus, whenG is partitioned into two parts, the corresponding

Algorithm 1 Bipartition
Input:
<1> The undirected bipartite graph transformed from

workflow net, denoted as G.
Output:
<1> The vertex set V1 and vertex set V2. Let V be the

vertex set of G, V1∩V 2 = ∅, V1∪V 2 = V .

<1> Let A be the matrix with nt rows and np columns,
A =

(
D− + D+

)
, where, D− and D+ is the input

matrix and output matrix of the corresponding
workflow net being partitioned in according to
Definition 10.

<2> Form An =
(
D1
−1/2AD2

−1/2
)
.

<3> Compute the singular vectors of An, namely u2 and
v2 which are corresponding to the 2nd largest
singular value of An.

<4> Compute z2 by (14).
<5> Carry out k-means algorithm on the column

vector z2. The two-value of each element inside the
result column vector indicates that the
corresponding vertex of G belongs to V1 or V2.

<6> Output V1 and V2.

subnets can be founded by the following method, namely
shared-transitions complementation. Based on Definition 1,
each edge of G has a ‘‘transition’’ vertex as one endpoint and
a ‘‘place’’ vertex as the other endpoint. For example, there is
only one edge 〈vi, vj〉 between V1 and V2, vi ∈ V1, vj ∈ V2.
If the type of vi is ‘‘place’’ in the original workflow net,
the shared transition between the subnet corresponding to
V1 and the subnet corresponding to V2 is vj. It means that
the subnet corresponding to V1 should be constructed based
on the copy of vj and V1. Without loss of generality, let
V1p be the set of vertexes inside of V1, and the type of the
vertexes is ‘‘place’’; let V1t be the set of vertexes inside of V1,
and the type of the vertexes is ‘‘transition’’; let V1p_t be the
set of transitions which are directly connected to the places
of V1p by the arcs (edges) inside of the original workflow
net. Then shared-transitions complementation of the subnet
corresponding to V1 is to add the shared transitions of the set
(V1p_t − V1t ) to V1 and construct the subnet conforming to
the constraint of valid decomposition.

According to the implementation of conformance check-
ing algorithms in subsection V.E, the number of transitions
and the number of places inside each subnet resulting from
decomposition must not be greater than the maximum num-
ber of the concurrent threads in one single GPU device
respectively. Then the whole procedure of decomposing
workflow net with Ncut is as shown in the Algorithm 2.

There are three cases worthy of analyses.
Firstly, the above algorithm cannot decompose the subnets,

of which nt > Nthread and np = 1. In this case, we suggest
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Algorithm 2 Decomposition With Ncut
Input:
<1> The workflow net WN , where, D− and D+ is the

input matrix and output matrix of the workflow net
being partitioned in according to Definition 10.

<2> The maximum number of the concurrent threads in
one single GPU device, namely Nthread . Nthread ≥ 1.

Output:
<1> The collection of subnets DWN = {SN 1, . . . , SN k}

corresponding to WN . SN k is a system net defined
by [22].

<1> SN = WN , DWN = {SN }.
<2> Let nt be the number of transitions inside SN i, np

be the number of places inside SN i.
<3> Search for one subnet SN i

∈ DWN , while matching
the condition that (nt > Nthread and np > 1) or
(np > Nthread and nt > 1), go to step <4>.
Otherwise, there is no subnet matching the
condition, go to step <8>.

<4> Carry out transformation from SN i to the undirected
bipartite graph G.

<5> Call Bipartition Algorithm to bipartition G, output
the vertex set V1 and V2.

<6> Construct subnets SN i
1 and SN i

2 in according to V1
and V2 with shared-transitions complementation
method.

<7> DWN = DWN −
{
SN i}

+
{
SN i

1
}
+
{
SN i

2

}
. Go to

step <3>.
<8> Output DWN = {SN 1, . . . , SN k}.

to increase Nthread or modify the WN model. For example,
a large number of the original transitions connecting to the
same original place can be divided into several groups while
the number of the original transitions in each group is not
greater than Nthread . The original transitions of each group
converge at one newly-inserted place, and the place connects
to one newly-inserted transition. Then, several newly-inserted
transitions converge at the original place.

Secondly, when np = 2, nt = 1,Nthread = 1, it is the corre-
sponding workflow net consisting of two places (source place
and sink place) which is connected by one transition. In the
case when np > Nthread , nt = 1, Nthread > 1, the soundness
property [60] of the corresponding workflow net is violated.
The workflow nets with violated-soundness property are out
of the scope of this paper. Besides, the subnets created in the
procedure of decomposing one workflow net are impossible
to have the status ‘‘np > Nthread , nt = 1’’, and the proof is
as follow. Without loss of generality, we suppose that there is
one subnet with one transition and two places in the procedure
of the workflow net decomposition. Since the subnet is not an
independent workflow net which does not need to be decom-
posed, it has only one transition shared with other subnets.

In this circumstance, the shared transition cannot be fired,
or redundant tokens are produced by the firing of the shared
transition. The soundness property is violated again.

