
SPECIAL SECTION ON NEW WAVEFORM DESIGN AND AIR-INTERFACE
FOR FUTURE HETEROGENEOUS NETWORK TOWARDS 5G

Received February 22, 2019, accepted March 7, 2019, date of publication April 12, 2019, date of current version April 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2909971

Computation Offloading Optimization Based on
Probabilistic SFC for Mobile Online Gaming
in Heterogeneous Network
HAO JIN , XIAOYING ZHU , AND CHENGLIN ZHAO
Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Hao Jin (hjin@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61471062 and Grant 61431008, and in
part by the State Major Science and Technology Special Projects under Grant 2017ZX03001014.

ABSTRACT To support new services targeted by 5G, great efforts have been taken not only on the
research work of new waveform design and air interface but also on cloudification and softwarization for
future heterogeneous network. As one of the most popular services toward 5G, cloud gaming offloads
computation-intensive tasks to the cloud in order to alleviate the computation burden of mobile devices,
but it introduces latency which deteriorates user experience especially for the delay-sensitive online game.
In order to solve the optimization problem of resource allocation with the quality of experience guarantees
and reduce the operational expenditures and capital expenditures of mobile operators for deploying online
game, fog computing and network function virtualization are deemed as promising solutions. In this paper,
a component-based approach is proposed to model online game based on the probabilistic service function
chain. In order to obtain the optimal virtual function placement in the fog-enabled heterogeneous radio
access network, the cost minimization of computation offloading on the data plane is formulated as an
integer linear programming problem considering the constraints of application maximum tolerable latency,
resource limitation, and user behavior. The optimization problem is NP-hard. To solve the problem with low
complexity, the heuristic algorithm is proposed called Probabilistic Service function chain Embedding based
onCost Optimization(PSECO). The performances of the two algorithms are evaluated. The simulation results
show that the costs are affected mainly by the number of components, the arrival rate of user requests, mobile
user behavior, as well as the physical network topology and the number of users. The heuristic algorithm
PSECO has optimal results with low complexity and it is suitable for large scale networks.

INDEX TERMS Computation offloading, fog computing, network function virtualization, online game,
resource allocation, service function chain.

I. INTRODUCTION
Fifth generation (5G) radio access technology is expected to
take a huge leap compared to the previous radio generations
by supporting cognitive radio, machine type communication,
the internet of things, besides traditional mobile broadband
access. To support new services targeted by 5G, great efforts
have been taken not only on the research work of new wave-
form design and air interface, but also on cloudification and
softwarization for future heterogeneous network. As one of
the most popular services towards 5G, cloud gaming provides
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gaming services to users with affordable, flexible and high
performances, and it enables users to play game on thin
clients by rendering everything in the cloud and simply
streams the resulting high-quality video to users. However,
the Quality of Experience (QoE) of cloud gaming suffers
from high and unstable end-to-end delay due to the long
transmission between users and the core network, which also
causes bandwidth burden to the core network. To alleviate
traffic burden to the core network as well as reduce delay and
energy consumption of mobile devices, mobile online game
is deployed in the fog computing environment [1]–[7].

Fog computing [8]–[10] was introduced by CISCO
in 2012. It is an extension of cloud computing paradigm
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from the core to the edge of the network, which is
typically implemented in macro/small cell base stations
(BSs), WiFi access points (APs), and so on [11]–[12].
By configuring computing-capable modules at these nodes,
computation-intensive applications are able to be offloaded
from the resource-constrained devices to the fog nodes and/or
cloud nodes. Fog computing achieves a number of advantages
including saving bandwidth resources, shortening latency,
improving QoE of users [11] and reducing energy consump-
tion of mobile devices which is especially beneficial for the
Internet of Things [12]. However, the front-haul and backhaul
bandwidth are occupied due to the frequently computation
task offloading. Moreover, integrating new functions with
dedicated hardware brings about more cost to operators [13].
Therefore, the operational expenditures (OPEX) and capital
expenditures (CAPEX) of mobile operators are increased.

In order to reduce CAPEX andOPEX of the fog computing
system for operators, network function virtualization (NFV)
is regarded as a promising solution which makes flexible uti-
lization of network and computation resources [8], [13]–[15].
NFV reduces OPEX and CAPEX by migrating Network
Functions (NFs) from dedicated hardware appliances to soft-
ware instances running on general purpose servers [14].
The NFs are partitioned as Virtualized Network Functions
(VNFs). By composition of various VNFs, Service Function
Chain (SFC) is formed, which is a network flow involving
a set of VNFs interconnected by virtual links(VLs) as a
chain [16].

Deploying a SFC mainly includes two processes, namely
VNF instantiation and SFC mapping [17]. In order to obtain
physical resources, VNFs need to be mapped to physical
nodes, and virtual links among VNFs need to be mapped to
physical links among physical nodes.

From the perspective of whether the executed VNF com-
ponents are determined, SFCs are classified as determinis-
tic SFCs and undeterminate SFCs. The deterministic SFCs
mean that the requested VNFs are known in advance.
These deterministic SFCs are mainly classified as linear
SFCs [13], [14], [16], [18], parallel SFCs [18] and gen-
eral SFCs according to the topology of SFCs composed by
VNFs. General SFCs have not been investigated in detail
yet in current research issues. The undeterminate SFCs are
for uncertain requests, i.e. for the current function, the next
function requested is uncertain [15].

