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ABSTRACT TIris recognition is one of the most representative identification technologies in biometric
recognition, which is widely used in various fields. Recently, many deep learning methods have been used
in biometric recognition, owing to their advantages such as automatic learning, high accuracy, and strong
generalization ability. The deep convolutional neural network (CNN) is the mainstream method of image
processing widely used in many domains, but it has poor anti-noise capacity in image classification and is
easily affected by slight disturbances. CNN also needs a large number of samples for training. The recent
capsule network not only has high recognition accuracy in classification tasks but can also learn part-whole
relationships, increasing the robustness of the model. Furthermore, it can be trained using a small number
of samples. In this paper, we propose a deep learning method based on the capsule network architecture in
iris recognition. The structure detail of the network is adjusted, and we provide a modified routing algorithm
based on the dynamic routing between two capsule layers to make this technique adapt to iris recognition.
Migration learning makes the deep learning method available even when the number of samples is limited.
Therefore, three state-of-the-art pretrained models, VGG16, InceptionV3, and ResNet50, are introduced.
We divide the three networks into a series of subnetwork structures according to the number of their major
constituent blocks. They are used as the convolutional part to extract primary features, instead of a single
convolutional layer in the capsule network. Our experiments are conducted on three iris datasets, JlulrisV3.1,
JulrisV4, and CASIA-V4 Lamp, to analyze the performance of different network structures. We also test
the proposed networks in simulated strong and weak light environments, showing that the networks with

capsule architecture are more stable than those without.

INDEX TERMS Iris recognition, deep learning, capsule network, transfer learning.

I. INTRODUCTION

Biometric recognition has played an irreplaceable role in
personal identification application in recent years. Given
the desirable properties such as uniqueness, stability, and
noninvasiveness, iris recognition has better prospects in
high-precision recognition compared to other biometric
modalities [1]. The first iris recognition system was proposed
by Daugman in 1993 [2], using a multiscale 2D-Gabor filter
to extract the binary phase encoding features of an iris image
from multiorientations and employing Hamming distance
matching. After over decades of comparative research, many
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iris recognition methods have been introduced to enhance the
reliability and usability [3]-[6].

In recent years, with the vigorous development of the
annual ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [7], deep learning networks, especially CNNs,
have shown obvious improvement in the performance of com-
puter vision tasks such as image classification, single object
localization, and object detection. Meanwhile, the study of
deep learning methods in iris recognition has shown promis-
ing prospects [27]-[40].

However, the training of CNNs relies on a large number
of samples. The model will be affected by the overfitting
with insufficient training data. The data augmentation method
usually applied to CNNs cannot solve the problem of small
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samples in essence. In addition, the pooling layers in CNNs
(especially in higher layers) lead to a loss of some valuable
spatial information, and this loss of information makes the
networks particularly sensitive to microinterference.

As a result, we introduce the capsule network to alleviate
the shortcomings of using CNNs in an iris dataset of small
sample size. The capsule network, which is very different
from other deep networks, was proposed by Sabour et al. [8]
in 2016. The capsule network has a vector neuron layer
instead of a scalar neuron layer and a dynamic iterative
computing pattern in addition to the back propagation. Most
prominently, the network can learn and store the spatial
relationship information on the whole parts and the local of
the object. Because of this ability, the number of samples
needed for training a capsule network is much smaller than
that of CNNSs, and good results can be obtained without data
enhancement, which is proved in [8]. Moreover, the anti-
noise ability of the model has been substantially improved.
Furthermore, it shows the following characteristics: global
features learning, equivariance mapping, robust training,
confidence assessment, and overlapping objects detection.
Therefore, the capsule network has a potential role in iris
recognition, especially under some specific environments,
but the research of capsule network in this field is rare.

In this paper, a deep network learning method based on
the capsule network is proposed for iris recognition. We first
construct the convolutional part with different architectures,
including those with shallow convolution networks requiring
full training and three state-of-the-art pretrained networks to
replace the 9 x 9 convolution layer in the capsule network.
Then, in order to find a more suitable convolution structure,
we divide the pretrained models into several subnetworks
according to their respective major component blocks. Next,
we use the convolution capsule to replace the full connection
capsule to reduce the number of parameters. Finally, aiming
to make it easier for the network to converge on differ-
ent datasets, we propose another routing algorithm based
on the dynamic routing, which makes more effective use
of the information on vector direction and vector length.
The experiments are conducted on three iris datasets: the
JlulrisV3.1, the JlulrisV4 [9], and the CASIA-V4 Lamp [10].
We compare and explore the impact of networks with a
variety of structural combinations on the results. To prove
that the network with capsule structure has strong robustness
under certain circumstances in keeping recognition accuracy,
we design an iris recognition test experiment under simulated
strong and weak light environments.