Thirdly, the decomposition in this algorithm is different
from the conventional spectral graph clustering, because step
<6> may add shared transitions to the partitioned graphs to
construct subnets. Then within one single subnet, the Ncut
calculation is based on the weight of the edges connecting to
the added transitions and the edges inside of the correspond-
ing partitioned graph. Moreover, the subnets created by the
decomposition based on the same workflow net (or subnet)
may be different every time, because the k-means clustering
method inside of the Bipartition Algorithm selects random
centers in the partition vector z2.

C. MERGING SMALL SUBNETS
In subsection IV.B, the Algorithm Decomposition with Ncut
cannot avoid creatingmicro subnets. It means that the number
of transitions and the number of places inside these subnets
are far less than the maximum number of the concurrent
threads in one single GPU device respectively. In order to
enhance the use ratio of one single GPU device, Algorithm
Greedy Merging is suggested to be executed after the Algo-
rithm Decomposition with Ncut.

With this algorithm, the small subsets with the same shared
transitions can be merged into big subnets, so as to utilize the
concurrent threads of one single GPU device (explained in
subsection V.E). The Greedy Merging Algorithm is as shown
in the Algorithm 3. The objective of the algorithm is to make
the number of transitions ‘‘nt ’’ and the number of places ‘‘np’’
inside the merged subnets approximate Nthread respectively
as much as possible, while keeping the difference between
nt and np is as small as possible. The noteworthy feature of
the algorithm is that the merging operations can decrease the
number of shared transitions.

The subnets inside Dmerge can be assigned to different
streams of one single GPU device or multiple GPU devices
to further improve the degree of parallelism (explained in
subsection V.E). There is an example of decomposition based
on Figure 6. The components of the corresponding RPST in
Figure 7 are tightly coupled with each other. It is clear that
the decomposition based on this RPST will result in several
polygons and bridges based on the analysis in VIII.A. On the
contrary, when the algorithms of this section are utilized, the
results are illustrated inTable 1. Since the feature information
in the singular vectors of the corresponding undirected bipar-
tite graph is not distinct, the decomposing result based on
spectral graph clustering method may be barely satisfactory
due to the random centers selection of k-means method.
However, Algorithm Greedy Merging is an effective remedy.

V. VERTEX-CENTRIC CONFORMANCE CHECKING
A. TRANSFORMATION OF OBSERVED EVENTS
Since duplicate transitions and invisible transitions are elim-
inated by pre-processing in subsection IV.A on the ground,
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Algorithm 3 Greedy Merging
Input:
<1> DWN = {SN 1, . . . , SN k} which is corresponding

to WN . SN k is a system net defined by [22].
<2> The maximum number of the concurrent threads in

one single GPU device, namely Nthread .
Output:
<1> The collection of subnets Dmerge = {SN 1, . . . , SN j}

corresponding to WN .

<1> Dmerge = {∅}.
<2> Search for one SN i from DWN , while matching the

condition that the number of vertexes inside SN i is
maximum among the subnets of DWN .

<3> Let DWN_Adjacent be the collection of subnets which
share transitions with SN i. If DWN_Adjacent is {∅},
Dmerge = Dmerge + {SN i}, DWN = DWN − {SN i},
go to step <7>. Otherwise, go to step <4>.

<4> Let DWN_Candidate be the collection of 4-tuples
which contain the result of step <5>.
DWN_Candidate = {∅}. Each of the first three
elements of the 4-tuple is used to store one single
subnet respectively, and the last element is used to
store a real number.

<5> For each SN n inside DWN_Adjacent , let SNmerge be
the subnet which is the merging result of SN i and
SN n (deleting duplicate transitions). If the number
of places ‘‘np’’ inside SNmerge is not greater than
Nthread and the number of transitions ‘‘nt ’’ inside
SNmerge is not greater than Nthread , DWN_Candidate =

DWN_Candidate +
{
(SNmerge, SN i, SN n, np/nt )

}
.

Then, all elements of DWN_Adjacent are processed.
If DWN_Candidate is {∅}, Dmerge = Dmerge + {SN i},
DWN = DWN − {SN i}, go to step <7>.
Otherwise, go to step <6>.

<6> Search for the 4-tuple inside DWN_Candidate, while
matching the condition that the real number of the
tuple approximates 1 as much as possible. If there
are several tuples matching the condition, select one
of them arbitrarily. Let
(SNmerge

sel, SN i
sel, SN n

sel, (np/nt )
sel) be the

selected 4-tuple.
DWN = DWN −

{
SN i

sel
}
−
{
SN n

sel
}
+{SNmerge

sel
}.

<7> If DWN is not {∅}, go to step <2>. Otherwise, go to
step <8>.

<8> Output Dmerge = {SN 1, . . . , SN j}.

the non-deterministic factors caused by duplicate transitions
and invisible transitions are avoided. Without loss of gen-
erality, it is supposed that the observed events are extracted
from housekeeping data or status and are mapped to the row
indexes of the matrixes D− and D+ for further computing

FIGURE 6. A workflow net containing a 4-connected graph structure.

(transformation from events to transitions). The procedure of
the above transformation is omitted in this paper.

Then the results from transformation of the observed
events on orbit are stored in Buffer transition (defined in sub-
section V.B) in the order of event occurrence. The follow-
ing conformance checking algorithms are only coping with
visible and non-duplicate transitions.