SFC deployment is optimized based on different objectives
to improve network resource utilization, reduce service delay
as well as CAPEX and OPEX of mobile operators [13]–[19].
Online game is a typical case for NFV based SFC deployment
in the fog computing environment.

Some research issues focusing on online game can
be mainly classified as online game architecture, game
application modelling and resource allocation,
etc. [1]–[7], [20]–[27].

From the perspective of game architecture, fog gaming
and cloud gaming are included, and cloud gaming is con-
sidered as the solution in most of the literatures [20]–[26].

In order to improve the performance of cloud gaming,
fog/edge architecture is considered in [1]–[7]. For exam-
ple, the hybrid edge-cloud architecture of cooperative edge
servers placed nearby end-users to improve end-user cover-
age [2], the cloudlet-assisted network architecture in which
the mobile devices are connected to the cloud server for
real-time interactive game videos, while sharing the received
video frames via an ad hoc cloudlet [3], and a lightweight
system called CloudFog in which fog super-nodes cooperate
to render game videos and stream them to their nearby players
in order to reduce response time, bandwidth consumption
and increase user coverage, while using the storage and com-
putation resources on the cloud [5]. As another candidate
solution instead of CloudFog, EdgeCloud [6] is deployed
with a number of servers with specialized resources located
near end-users, and these servers are responsible for hosting
mobile online game including computing new game state and
rendering game videos for players. In [7], the feasibility of
edge computing for achieving satisfactory QoE is verified
by using the open-source GamingAnywhere cloud gaming
platform for mobile gaming.

From the perspective of game application modelling, liter-
atures can be classified as two categories including session
based modelling and component based modelling, which
model call behavior among application software.

In the session based modelling, computation-intensive
tasks are offloaded to resource-rich servers for computation,
and the interaction of users with game servers is modelled
by users sending action information/command continuously
during online game [2], [5]–[7], [20]–[24].

In the component basedmodelling, mobile applications are
decomposed of several loosely-coupled components so that
applications can be quickly redeployed at runtime to offload
parts of applications to other devices and make resource
allocation more flexible [1], [28]–[30]. The call relationship
among functional components in component based applica-
tions is modelled by a directed graph, which is classified
as deterministic structure [1], [25], [27] and undeterministic
structure. For component based computation tasks, the gran-
ularity of offloading is a key factor to affect the performance
of the cloud/fog game [27], [28]. Principles of construct-
ing the decomposed cloud gaming and research challenges
from the perspective of decomposition granularity are pre-
sented in [27], and a trade-off between fine-grained and
coarse-grained should be considered according to different
demands [28]. In [1], a component based programmingmodel
is proposed and verified by dividing game logic into self-
contained, remote executable as well as reusable software
components. In [25], a component based game platform is
designed to provide cognitive capabilities across the cloud
gaming system, which supports click-and-play, intelligent
resource allocation and partial offline execution.

As a case of the undeterministic structure, the IoT appli-
cation for autonomous driving is considered whose SFC
depends on the component execution [15]. The applica-
tion is executed in sequence, in parallel, or by using more
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complex substructures such as selections and loops which
introduce uncertainty in the execution. However, the infor-
mation related to user behavior is not considered in the
application.

From the above modelling of online game, the interaction
between users and game servers, as well as the computation
task offloading are important behaviors to model. Modelling
of frequent interactions with game servers mainly focuses on
the control plane of gaming. Component based modelling
contributes to the application programming model, and it
enables modelling of the instance call behavior among dif-
ferent components including interactions both on the control
plane and that on the data plane, which plays an important
role in computation offloading.

Regarding online game, component instances called by
mobile users depend on their skill(behavior) and the game
component programming model, on the one hand, user call
sequences of the application components are unknown, on the
other hand, it is hard to know in advance how long the game
would last, which component would be called next, as well
as the amount of data to be offloaded [31]. In a word, due
to the difficulties of modelling the undeterministic behavior
of online game, the optimization of online game remains a
challenge in the fog computing environment.

From the perspective of online game optimization,
the resource allocation problem is addressed to optimize the
overall game experience in [1]–[6], [20], [22], [23], [25].
Objectives are usually selected as latency minimiza-
tion [1], [2], [20], cost minimization(CPU/GPU, energy,
memory, etc.) [1], [23], network bandwidth consumption
minimization [1], [3], [23], and profit maximization [22], etc.

To the best of our knowledge, no paper has focused on
modelling the undeterministic online game in the cloud/fog
based environment. In this paper, the online game of unde-
terministic structure is investigated in the fog computing
environment on the basis of the component model. The
probabilistic SFC is modelled based on interactive and
uncertain features of online game, and the resource alloca-
tion problem is addressed with multi-objectives considering
bandwidth, CPU/GPU resources and the number of VNF
instances. The optimization problem is solved as a SFC map-
ping problem. The main contributions of the paper are as
follows.

(1) To solve the optimization problem of resource allo-
cation and reduce CAPEX and OPEX of mobile operators
for online game, a component based approach is proposed
based on probabilistic SFC in the fog computing environ-
ment, considering interactive and uncertain features of online
game.

(2) In the scenarios of heterogeneous computing-enabled
Radio Access Network(RAN) including MBS level and SBS
level, the cost minimization of computation offloading on the
data plane is formulated as an ILP problem by optimizing
placement of VNFs considering the constraints of applica-
tion maximum tolerable latency, resource limitation and user
behavior.

FIGURE 1. System model of online game in the fog-enabled
heterogeneous RAN.

(3) A heuristic algorithm for Probabilistic SFC Embedding
based on Cost Optimization (PSECO) is proposed to tackle
the problem with low complexity.