The remainder of this article is organized as follows:
The previous related work is presented in Section 2.
Section 3 describes the processes of the proposed scheme.
Section 4 validates the scheme by a series of experimental
results. Section 5 presents the conclusion.

Il. RELATED WORK
With the arrival of the era of big data and the improve-
ment of hardware computing capability, the deep learning
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method has achieved excellent results in many fields, break-
ing through the limitations of traditional pattern recognition
and machine learning methods. Prominently, the deep learn-
ing method helps avoid the problems caused by previous
empirical or artificially defined feature extraction methods
by learning the mapping relationship between input images
and category labels. The establishment of the ImageNet
project has considerably promoted the development of deep
learning as well. This large visual database is used mostly
for visual object recognition software research, with over
14 million image URLs being manually annotated to indi-
cate the objects in the pictures. Many excellent deep net-
works have been developed and become the state-of-the-art
methods in many fields, including AlexNet [11], VGG [12],
ResNet [13], DenseNet [14], Google LeNet [15], and other
Inception structural versions [16], [17]. In addition to the
popular deep networks, there are many other interesting net-
works emerging, such as the SqueezeNet [18], Squeeze-and-
Excitation Networks (SENet) [19], and CliqueNet [20].

Owing to the advantages of deep learning technology,
the relevant research and application are constantly aris-
ing in iris recognition. In 2016, Liu et al. [21] proposed
Deeplris to solve the problem of iris recognition using a
deep learning model for the first time. They used CNN
model and constructed a pairwise filter bank (PFB) to learn
a pair of input image similarity for the heterogeneous iris
problem. Gangwar and Joshi [22] developed a deep learning
architecture called DeeplrisNet for iris recognition based on
images acquired from different devices. Experiments on the
ND-IRIS-0405 and ND-CrossSensor-Iris-2013 [23] Datasets
showed that the proposed networks achieved a better perfor-
mance than the baseline. Nguyen et al. [24] applied the five
different pretrained CNN models on ImageNet [25] dataset
directly to the NIR iris dataset and used a multiclassifi-
cation SVM method for iris recognition. The experiment
was carried out on the LG2200 (NDCrossSensor-Iris-2013)
and the CASIA-Iris-Thousand datasets, proving that the five
networks outperformed the baseline method [26]. Zanlorensi
et al. [27] took advantage of the good generalization of two
classical networks, VGG and ResNet-50, to apply the pre-
trained CNNs to study the influence of different iris image
input modes on recognition results. A specific data augmen-
tation technique for iris image was proposed. There are also
a series of related studies on iris recognition using deep
learning network [28]-[34].

In 2016, Hindon’s team [8] proposed an implementation of
capsule networks. A capsule is defined as a group of neurons
whose activity vector represents the instantiation parameters
of a specific type of entity such as an object or an object part.
The capsule network performs well in MNIST handwriting
image classification test and still maintains a high recognition
rate in the case of overlapping numbers. The paper also tries
to explain what features the model learns by reconstructing
images, which indicates that deep learning is moving towards
more complex layer structure and interpretability. As men-
tioned in [8], there were many possible ways to implement
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FIGURE 1. Overview of the proposed framework for iris recognition.

the general idea of capsules. A new capsule networks imple-
mentation called Matrix capsules [35] was introduced to mul-
tiangle object recognition in 2018. The capsule was in the
form of a 4 x 4 pose matrix and a logistics unit. Each capsule
layer carried out internal linear weighting by sharing weights
similar to CNN, and the EM (Expectation-Maximization)
algorithm was used to iterate the feature clustering between
different capsules.

The appearance of the capsule networks has also sug-
gested new ideas for researchers in some other fields, causing
related studies in areas such as text classification [36], visual
reconstruction [37], brain tumor classification [38], capsule
GAN [39], and deep reinforcement learning [40] to emerge.
The capsule network has shown application potential in vari-
ous fields as described in the related literature. In this work,
we will discuss the effect and significance of this technology
being used in iris recognition.

lil. METHOD

The framework of the proposed method is shown in Figure 1,
and consists of four main parts: iris image preprocessing,
deep network, classification, and image reconstruction.