B. DATA LAYOUT OF WORKFLOW NET
In this paper, Jetson TX2i module with CUDA 9.0 is used as
the hybrid computing platform. Supposing that a workflow
net model has been decomposed to fit into a single Jetson
TX2i module in subsection IV, the remaining of the section
does not distinguish between the whole workflow net and the
subparts of the net. The workflow net model is processed
by the modified java program1 on the host PC and trans-
formed into an XML file. Then the XML file of workflow
net model is loaded into Jetson TX2i module and processed
by tinyXML22 to generate the matrixes D− and D+ from
subsection III.A.2). The map from places of the workflow
net to the column indexes of the above matrixes is founded,
and the map from transitions of the workflow net to the row
indexes of the above matrixes is also founded. The matrixes
D− and D+ are stored in CSR format and the corresponding
Valuearray (III.C) are omitted, because the non-zero values are
either 0 or 1. For example, the CSR format of the matrixes
fromFigure 4 are presented inFigure 8. It is worthy of notice
that the indices of D− and D+ start with 1 logically, and the
indices of Cand R start with 0 in physical memory.

Because the workflow net model is not changed frequently
on orbit, it may be beneficial to hold the structure of the
model in constant memory [18]. Reading data from texture or
surface memory instead of global memory can have several
performance benefits. Therefore,C−,C+,R−,R+ are loaded
into the texture memory of GPU. There is a small trick that
C− and C+ are merged into a 2D cuArray3 Carray, while R−

and R+ are merged into another 2D cuArray Rarray, such as
Figure 9. Then different threads can calculate out the row

1https://github.com/jbpt/codebase
2https://github.com/leethomason/tinyxml2
3https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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FIGURE 7. The RPST created by SESE decomposition method based on Figure 6.

TABLE 1. The decomposing result of Figure 6 using spectral graph clustering method.

FIGURE 8. CSR format of the matrixes from Figure 4.

FIGURE 9. Merged arrays of Figure 8.

indices of Carray and Rarray directly based on their thread
IDs without ‘‘if-else’’ branches. This trick can reduce branch
divergence of the algorithms in subsection V.C.

The mark of the workflow net is stored in the form of a row
vector Vectormark with Sizeplace elements, where Sizeplace is

the number of places in the model. Vectormark is exchanged
between CPU andGPU, and it is stored in the surfacememory
of GPU for performance benefits. In the scenarios on orbit,
housekeeping data is captured by periodic sampling, and it
means the number of observed events per sample may be
larger than one. Therefore, there is a row vectorBuffer transition
used as temporary storage for the transitions extracted from
the housekeeping data, and the elements of the row vector
will be processed by the conformance checking algorithms.
The max number of elements of Buffer transition is defined
as Sizebuff _tran_max , and it is the max number of transitions
which the hybrid computing platform can process in a sin-
gle sampling period. The number of valid transitions inside
Buffer transition is indicated as Sizebuff _tran, 0 ≤ Sizebuff _tran ≤
Sizebuff _tran_max . Buffer transition is transferred from CPU to
GPU and kept in the global memory of GPU. More-
over, an important array is designed to store intermediate
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token values, namely Intermarray_token, where themax number
of rows is Sizebuff _tran_max × 2 and the number of columns
is Sizeplace. Intermarray_token resides in the surface memory
of GPU for performance benefits with the row index ranging
from 0 to Sizebuff _tran_max × 2− 1.

FIGURE 10. Applying GAS model to compute a part of workflow net of
Figure 3.

C. GAS MODEL FOR WORKFLOW NET REPLAYING
Since a workflow net is also a directed bipartite graph, GAS
model is adjusted to handle transition-centric computing of
the bipartite graph. The concept of conformance checking
algorithms is based on Definition 8 and (2). The three phases
of the adjusted GAS model are explained with Figure 10
and Figure 11 to illustrate the transition-granular replay tech-
nique. It is supposed that two events are sampled in the current
period. Then they are transformed into two visible transitions
and are stored in Buffer transition.
In the gather phase, the first element of Buffer transition is

taken out, indicated as t2. The input arcs and the output
arcs of transition t2 are searched out from Carray and Rarray.
Then the arcs are transformed into token flows and tem-
porarily recorded in Intermarray_token, where the token flows
leaving places are stored in the even-indexed rows and the
token flows entering places are stored in the odd-indexed
rows. Supposing transition t3 is the successor of t2 in
Buffer transition, similar operations are carried out with t3 and
the token flows are stored in the concatenating memory after
t2 inside Intermarray_token.

In the apply phase, Vectormark is added with the first even-
indexed (e.g. the 0 index) row of Intermarray_token, and the
result is the number of tokens in the corresponding places,
which is used to determine whether transition t2 is enabled
as it is defined in Definition 2. If transition t2 is enabled to
fire, the scatter phase is carried out. Otherwise, it means that
a discrepant event is captured.

In the scatter phase, the modified Vectormark from the
apply phase is added with the first odd-indexed (e.g. the 1
index) row of Intermarray_token, and Vectormark is updated.
If there are other token flows left in Intermarray_token, such as
the token flows of t3, jump to the apply phase and continue
with next steps to process t3. Otherwise, all events sampled
in the current period are in conformance with the workflow
net.