(4) The ILP problem is solved and compared with the
heuristic algorithm PSECO by simulation. Simulation results
show that the costs are affected mainly by the number of com-
ponents, the arrival rate of user requests, mobile user behavior
as well as physical network topology and the number of users.

The rest of this paper is organized as follows. In Section II,
the system model is given. In section III, the online game
model is presented including system scenario, applica-
tion model, probabilistic SFC model, computation model
and communication model, and the problem is formulated.
In section IV, a heuristic algorithm is presented to solve
the optimization problem. In Section V, the ILP based opti-
mization algorithm and the heuristic algorithm are evaluated.
Finally, the paper is concluded in Section VI.

II. SYSTEM MODEL
Based on MANO [32], the system model of online game is
illustrated in Fig.1. The online game is composed of various
VNFs, and the user request oriented network flow is formed
as SFC involving a set of VNFs on the virtual network.

In the fog-enabled heterogeneous RAN, several small base
stations (SBSs) are located in the coverage of a macro base
station (MBS). The SBSs and the MBS are enabled with
small/medium-scale servers to provide computation and stor-
age resources. That is to say, the BSs are fog nodes, and
the online game VNF components are deployed in the fog
layer. Either wired link or wireless link is deployed between
BSs for communication. An orchestrator is resided on the
MBS to support service orchestration, VNF orchestration and
SFC mapping. The MBS also acts as the application proxy to
process the service requests from mobile users.

The application proxy generates SFC by analyzing user
information for the online game, and the orchestrator makes
a decision on optimal placement for the SFC. According to
the decision result, the SFC is mapped to the physical infras-
tructure. The SBSs provide computation resources for the
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VNF components, and interact with mobile users via wireless
links during online game. The physical links between SBSs
are mapped as communication resources for the VLs on the
virtual layer.

The detailed process is divided into two phases, namely
SFC placement decision phase and computation offloading
phase.

In the SFC placement decision phase, the interactions take
place on the control plane. Firstly, the proxy located at the
MBS receives service requests and generates a SFC for the
online game according to user request information. Then,
the proxy forwards the generated SFC to the orchestrator
which performs the placement optimization algorithm based
on the SFC. The optimization result depends on computation
offloading optimization objectives and computation resource
information of SBSs, etc. Based on the optimization result,
the orchestrator sends the decision to those SBSs selected to
instantiate VNFs, and responses to the proxy. Then the proxy
sends the decision to the users. Finally, the VNFs of the online
game are instantiated to serve mobile users.

In the computation offloading phase, user requests are
satisfied by the VNF call sequences based on the applica-
tion components. The user command information and state
information are transmitted on the control plane, while the
input/output arguments of VNF components are transmitted
on the data plane. A VNF starts execution after receiving
input arguments and user command information. When a
VNF is completed, it returns state information to the user,
the user sends a service request (command) for the next VNF
on the control plane, which is a VNF call sent to the next
VNF with the output arguments of the current VNF. The calls
between VNFs are executed according to the offloading deci-
sion, and the input/output arguments are transmitted among
the related SBSs to which the VNFs are offloaded. When the
last VNF is completed, it returns results to the user on the
data plane. During the time when mobile users are playing,
the VNFs interact with users on the control plane if necessary.

An example of the online game provision procedure based
on VNF chain is shown in Fig.2, in which the user requests
VNF1 and VNF3, while VNF1 is decided to be placed on
SBS2, and VNF3 to be placed on SBS3 according to the
orchestration.

From the above behavior modelling of online game, it indi-
cates that the VNFs called by mobile users are undetermin-
istic, which is a challenge for the SFC embedding. Fur-
thermore, the traffic between VNFs should be considered
including interactions on the control plane and that on the data
plane. Since the amount of data transmitted on the control
plane is small compared with that transmitted on the data
plane, the modelling of the data plane is addressed, which
is presented in section III.

III. MODELING OF ONLINE GAME IN THE FOG-ENABLED
HETEROGENEOUS RAN
In this section, probabilistic SFC model is proposed based
on component based online game, and embedded into the

FIGURE 2. Online game provision procedure based on SFC embedding.

fog-based heterogeneous RAN. The section includes sys-
tem scenario, application model based on components,
probabilistic SFC model based on VNF components, com-
putation model and communication model. Based on the
modelling, the problem is formulated as an ILP to minimize
the cost of deploying SFC by mapping the probabilistic SFC
into physical infrastructure considering the constraints of
application maximum tolerable latency, resource limitation
and user behavior.

A. SYSTEM SCENARIO
As shown in Fig.1, assume that there is a MBS, which acts
as an orchestrator and an application proxy. In the cover-
age of the MBS, there are NSBS SBSs to provide computa-
tion resources for online game in terms of the number of
CPUs/GPUs. A two-dimensional grid topology is used to
model the distribution of SBSs in Fig.3 [33]. The networking
topology of SBSs is denoted asGphy(VSBS ,ESBS ), whereVSBS
represents the set of SBSs, and ESBS represents the set of
physical links between SBSs. vk denotes the SBSs in tier k ,
and the number of SBSs in tier k is 4 ∗ k . The topology is
composed of up to K tiers of SBSs. The SBSs are connected
by wired links, and the average degree of the topology is
defined as avd . In the coverage area, NUE users are uniformly
distributed with different online game requests.

B. APPLICATION MODEL BASED ON VNF COMPONENTS
1) GRAPH MODEL BASED ON VNF COMPONENTS
In the application layer, the online game is divided into
several VNF components, and the behavior of the appli-
cation execution is modelled as calls between components,
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FIGURE 3. Networking model of SBSs.

therefore, the call sequences based on these VNF components
are formed as SFCs according to the service requests, which
reflect the user behavior during the game.

A directed graph Gcall(Vcall,Ecall) is defined to represent
the call relations amongVNF components of the online game.
The vertex setVcall denotes all components of the application,
where a vertex represents a VNF component. The edge set
Ecall represents the call relations among VNF components.
Suppose the online game is composed of n components, then,
the set Vcall is denoted by Vcall = {0, 1, 2, . . . , n, n + 1},
where VNF component 0 and component n+1 do not require
resources and are placed at the SBSs to which the users are
attached, namely representing the source and destination of
the application based on the request. The edge ei,jcall ∈ Ecall
denotes that component i calls j, which means that j is the
next component called by component i. The VNF component
starts execution when it receives the input data from its pre-
vious VNF component.

2) MODELING OF USER BEHAVIOR BASED ON VNF
COMPONENT GRAPH
Different experiences are provided to online game users dur-
ing the game, which mainly depend on the design of the
game programming. However, the primary experiences are
usually the level and the time allowed to play the game, which
are configured according to the skill(behavior) of users as
well as the grade of difficulty. For example, the longer the
game lasts, the higher the level is, and more difficult the
game is.

Considering the component based application model and
user behavior(skill), we assume that the game is divided into
three levels, namely low-level, medium-level and high-level
to differentiate user levels(behavior). Supposing that the level
is related to the VNF components, that is to say, the level cor-
responds to the components which are called. Low-level users
only call some of the VNF components, medium-level users
call more of the VNF components than that of low-level users,
while high-level users call all VNF components arbitrarily.
When mobile users play online game, different VNF com-
ponent call sequences are generated depending on their lev-
els(behavior). For example, users can call VNF components
arbitrarily and repeatedly within the set of the components
allowed by their levels.

FIGURE 4. An example of component call sequences for different user
levels.

Assume that user levels do not change during the SFC
embedding and computation offloading. For user u, the level
is assumed to be level(u) and the length of the call sequence
is length(u). Thus, user u generates a VNF component call
sequence s(u) within the set of the components allowed by
its level. An example of the VNF component call sequences
for different user levels is shown in Fig.4 when the game
application has six VNF components (n = 6). In Fig.4, users
can call a VNF component repeatedly, and the length of the
application sequences is undeterministic when they play the
game.

Assume that service requests follow Poisson process with
an average arrival rate of λ requests per user. The request
argument of user u is denoted as R(u) = {DS(u),Tmax(u)},
where DS(u) denotes the load of data offloaded by user u,
and Tmax(u) is the maximum tolerable latency of the request
required by user u. The load of the total requests for users is
expressed as

ltotal =
NUE∑
u=1

DS(u) (1)

Based on the application model and user behavior,
the probabilistic SFC is modelled to illustrate the undetermin-
istic call sequences in section III-C.

C. PROBABILISTIC SFC MODEL BASED ON VNF
COMPONENT GRAPH
For the VNF component based online game, the SFC is unde-
terministic since the next calling VNF depends on the user
behavior. In this section, the probabilistic SFC is modelled
based on Markov Process.

The components contained in the online game constitute a
state space, where state i indicates that component i is called.
The state transition probability matrix Puser(u) is defined for
user u between components, where the element of the matrix
Pi,juser (u) is the transition probability of user u from component
i to j. The transition probability of users is computed and
recorded at regular intervals by the application proxy. Let s(u)
represents the call sequence of user u playing the game, a new
s(u) causes a change in Puser(u), and Puser(u) represents the
information of user u to play the game.
In order to illustrate call behavior of all users requesting the

game, letPapp be the state transition probabilitymatrix for the
application between components, which is composed of Pi,japp
indicating the state transition probability from component i to
j of the application, and Pi,japp = 1

NUE
∗

∑NUE
u=1 P

i,j
user (u). Papp
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is computed by the application proxy, which is related to the
number of users and user behavior.

Denote GSFC (VSFC ,ESFC ) as the graph to represent the
probabilistic SFC. The vertex set VSFC represents the
VNFs that the SFC has, namely VSFC = {VNFi|i =
0, 1, 2, . . . , n, n + 1}, where 0 and n + 1 just indicates the
first and last VNF placed on the SBSs attached by users and
they do not consume resources. The set ESFC represents the
probabilistic calls of VNFs. The weight of edge ei,jSFC ∈ ESFC
is Pi,japp, which is the probability of selecting j after i. The sum
of weights of all outgoing edges of a vertex is 1, namely,

n+1∑
j=0

Pi,japp = 1, ∀i ∈{0, 1, 2, . . . , n, n+ 1} (2)

The state transition graph based on Markov model for the
probabilistic SFC is shown in Fig.5.

FIGURE 5. State transition graph for the probabilistic SFC.

For the application, the embedded SFCs are different
depending on thePapp. For simplicity, assuming that the input
and output data augments of VNFs are the same. According
to Markov model, the steady-state probability distribution is
defined as 5 = {πi|i = 0, 1, 2, . . . , n, n + 1}. The formula
for solving the steady-state probability is as follows [33]:

5 ∗ Papp = 5 (3)
n+1∑
i=0

πi = 1 (4)

where πi represents the steady-state probability of requesting
VNFi.