FIGURE 11. Data flow and CUDA thread diagram corresponding to
Figure 10.

In real time conformance checking, the whole procedure is
as follow. Each element of Buffer transition is processed by two
CUDA threads to generate token flows in Intermarray_token
during the gather phase. It means that the ‘‘transition’’ ele-
ments of Buffer transition are processed in parallel. One of the
two CUDA threads handles C− and R−, while the other
handles C+ and R+. Then the column positions contain-
ing new values inside different rows of Intermarray_token are
projected into a row vector with Sizeplace elements, namely
Projectorplace. Each element of Projectorplace is a variable of
type Boolean to indicate whether the corresponding column
of Intermarray_token contains new token flows. The gather
phase algorithm is implemented in a single kernel program.
When the kernel returns, Projectorplace is processed by CPU
and is transformed into another row vector Positionplace with
Sizeplace elements. Each element of Positionplace either indi-
cates the index of column which contains new token flows
inside Intermarray_token or is invalid. The small contexts of the
transitions are founded. The pseudo code of the gather phase
algorithm is in subsection VIII.B.

VOLUME 7, 2019 52701



N. Li: On-Orbit Event-Based Conformance Checking Using GPU

During the apply-scatter phase in real time, Positionplace
and Vectormark are loaded into the memory of GPU. Since
the values of Intermarray_token resides in the surface memory
of GPU, eachCUDA thread reads out the token value from the
element of Vectormark selected by Positionplace, and then the
CUDA thread accumulates the token value with the elements
from the corresponding column inside Intermarray_token while
updating Vectormark step by step.

It means that the related ‘‘place’’ columns of
Intermarray_token and Vectormark are processed in parallel.
When the number of tokens inside any place selected by
Positionplace is negative, the apply-scatter phase is stopped,
and the first discrepancy in the current period is captured.
If no discrepancy is captured, each CUDA thread continue
with accumulation and updating operations until all valid
rows of Intermarray_token are processed. The algorithm for
the apply-scatter phase is implemented in another single
kernel program. The pseudo code of the apply-scatter phase
algorithm is in subsection VIII.C.

Moreover, the flowchart of the assisting programs on CPU
is in Figure 12 and Figure 13 with A, B, C as connection
points.

D. COPING WITH DISCREPANCIES
In this paper, if the conformance checking algorithms are
disrupted by one discrepant event of an event trace, it pauses
until the next event trace comes so as to avoid the uncertain
results of the following conformance checking operations
caused by the inference based on free-choice structures (Def-
inition 9) of the model. Then the algorithms resynchronize at
the entry of the workflow net and continue with conformance
checking operations of the new trace.

In the case of discrepancies, some remarks about replay
strategy are given in paper [23], such as the forced firing
of a non-enabled transition, restarting the replay of the full
trace each time an event is added while allowing the replay
program to revise earlier decisions. Unfortunately, the replay
strategy [23] has deficiencies in the case when selecting one
proper firing path from free-choice structures of workflow
nets without the support of extra information. It is suggested
that some prediction strategies can be designed to enable the
conformance checking algorithms to cope with the discrepant
events in real time. Then the discrepant event can be replaced
by the predicted event and the conformance checking algo-
rithms continue with the following checking operations for
the remaining events in the same trace.

There are many techniques which can extract priori knowl-
edge from event traces of workflow net models and make
event-based predictions, such as constructing neural net-
works [51], training probabilistic models [52], [53]. Each
of these mathematical and statistical methods above has its
own advantages and strong points in extracting particular
patterns from event sequences, but no one of them can cover
all types of event sequences. Therefore, optimizations of the
predictions should be studied based on application-specific
knowledge, and a compromise between the accuracy and

FIGURE 12. Flowchart of the assisting programs on CPU for the kernel
algorithm gather phase.

the robustness of conformance checking operations in real
time should be made. The design of these advanced replay
strategies is left for future work.

E. DISCUSSION ABOUT CUDA PROGRAMMING
OF THE ALGORITHMS
Firstly, with regard to one single workflow net (or subnet),
the gather phase algorithm and the apply-scatter phase algo-
rithm are executed in serial manner. The transitions corre-
sponding to the observed events of the sampling period are
processed with concurrent threads in the gather phase, and
then the places connected to these transitions are processed
with concurrent threads in the apply-scatter phase. It means
the number of concurrent threads has an important influence
on the performance of conformance checking operations.

In an ideal state, all the transitions (the number is indicated
as nt ) of one single workflow net (or subnet) are supposed to
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FIGURE 13. Flowchart of the assisting programs on CPU for the kernel
algorithm apply-scatter phase.

be processed in parallel, and then all the places (the number
is indicated as np) of one single workflow net (or subnet)
are supposed to be processed in parallel. In according to the
implementation of the algorithms, we need 2nt concurrent
threads to cope with transitions and np concurrent threads
to cope with places. However, in one sampling period, there
may be a small number of events which are captured, due
to Principle of Locality. Then, the corresponding transi-
tions are only related with a limit number of places. Thus,
in subsections IV.B and IV.C, we make a compromise and
decompose one workflow net into several subnets with the
threshold Nthread (the maximum number of the concurrent
threads in one single GPU device).

Secondly, GPU devices of NVIDIA Corp. often sup-
port Concurrent Kernel Execution. It means that the gather
phase algorithm and the apply-scatter phase algorithm cor-
responding to one single workflow net (or subnet) can be
assigned into one single stream, while other streams are
launched with different kernels to process different workflow

nets (or subnets). However, there is a few tips worthy of
notice. Cooperative groups of CUDA 9.0 is used in this paper
to alleviate synchronizing overhead between different thread
blocks (namely, Grid Synchronization). It is observed that
the kernel launched by the way of ‘‘cuLaunchCooperativeK-
ernel’’ cannot execute concurrently with other streams. The
kernel with the function of Grid Synchronization is executed
exclusively until the kernel exits. Thus, it is suggested that the
conventional kernel launch manner ‘‘≪ . . . ≫’’ and block
wide synchronization strategy are utilized when the size of
workflows net (or subnets) are small enough to be processed
by one thread block. For instance, we can either run three
same kernels (with three copies of data) concurrently with
different streams to implement triple-modular redundancy,
or run different kernels corresponding to different subnets
concurrently with different streams. Moreover, the degree of
parallelism among these streams is also determined by launch
bound of these kernels and the available resources of GPU.
The combining strategies of different streams to enhance the
performance of GPU are left for future studies.

Thirdly, the type of the variables in the pseudo codes
(VIII.B, VIII.C) of the CUDA algorithms are 32-bit integer.
The 8-bit variables can also be used if necessary.

VI. EXPERIMENTAL RESULTS
The scheduling strategy of conformance checking with mul-
tiple GPU devices can be easily designed based on [21] and
section IV. However, the actual performance of these tasks
is usually affected by the communication speed between
multiple GPU devices and the working speed of the sched-
uler communicating with these GPU devices. Therefore,
the experiment for the conformance checking algorithm of
this paper concentrates on one stream inside of one single
GPU device to illustrate the advantages of transition-centric
conformance checking in parallel.

Since Commercial off-the-shelf (COTS) embedded sys-
tems conforming to industrial grade are widely used on orbit,
Jetson TX2i System-on-Module from NVIDIA Corporation
is used as the platform for the transition-centric confor-
mance checking benchmark. Jetson TX2i module contains a
256-core NVIDIA Pascal GPU with CUDA capabilities 6.2,
and the maximum operating frequency of GPU is 1.12GHz.
There are two CPU clusters inside the module including
NVIDIA Denver 2 (Dual-Core) Processor (the maximum
operating frequency is 1.95 GHz) and ARM R© Cortex R© -
A57 MPCore (Quad-Core) Processor (the maximum oper-
ating frequency is 1.92 GHz). Moreover, there is a set of
LPDDR4 memory inside the module, the characteristics of
which includes a 128-bit DRAM interface, a memory bus
with 1600MHz as maximum frequency, 8GBmemory space.
The on-orbit hardware is designed while conforming to Open
VPX standard, shown in Figure 14. As the tool nvpmodel
is supplied by NVIDIA Corporation to manage the perfor-
mance of Jetson TX2i module, the test cases of this paper are
benchmarked with MAXP_CORE_ARM power mode. The
time precision of the measurement is microsecond.
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FIGURE 14. The on-orbit hybrid parallel computing platform based on
Jetson TX2i, Open VPX 3U board (also compatible with Jetson TX1).

To illustrate the performance of the algorithms, the work-
flow net models for benchmark are from the dataset4 [24].
There are two test cases as follows.

The model pr-11-14-1904-A14 contains 83 places and
114 transitions. The event log pr-11-14-1904-A14-01 con-
tains 2000 traces. The length of each trace ranges from
12 to 17. There is no duplicate transition in the model, but
there are four invisible transitions in the free-choice structures
of the model. In this paper, the four invisible transitions are
considered as visible transitions by the conformance check-
ing algorithms. Then the original traces related to the four
transitions are considered as the traces containing discrepant
events. With regard to sampling period, two conditions are
tested with the event log: a single trace is sampled in each
period (indicated as Test Case A in Table 2); a single event is
sampled in each period (indicated as Test Case B in Table 2).
The model pr-1-11-1244-A59 contains 71 places and 68

transitions. The event log pr-1-11-1244-A59-m17-l1-noise
contains 2000 traces. The length of each trace ranges from
12 to 27. There is no duplicate transition or invisible transition
in the model. With regard to sampling period, the two condi-
tions above are tested with the event log. A single trace is
sampled in each period (indicated as Test Case C in Table 2);

4https://data.4tu.nl/repository/uuid:b8c59ccb-6e14-4fab-976d-dd76707b
cb8a

a single event is sampled in each period (indicated as Test
Case D in Table 2).
The processing time (indicated as Timeall in Table 2)

between the point when transitions are extracted by CPU and
the point when the conformance checking results are returned
to CPU is measured, including the computing time of the
gather phase algorithm and the apply-scatter phase algorithm
on GPU, the time of assisting programs of CPU. Besides,
the computing time of the gather phase algorithm (indicated
as Timegather in Table 2) and the computing time of the
apply-scatter phase algorithm (indicated as Timeapply_scatter
in Table 2) on GPU are also measured respectively. There are
two run-time scenarios: a full trace of transitions is processed
when each of the GPU kernels above is launched once (such
as Test Case A and C); a transition is processed when each of
the GPU kernels above is launched once (such as Test Case B
and D). In Table 2, it is observed that the execution time of
the algorithm for gather phase is usually longer than the algo-
rithm for apply-scatter phase, because there are additional
operations which access surface memory in the algorithm for
gather phase, such as the initialization of Intermarray_token.
When a full trace is processed in one single sam-

pling period, the time of the conformance checking algo-
rithms spent on each transition can be calculated by (15).
lengthcurrent_trace is the number of events processed inside the
trace of current sampling period before the first discrepancy
is captured.