D. COMPUTATION MODEL IN THE FOG-ENABLED
HETEROGENEOUS RAN
In the fog-enabled heterogeneous RAN, the SBSs provide
computation resources for the VNF components during
online game, and the computation resources are modelled
by available CPUs/GPUs of SBSs. The VNFs are deployed
on the SBSs, and each VNF has a predetermined processing
capacity.
lVNFi is defined as the computation load to the VNFi, then

it can be obtained as:

lVNFi = ltotal ∗ πi (5)

Since each VNF has a predetermined processing capacity,
when the load to VNFi exceed the maximum processing

capacity, the orchestrator deploys another VNFi instance to
process the load.

In order to model the call behavior among different
instances, Ins is defined as the set of instances, and insfii , fi ∈
{1, 2, . . . Ii} represents the instance fi of VNFi, where Ii is the
number of instances of VNFi. The total number of instances
for VNFs is Nins. linsfii

is denoted as the computation load

to insfii . For ins
fi
i , R

fi
i represents the number of CPUs/GPUs

required to process unit load, and Rf00 = 0,Rfn+1n+1 = 0. Capfii
represents the processing capacity of insfii . ins

f0
0 and insfn+1n+1

are placed at the corresponding SBSs to which the users
are attached, indicating the start and end of the application,
respectively.

Assume that the available CPUs/GPUs of SBS m is
Acom(m), and the cost of unit resource is Ccom(m). The instan-
tiation cost of insfii at SBS m is defined as C

ins
fi
i
(m). T

pins
fi
i
(m)

represents the processing delay of insfii on SBS m for unit
load. Then the computation node cost can be formulated by
CPU/GPU cost and instantiation cost, and the delay can be
formulated by the processing delay.

E. COMMUNICATION MODEL IN THE FOG-ENABLED
HETEROGENEOUS RAN
Virtual links are interconnected between instances on the
virtual layer, representing traffic load transmission between
VNF instances. An example of traffic load distribution among
instances is shown in Fig.6, where δfii is defined as the ratio
of the load to instance fi of VNFi to that to VNFi,

δ
fi
i =

l
ins

fi
i

lVNFi
(6)

The load from instance insfii to instance ins
fj
j is linsfii

∗δ
fj
j ∗P

i,j
app.

FIGURE 6. An example of traffic load distribution among instances on the
virtual network.

Virtual links on the virtual network are mapped to physical
links on the physical network to obtain the communica-
tion resources, which leads to communication cost includ-
ing wired cost and wireless cost. Let Cwirless denote the
cost of wireless bandwidth for unit load. The achievable
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uplink transmission rate rup from users to SBSs is given as
rup = W log2(1 +

g∗Pt
σ 2

). Define rdown as the achievable
downlink rate fromSBSs to users. Assume that SBSs commu-
nicate with each other via wired links. The available capacity
of the bandwidth between SBS m and SBS p is denoted as
Awired (m, p), and the cost of the bandwidth for unit load is
Cwired (m, p).H (m, p) represents the number of hops between
SBS m and SBS p. Communication between physical nodes
to which VNFs are mapped causes transmission delay. Define
Ttr (m, p) as the delay for unit load between SBS m and SBS
p.

Based on the component based game model, computation
model and communication model in fog computing environ-
ment, the problem is formulated aiming at minimizing cost
for online game in section III-F.

F. PROBLEM FORMULATION
The resource allocation optimization problem of computa-
tion offloading for online game in the fog-enabled hetero-
geneous radio access network is formulated as an ILP with
multi-objectives aiming at minimizing the total cost including
CPU/GPU cost, instantiation cost and transmission cost, with
Service Delivery Time(SDT) [34] as one of the constraints.
The variables used in the formulation are given in Table 1.
According to the modelling, the cost in terms of the

CPU/GPU is computed in (7),

Costcpu =
∑
i∈VSFC

∑
fi∈Ii

∑
m∈VSBS

l
ins

fi
i
∗ Rfii ∗ x

i,fi
m ∗ Ccom(m) (7)

The VNF instantiated cost can be obtained in (8),

Cost ins =
∑
i∈VSFC

∑
fi∈Ii

∑
m∈VSBS

x i,fim ∗ Cinsfii
(m) (8)

The sum of CPU/GPU cost and instantiation cost is defined
as the Node cost.

The transmission cost includes wireless transmission cost
between users and SBSs, and wired transmission cost among
SBSs. That is to say, CostTrans = Costwired + Costwireless.
The wired transmission cost is got as in (9),

IR
(i,fi),(j,fj)
m,p = l

ins
fi
i
∗ Pi,japp ∗ δ

fj
j ∗ y

(i,fi),(j,fj)
m,p

IWm,p
wiredcost = IR

(i,fi),(j,fj)
m,p ∗ H (m, p) ∗ Cwired (m, p)

Costwired =
∑
i∈VSFC

∑
fi∈Ii

∑
m∈VSBS

∑
j∈VSFC

∑
fj∈Ij

∑
p∈VSBS

IWm,p
wiredcost

(9)

The wireless transmission cost is computed as in (10),

Costwireless = (ltotal + lVNFn+1) ∗ Cwireless (10)

where lVNFn+1 is defined as the load to VNFn+1.
Therefore, the total cost is formulated as in (11),

TotalCost = Costcpu + Costins + Costwired + Costwireless
(11)

TABLE 1. Variables used in the formulation.

where x i,fim is a binary variable which represents that whether
insfii is processed at SBS m. If the ins

fi
i is processed at SBS m,

x i,fim = 1, otherwise, x i,fim = 0. y
(i,fi),(j,fj)
m,p is a binary variable

representing that whether the virtual link between insfii and
ins

fj
j is hosted by the physical link between SBS m and SBS

p. If the virtual link between insfii and ins
fj
j is hosted by the

physical link between SBS m and SBS p, y
(i,fi),(j,fj)
m,p = 1,

otherwise, y
(i,fi),(j,fj)
m,p = 0.