Timeeach_event_in_trace = Timeall/lengthcurrent_trace (15)

The average value of Timeeach_event_in_trace is approxi-
mately 0.69 ms in Test Case C. Compared with Timeall (aver-
age) of Test Case B and D inside Table 2, it indicates the
advantages of parallel processing when multiple events are
sampled.

The benchmark program makes use of the default
stream of CUDA. All the task is processed within tens
of milliseconds. It may cost more time when the program

TABLE 2. The measured performance parameters of four test cases.
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FIGURE 15. In test case A: (a) the execution time of the all algorithms; (b) the operating frequency of GPU; (c) the execution time of gather
phase; (d) the execution time of apply-scatter phase; (e) the operating frequency of CPU (0); (f) the operating frequency of CPU (1).

processes the first trace or the first transition, because the
GPUof Jetson TX2imodule needs somewarm-up operations.
The warm-up operations are commonly used in the official
CUDA samples from NVIDIA Corporation. The fluctuations

of measured time during continuous tests are mainly caused
by the following factors: scheduling operations of Linux
and CUDA runtime, dynamic voltage and frequency scal-
ing (DVFS) strategy of Jetson TX2i module.
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FIGURE 16. In test case B: (a) the execution time of the all algorithms; (b) the operating frequency of GPU; (c) the execution time of gather
phase; (d) the execution time of apply-scatter phase; (e) the operating frequency of CPU (0); (f) the operating frequency of CPU (1).

In test case A and B, 249 discrepancies are captured, which
is caused by the invisible transitions in the free-choice struc-
tures of the model pr-11-14-1904-A14. In Figure 15 (b), it is
observed that the operating frequency of GPU is 140.25MHz

most of the time, which is the minimum frequency of GPU
in MAXP_CORE_ARM power mode. The fluctuations of
the execution time in test case A are mainly caused by the
algorithm for apply-scatter phase shown as Figure 15 (d),
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FIGURE 17. A workflow net with two loops.

FIGURE 18. RPST components: node (P3) indicated as (a), node (B0)
indicated as (b), node (R0) indicated as (c).

because the number of loop times for accumulation inside the
algorithm is determined by different length of event traces in
the log. There is a little deviation in the time measurement,
which is introduced by the changing frequencies of CPUs.
In MAXP_CORE_ARM power mode, it is observed that the
CPU (0, 3, 4, 5)5 are similar in frequency variation shown as
Figure 15 (e), and CPU (1, 2) get the same frequency value
shown as Figure 15 (f).

In Figure 16, DVFS strategy has a significant effect on the
frequency of GPU, and it is observed that there are mainly six

5The serial numbers of CPU refer to the path ‘‘/sys/devices/system/cpu/’’
in Linux operating system on Jetson TX2i.

different levels of frequency. The highest frequency captured
in Figure 16 (b) is approximately 675.75 MHz and is a little
more than the half of the maximum frequency of GPU in
MAXP_CORE_ARM power mode. The fluctuations of the
execution time of the gather phase in Figure 16 (c) are mainly
caused by different frequencies of GPU. As to the apply-
scatter phase in Figure 16 (d), the fluctuation of execution
time is not obvious because only one transition is processed
in every sampling period, and the execution time is short. The
frequencies of CPUs in test case B are also obviously affected
by DVFS strategy, and it also introduces a little deviation in
the time measurement. In test case C and D, no discrepancy
is captured, and other test phenomena are similar to test case
A and B respectively.

It is said by NVIDIA Corporation that the DVFS scheme is
not public to customer for patents protection, and the scheme
provides the best performance based on the minimal amount
of energy. We think that the boost of the frequencies of GPU
relates to the intensity of kernel launches. Although theDVFS
scheme may adjust the frequency of GPU to the minimum
frequency, the execution time of the conformance checking
algorithms is tens of milliseconds. Therefore, the hybrid par-
allel computing algorithms of this paper are acceptable for
practical use in coping with the workflow nets with proper
size.

VII. CONCLUSION
The foremost contribution of this paper is a set of hybrid
parallel computing algorithms for conformance checking of
workflow nets in real time, and it can be used as an edge com-
puting application to support on-orbit space science experi-
ments. These algorithms take advantage of graph processing
techniques to accelerate conformance checking operations
and can be used in combination with the decomposition strat-
egy based on spectral graph clustering method, so as to cope
with workflow nets of various structures. The benchmark
above indicates that the performance of the algorithms is

FIGURE 19. The RPST computed based on the workflow net of Figure 17.
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acceptable for practical use on orbit. When there are enough
resources in a single Jetson TX2i module, more CUDA
streams can be created to monitor several space science pay-
loads at the same time.

In future studies, more attributes of workflow net mod-
els will be taken into consideration to extend the current
approach, such as time and other important statuses sampled
from the on-orbit scenarios. The robustness of the confor-
mance checking algorithms will also be improved. Moreover,
Single Event Upset will be taken into account with the design
of software protecting strategies, and the thermal effect on the
performance of the algorithms will be estimated.

APPENDIX
A. ANALYSIS OF RPST BASED DECOMPOSITION
In paper [22], RPST of workflow net is constructed on the
basis of papers [36], [37], and the subparts of RPST are
partitioned out, conforming to the valid decomposition con-
straints. However, it is difficult to take into account both the
‘‘balanced’’ factor and ‘‘coupling’’ factor of subnets at the
same time.

The procedure of RPST based decomposition for confor-
mance checking is analyzed as follow. The main problem in
computing RPST is to construct the tree of the tri-connected
components from the graph structure of petri net (workflow
net) [36], which leads to recursive cycle decompositions and
merge operations [37]. A RPST is constructed from three
types of tri-connected components [36]: maximal bonds,
maximal polygons, rigid split components, and these compo-
nents consist of several trivial edges and virtual edges. In the
computation process of RPST, a petri net is considered as an
undirected graph, and it is the same as subsection III.B.2).
Trivial edges are mapped to arcs of the graph. A maximal
bond indicated as (Bi) in Figure 19 consists of 2 vertexes and
m ≥ 2 trivial edges (or virtual edges), and there is no other
bond that shares a virtual edge with this bond. A maximal
polygon indicated as (Pi) in Figure 19 is a graph that has
m ≥ 3 vertexes and k trivial edges (or virtual edges) such
that all nodes and edges are contained in a cycle, and there is
no other polygon that shares a virtual edge with this polygon.
A rigid split component indicated as (Ri) in Figure 19 is a
simple tri-connected graph (it may be a k-connected graph,
k ≥ 3, e.g. the RPST of Figure 6), where simple means that
no pair of nodes is connected by more than one edge (or one
virtual edge). Virtual edges are used to assist recursive cycle
decomposition and merge operation [36], [37]. When RPST
is constructed, virtual edges are deleted.

Figure 19 is an example RPST of Figure 17. The leaf
node [t5 → p6] is a trivial edge. The non-leaf node (P3)
is a maximal polygon including two trivial edges [p8→ t8],
[t8→ p2], and an undirected virtual edge in dashed line
between p8 and p2, shown as Figure 18 (a). The non-leaf
node (R0) is a rigid split component including six virtual
edges in dashed line, shown as Figure 18 (c). The non-
leaf node (B0) is a maximal bond including two virtual

Algorithm 4Gather Phase, in CUDA 9.0. Search Out the
Input Arcs and Output Arcs Which Are Connecting the
Transitions Inside Buffer transition. There is a Small Trick
to Alleviate Branch Divergence. The Threads With Even
Number as the thread rank Access Even-Indexed (Row
Index is 0) Rows of Carray and Rarray. The Threads With
OddNumber as the thread rank Access Odd-Indexed (Row
Index is 1) Rows of Carray and Rarray.

Input parameters : Carray,Rarray, Sizeplace,
Buffer transition, Sizebuff _tran,
Vectormark_value.

Output parameters: Intermarray_token, Projectorplace.
-Vectormark_value is a row vector with two elements
{−1, 1}.
-surf 2Dwrite, atomicExch, tex1D, tex2D are CUDA
APIs. cudaBoundary-ModeTrap is used by surface
operations.

//CUDA 9.0 cooperative groups.
grid = cg :: this_grid();
if grid → thread rank < Sizebuff _tran × 2

parallel for 0 ≤ i < Sizeplace
//Initialize the elements of Intermarray_token
//with zero.
//Carry out surface memory operations.
surf 2Dwrite(0, Intermarray_token, i× 4, grid →
thread rank );

//Obtain the access positions for the current thread.
//It is the trick to alleviate branch divergence.
Indexodd_or_even = grid → thread rank mod 2;
Indexbuffer_transition = (grid →
thread rank − Indexodd_or_even) / 2;
//Get the transition for the current thread.
IDtransition = Buffer transition

[
Indexbuffer_transition

]
;

//Calculate the offset and range inside Carray based
//on Rarray. Carry out texture memory operations.
offsetstart = tex2D(Rarray,
IDtransition, Indexodd_or_even);
offsetend = tex2D(Rarray, IDtransition + 1,
Indexodd_or_even);
parallel for offsetstart ≤ i < offsetend