In order to consider the user experience delay as one of
the constraints for the formulation, SDT is computed. The
SDT is usually used to measure the user experience delay,
which is defined as the total time for the requests to reach
the server, being processed and reach back the terminal [34].
According to the definition, the SDT of online game in our
paper includes the average transmission time of the input
arguments to VNFs and the average time being processed
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per interaction (note that the delay on the control plane is not
considered).

The average processing delay of VNFs is got as,

AVTnode=
1
Nins
∗ (

∑
i∈VSFC

∑
fi∈Ii

∑
m∈VSBS

l
ins

fi
i
∗ T

pins
fi
i
(m) ∗ x i,fim )

(12)

The total delay of wired bandwidth transmission between
SBSs can be obtained as in (13),

IEm,pwiredtime = IR
(i,fi),(j,fj)
m,p ∗ H (m, p) ∗ Ttr (m, p)

Twired =
∑
i∈VSFC

∑
fi∈Ii

∑
m∈VSBS

∑
j∈VSFC

∑
fj∈Ij

∑
p∈VSBS

IEm,pwiredtime

(13)

The wireless transmission delay between users and SBSs
is got in (14),

Twireless = ltotal/rup + lVNFn+1/rdown (14)

Therefore, the average transmission delay for each link is,

AVTtrans =
1

numVL + 2
∗ (Twired + Twireless) (15)

where numVL represents the number of VLs between
instances that need to be mapped to the physical links.

Therefore, the average experience delay of users can be
obtained as (16),

AVtime = AVTnode + AVTtrans (16)

Finally, the resource allocation optimization problem of
computation offloading can be formulated as:

min TotalCost

s.t. C1 : AVtime ≤ min(Tmax(u))

C2 :
∑

m∈VSBS

x i,fim = 1, ∀i ∈ VSFC , fi ∈ Ii

C3 :
∑
i∈VSFC

∑
fi∈Ii

l
ins

fi
i
∗ Rfii ∗ x

i,fi
m < Acom(m), ∀m

C4 :
∑
i∈VSFC

∑
fi∈Ii

∑
j∈VSFC

∑
fj∈Ij

IR
(i,fi),(j,fj)
m,p

< Awired (m, p), ∀m, p ∈ VSBS
C5 : l

ins
fi
i
≤ Capfii , ∀i ∈ VSFC , fi ∈ Ii

C6 :
∑

p∈VSBS

y
(i,fi),(j,fj)
m,p −

∑
p∈VSBS

y
(i,fi),(j,fj)
p,m

= x i,fim − x
j,fj
m , ∀m ∈ VSBS , ∀i, fi, j, fj (17)

Constraint C1 indicates that the user experience delay
should be less than or equal to the maximum tolerable delay.
Constraint C2 indicates that a VNF instance can be mapped
only once. Constraint C3 limits the number of CPUs/GPUs
provided by the SBS less than or equal to its capacity. Con-
straint C4 limits the bandwidth provided by the wired link
not larger than its capacity. Constraint C5 indicates that the

traffic handled by each VNF instance should not exceed
its maximum processing capacity. Finally, the C6 constraint
ensures the network flow conservation.

The optimization problem is a general integer linear pro-
gramming (ILP), which is NP-hard. For real-time applica-
tions and large scale networks, it is difficult to find an optimal
solution in an efficient way. To solve the problem with low
complexity, a heuristic algorithm is proposed in section IV.

IV. SOLUTION TO THE OPTIMIZATION OF
PROBABILISTIC SFC EMBEDDING
In this section, a heuristic algorithm is proposed called
Probabilistic SFC Embedding based on Cost Optimization
(PSECO).

The heuristic algorithm PSECO contains two steps: the
first step is to map the virtual nodes of instances to the
physical network, and the second step is to map the virtual
links among instances to the physical links based on the
shortest path. If the output decision cannot meet the resource
constraints, a virtual node on the physical node with the most
occupied resources is migrated to the physical node with
more resources.

The algorithm is depicted in Algorithm 1.
In the algorithm, IW p,m

wiredcost represents the wired cost from

ins
fj
j to insfii , in which ins

fj
j is mapped to SBS p, and insfii

is processed at SBS m. Define V (insfii ,m) as the node cost
for insfii placed at SBS m. The output X is a decision matrix,
where

X i,fim =

{
1 insfii is placed at SBS m

0 insfii is not placed at SBS m
(18)

Based on the ILP optimization algorithm and the heuristic
algorithm PSECO, the performance of them is evaluated in
section V.

V. PERFORMANCE EVALUATIONS
In this section, the performances of the exact ILP solution(we
call it ILP based optimization algorithm later) and the heuris-
tic algorithm PSECO are evaluated with various parame-
ters including the number of components of online game n,
the arrival rate of user requests λ, the ratio of high-level users
to total users Rh, the number of tiers K , the average degree of
the physical network avd , and the number of users NUE .

The performance metrics in the simulation include Node
cost, Wired cost, Wireless cost and Total cost. Node cost
is the sum of CPU/GPU cost and instantiation cost. The
instantiation cost depends on the number of instances [15].

The performances of the online game computation offload-
ing optimization algorithms are evaluated by MATLAB with
Monte Carlo method. The ILP based optimization algorithm
is implemented using Gurobi optimizer [35]. The results are
averaged from 1000 simulations.

The detailed simulation parameter settings are given in
V-A, and the evaluation results are presented in V-B. The
complexity of the algorithms is analyzed in V-C.
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Algorithm 1 PSECO
1: Input: VSFC , ESFC , VSBS , ESBS
2: Calculate steady-state load to instances;
3: Calculate steady-state load transferred between

instances;
4: for ins_i in Ins and ins_i is no.mapped do
5: for each physical node m ∈ VSBS do
6: for all ins_j ∈ Ins whose traffic is transferred

to ins_i do
7: if no.mapped then
8: value←+∞;
9: for each physical node p ∈ VSBS do
10: value← min(value, IW p,m

wiredcost );
11: end for;
12: else
13: loc_j← physical node embedded by ins_j;
14: value← IW p,m

wiredcost ;
15: end if;
16: embedvalue(m)← embedvalue(m)+ value;
17: end for;
18: embedvalue(m)← embedvalue(m)

+V (ins_i,m);
19: end for;
20: loc_i← argmin(embedvalue);
21: update X;
22: end for;
23: while (X not meeting resource constraints) and

(num < num_loop)
24: migrate the most resource-intensive instance of

the most resource-consuming physical node to
the physical node with more resources;

25: end while;
26: Assign physical links for the VLs;
27: Output: X

A. SIMULATION PARAMETERS
The simulation parameters are given in this section. In the
simulation, if it is not clearly stated, assuming that the number
of medium-level users and the number of low-level users
are equally divided. The uncertainty on the VNF resource
demands is considered, since the CPU/GPU utilization varies
according to the VNF processing load. The arrival rate
of requests follows Poisson distribution. The size of the
offloaded data changes. Assume that the number of requests
fluctuates with a maximum deviation a under a nominal value
µ [36].

Since the cost of each unit computation and bandwidth
resource depends on various factors including practical oper-
ation andmanagement experience of operators, for simplicity,
Ccom andCwired are assigned as 1 according to [19]. Similarly,
the instantiation cost for VNFs and the wireless cost for unit
load are also set as 1.

The detailed parameters are listed in Table 2, including the
server capacity [23], maximum tolerable latency [23], [26]

TABLE 2. Parameters used in the formulation.

and fog-enabled RAN parameters [37], [38]. The ERmodel is
used as the network topology model for the physical network
on the SBS level.

B. EVALUATION RESULTS AND DISCUSSIONS
In this subsection, the impact of the parameters to the cost is
investigated including the number of components of online
game n, the arrival rate of user requests λ, the ratio of
high-level users to total users Rh, the number of tiers K ,
the average degree of the physical network on the SBS level
avd , as well as the number of users NUE .

1) IMPACT OF THE NUMBER OF COMPONENTS
TO THE COST
Fig.7 shows the impact of the number of components n to
the cost when K = 1, NUE = 100, Rhx = 0.5, λ = 3 and
avd = 3. The cost includes total cost, node cost, wired cost
and wireless cost.

FIGURE 7. Impact of n to (a) total cost, (b) different cost, (c) node cost
and (d) the number of instances.

In Fig. 7(a), the ILP based optimization algorithm is more
efficient than PSECO as expected in terms of the total cost.
When n increases, it indicates that the total cost is gradually
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FIGURE 8. Impact of λ to (a) total cost, (b) different cost, (c) node cost
and (d) the number of instances.

increasing. In Fig. 7(b), the node cost changes most obviously
among the three costs, and the other two costs remain nearly
the same. Since the node cost is divided into CPU/GPU cost
and instantiation cost, as can be seen from Fig. 7(c) and
Fig. 7(d), when n increases, the node cost becomes higher
due to the increase of the number of instances.

2) IMPACT OF THE ARRIVAL RATE OF USER REQUESTS TO
THE COST
Fig.8 shows the impact of the arrival rate of user requests λ
to the cost when K = 1, NUE = 100, Rh = 0.5, λ = 3 and
n = 10.

In Fig. 8(a), the ILP based optimization algorithm is more
efficient than PSECO, but the difference is small. When λ
increases, it reveals that the total cost becomes higher, and
the three costs also become larger in Fig. 8 (b). With the
same number of components n, as λ increases, the instantiated
cost becomes higher in Fig. 8(c), because the number of
instances increases to meet more user requests. The change
of the number of instances to the arrival rate of user requests
is shown in Fig. 8(d).

Fig.9 shows the impact to the cost change when the number
of requests has a fluctuation with a nominal value of 3 and a
maximum deviation of a. The cost change is defined as the
difference between the cost when the arrival rate fluctuates
(a > 0) and the cost when a = 0. From Fig. 9(a), although
a increases, the total cost changes slightly. The total cost
change ranges from 0.04 to 0.08, and it is mainly caused by
the change of node cost and wired cost (Fig. 9(b)).

3) IMPACT OF MOBILE USER BEHAVIOR TO THE COST
Fig.10 shows the impact of the ratio of high-level users to
total number of users Rh to the cost when avd = 3, K = 1,
NUE = 100, λ = 3 and n = 10.

FIGURE 9. Impact of a to (a) total cost change and (b) cost change.