//Get the input arcs or output arcs of the current
//transition. The IDs of the places connecting to
//these arcs are recorded.
IDplace = tex2D(Carray, i, Indexodd_or_even);
//Get the value -1 or 1 for input arcs or output arcs.
Markvalue = tex1D(Vectormark_value,
Indexodd_or_even);
//Write the value -1 or 1 into the corresponding
//position of Intermarray_token.
surf 2Dwrite(Markvalue, Intermarray_token,
IDplace × 4, grid → thread rank );
//The atomic function are used to update
//Projectorplace in global memory. 0× AA
//indicates that the corresponding column of
//Intermarray_token needs to be processed by
//algorithm 5 in Apply-Scatter phase. 0× 0
//indicates that no operation is needed.
atomicExch(&(Projectorplace[IDplace]), 0xAA);
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Algorithm 5 Apply-Scatter Phase in CUDA 9.0.
Each Thread Computes One of the Columns Inside
Intermarray_token Selected by the Vector Positionplace. The
Corresponding Elements of Vectormark is AddedWith the
Elements of Intermarray_token. The Order of Add Opera-
tions Is in Conformance With the Occurrence Sequence
of Transitions. When the Intermediate Result of Any
Add Operation Produces a Negative Value, a Discrepant
Transition is Captured.
Input : Sizebuff _tran,Vectormark ,

Positionplace,Countvalid_place, Intermarray_token.
Output: Indexdiscrepant_transition, Vectormark .
-Positionplace contains the index of columns inside
Intermarray_token. The selected columns are processed.
-Countvalid_place is the number of elements with valid
values inside Positionplace.
-Indexdiscrepant_transition is the index of the discrepant
transition inside Buffer transition.
-surf 1Dread, surf 2Dread, atomicMin, surf 1Dwrite are
CUDA APIs. cudaBoundary-ModeTrap is used by
surface operations.

//CUDA 9.0 cooperative groups.
grid = cg :: this_grid();
if grid → thread rank < Countvalid_place

//Read out the current mark and prepare for add
//operations. Carry out surface memory operations.
placethread_to_process =
Positionplace [grid → thread rank ] ;
surf 1Dread(Markvalue,Vectormark ,
placethread_to_process × 4);

parallel for 0 ≤ i < Sizebuff _tran × 2
if grid → thread rank < Countvalid_place

//Read out the value from the corresponding
//column of Intermarray_token. Carry out surface
//memory operations and add operations.
surf 2Dread(Markvalue_column, Intermarray_token,
placethread_to_process × 4, i);
Markvalue = Markvalue +Markvalue_column;
if i mod2 = 0

//Check the mark value when tokens flow out
//of the place.
if Markvalue < 0

Index temp_transition = i/2;
//The atomic function are used to update
//Indexdiscrepant_transition in global
//memory with valid values.
atomicMin(&Indexdiscrepant_transition,
Index temp_transition);

else
//Check whether Vectormark needs to be
//updated. Then, update Vectormark , and
//carry out surface memory operations.
if Markvalue_column > 0

surf 1Dwrite(Markvalue,Vectormark ,
placethread_to_process × 4);

//Synchronize the threads of the whole grid. Exit
//from kernel if a discrepant transition is captured.
grid → sync;
if Indexdiscrepant_transition has a valid value

break;

edges in dashed line, shown as Figure 18 (b). The RPST
in Figure 19 is constructed by merging the tri-connected
components which shares the same virtual edge. Therefore,
instances of the three types of tri-connected components are
nested within each other.

A decomposition of petri net (workflow net) based on
RPST is to find the biggest non-leaf nodes, the size of which
is smaller than the proper threshold while conforming to the
constraint of valid decomposition requirements [21]. The size
of one node is the number of trivial edges contained in the
node [22]. Since the structure of petri net (workflow net) has
a strong impact on the number of trivial edges belonging to
the non-leaf nodes in RPST, it is difficult to decompose the
petri net (workflow net) models of complicated structure into
balanced subnets. For example, if there is a node containing
numerous trivial edges inside the RPST, and the node is indi-
cated as a rigid split component, it is difficult to decompose
the rigid split component into the children of the current
node. Because the children of the node are interconnected
with each other, and the subnets resulting from the decom-
position are tightly coupled. In the worst case, the children
of the rigid split component may be the maximal polygons
or maximal bonds containing other rigid split components.
Supposing that the size of some children of (R0) in the RPST
of Figure 19 is greater than the proper threshold while the
size of other children is smaller than the threshold, the smaller
children are decomposed as subnets. Then, the remaining
part of R0 will be decomposed iteratively. Finally, the size
of each subnet is divergent. Besides, when the boundaries of
subnets contain the vertexes of type ‘‘place’’ (Definition 1),
bridges [22] have to be added as subnets to circumvent the
constraint of valid decomposition [21]. As a result, there will
be a lot of shared transitions.

Since it can be observed that rigid split components are
usually caused by multiple loops sharing the same arcs inside
workflow nets, and these loops often relate to free-choice
structures, it is suggested that model designers should prepro-
cess these loops to reduce the difficulty of decomposition.

Therefore, this paper proposes decomposing workflow net
with spectral graph clustering method, or it is suggested that
the RPST based decomposition is used in a coarse-grained
manner guided by designers, when the size of workflow net
model is too huge to be processed by a single GPU device.

B. CUDA STYLE PSEUDO CODE OF
ALGORITHM GATHER PHASE
See Algorithm 4.

C. CUDA STYLE PSEUDO CODE OF ALGORITHM
APPLY-SCATTER PHASE
See Algorithm 5.
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