FIGURE 10. Impact of Rh to (a) total cost, (b) different cost, (c) the
number of instances when the proportion of low-level and medium-level
users is 1:1 and (d) the number of instances when L:M changes.

The ILP based optimization algorithm is more efficient
than PSECO in Fig. 10(a), when Rh increases, the total cost
increases as well. From Fig. 10(b), since the set of com-
ponents that high-level users call is large, with the increase
of Rh, the number of instances required becomes larger,
which causes the increase of the node cost. In Fig. 10(b)
and Fig. 10(c), when Rh is bigger than 0.5, it reveals that
the node cost and the number of instances change rapidly.
Fig. 10(d) shows the impact of Rh to the number of instances
when changing the proportion of low-level and medium-level
users (L: M).

4) IMPACT OF THE NUMBER OF TIERS TO THE COST
Fig.11 shows the impact of the number of tiersK when avd =
3, NUE = 100, Rh = 0.5, λ = 3 and n = 10.
Fig. 11(a) and Fig. 11(b) show the impact of K to total

cost and different cost, respectively. It can be seen from
Fig. 11(a) that the ILP based optimization algorithm has a
lower total cost than that of PSECO, and as K increases,
the total cost increases. Fig. 11(b) shows the impact of K
on various costs. It indicates that the wired cost of PSECO
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FIGURE 11. Impact of K to (a) total cost and (b) different cost.

FIGURE 12. Impact of avd to (a) total cost and (b) different cost.

is better than that of the ILP based optimization algorithm,
while the node cost of PSECO is a little lower than that of the
ILP based optimization algorithm. As K increases, only the
wired bandwidth cost increases, and the other costs remain
nearly the same.

5) IMPACT OF THE AVERAGE DEGREE OF THE NETWORK TO
THE COST
The average degree of the network on the SBS level affects
the cost of computation offloading. Fig.12 shows the impact
of the average degree of the network avd to the cost when
NUE = 100, Rh = 0.5, λ = 3, K = 2 and n = 10.
In Fig. 12(a) and Fig. 12(b), the impact of avd to total cost

and different cost is shown. It reveals that when avd increases,
the total cost is reduced, this is because more and more SBSs
are connected directly as avd increases, and the bandwidth
cost caused by multi hop transmission is replaced by that of
one hop transmission.

6) IMPACT OF THE NUMBER OF USERS TO THE COST
Fig.13 shows the impact of the number of users NUE when
avd = 3, K = 1, Rh = 0.5, λ = 5 and n = 10.
The impact ofNUE to the cost is given in Fig.13. It indicates

that the ILP based optimization algorithm has a lower total
cost than that of PSECO. In Fig. 13 (a) and Fig. 13(b),
when NUE increases, each cost becomes higher. For the node
cost, the CPU/GPU cost increases rapidly with NUE and
the instantiation cost increases slowly in Fig. 13(c). Due to
the increase of the number of users, the CPU/GPU cost is
larger because of more traffic load from users. The increase
of the number of users also brings about more number of

FIGURE 13. Impact of NUE to (a) total cost, (b) different cost, (c) node
cost and (d) the number of instances.

FIGURE 14. Complexity comparison of the two algorithms(n = 10).

instances, which causes the increase of instantiation cost as
shown in Fig. 13(d).

C. COMPLEXITY ANALYSIS
As can be seen from the above simulation results, in terms
of the total cost, the ILP based optimization algorithm usu-
ally outperforms the heuristic algorithm PSECO. However,
from the perspective of complexity, the complexity of the
ILP based optimization algorithm is O(2Nins∗NSBS ), while the
complexity of PSECO is O((Nins ∗ NSBS )2), where Nins is
the number of instances for online game and NSBS is the
number of SBSs. The logarithm of the solution space is shown
in Fig.14 with the change of K , assuming that there are ten
component VNFs for the online game, and each component
VNF has one instance, i.e. Nins = n = 10. It reveals that
the complexity of PSECO grows very slowly, while the com-
plexity of ILP based optimization algorithm grows rapidly.
Obviously, the heuristic algorithm PSECO can be used to
obtain a near-optimal solution in the large-scale scenario,

52178 VOLUME 7, 2019



H. Jin et al.: Computation Offloading Optimization Based on Probabilistic SFC for Mobile Online Gaming in Heterogeneous Network

especially when the number of application components and
the number of the SBSs are large.

VI. CONCLUSION
In this paper, cost minimization of computation offload-
ing for online game is investigated based on probabilistic
SFC in fog-enabled heterogeneous radio access network.
The problem is formulated as a general ILP problem with
the constraints of application maximum tolerable latency,
resource limitation and user behavior. In order to reduce
the complexity of the ILP based optimization algorithm,
a heuristic algorithm called PSECO is proposed. The impact
of various parameters to the cost of the two algorithms is
evaluated. Simulation results show that PSECO has optimal
results with low complexity and it is suitable for large scale
networks.

Regarding the future work, on the one hand, mobility of
mobile devices and dynamic resource allocation problem are
challenging. On the other hand, formulation of air interface
plays an important role to the optimization problem, for
example, the deployment architecture of fog-enabled radio
access network and interference management. In order to
improve the efficiency of computation offloading and reduce
the cost due to wireless networking, fog-enabled radio access
network can be modelled with novel networking techniques
such as nested deployed cooperative base stations [39] to
improve the capacity of RAN for computation offloading.
Furthermore, new interference management techniques like
partial interference alignment [40] would be taken into con-
sideration in the future research work.
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