A. IRIS IMAGE PREPROCESSING

The iris image preprocessing steps are shown in Figure 2.
We first locate and segment the iris texture part from the
640 x 480 original iris image through quality evaluation.
Then, we extract the Region of Interest (ROI) from the located
iris. Next, we normalize the ROI image to 256 x 32 and
enhance it. Finally, in order to unify the input size, which has
immense influence on training as an important hyperparam-
eter of the network, the normalized iris image is resized to
197 x 197 by the Nearest Neighbor algorithm as the input.

B. PRETRAINED MODEL FOR CONVOLUTION

The main task of the convolutional part is to extract low-
level features from pixel intensities of the input images and
form the primary features used for the primary capsule layer.
The convolutional part of the capsule networks consists of
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FIGURE 2. Iris image preprocessing: (a) original eye image, (b) iris
localization, (c) iris ROI selection and normalization, (d) enhancement.

TABLE 1. Transfer learning used in the convolutional part.

Model Type Number of block depth
VGG16 Convolutional Block 5 23
ResNet50 Residual Block 16 168
InceptionV3  Inception Block 11 159

a convolution layer with 32 channels and 9 x 9 kernels,
a stride of 1, making the output shape change to (20, 20,
256) from (28, 28, 1) of the input image. In this study,
we use two strategies to construct the convolutional part:
(a) as in Table 1, we apply the transfer learning method and
introduce three state-of-the-art networks including VGG16,
ResNet50, and InceptionV3, which are all pretrained in the
ImageNet dataset. To find the most suitable primary features,
we divide the entire network into subnetworks according to
the number of their component blocks, then we connect the
subnetworks with the vector part, and thus, we set up a series
of different network instances. In this way, we get the output
of different levels in the same network as the result of the
convolutional part to find the most compatible options of
convolution structure for the entire network through exper-
iments; (b) as in Table 2, we build several shallow convolu-
tion networks as the convolutional part without pretraining.
These shallow convolution networks include Iris-Dense with
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TABLE 2. Networks with designed shallow convolutional part.

Model Number of layer
Iris-Dense Net 28
Iris-Inception Net 14
Iris-SE Net 20

two dense blocks, Iris-Inception with one inception block,
and Iris-SE with two Squeeze-and-Excitation blocks.

C. ROUTING ALGORITHM IN THE VECTOR LAYER

1) DYNAMIC ROUTING IN THE CAPSULE NETWORK

The dynamic routing algorithm provides the nonlinear map-
ping for two adjacent capsule layers. The capsule i in layer L
is trying to predict the output of capsules j in layer L + 1.

u(jli) = Wi - u; ey

As given in the equation (1), the predicted feature vector
matrix #(j|i) is obtained by linear weighting through the
output of the capsule ; in layer L. The weighting matrix W;
is learned during the back propagation procedure.

5 = ch - i) @)
exp (by)

i 3

U exp (b ©)

Then, the output of the capsule j in layer L + 1 is calculated
by equation (2). The coupling coefficient c;; is calculated by
the softmax function as equation (3), where b;; represents the
degree of correlation between capsules in layer L and layer
L + 1, and the initial value of b;; is 0. Update b;; through
equation (4) until the iteration requirements are met.

bij = bij + u(jli) - Vj “4)

At each iteration, the output of the capsule j passes through
the nonlinear squashing function as equation (5):

. Isl® s )
o] sl

where ﬁ is an unit vector, that is, the length of the original
J

2
vector is scaled to % Thus, the length of the output
vector ranges from 0 to 1 ;] which is expressed in a probabilistic
manner. By compressing and redistributing the length of the
output vectors, the longer vectors become more important,
whereas the shorter ones become less important.

The dynamic routing algorithm uses the cosine similarity
of two vectors to measure their agreement. However, this
manner is not quite good at judging quite good agreement and
very good agreement, which usually makes it difficult for the
network to converge after training in our experiments.
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2) ADJUSTED DYNAMIC ROUTING ALGORITHM
To improve the applicability of the capsule structure and make
it easy for the network to converge when dealing with input
images of large size, we propose a dynamic routing-based
algorithm, which takes direction and length information of
vectors into consideration, called the DRDL algorithm. In the
iterative calculation of the coupling coefficient ¢;;, we com-
bine the direction and the length of the capsule as the evalu-
ation indexes of the similarity of two vectors, instead of the
original single cosine similarity.

In multidimensional space, we define vector A =
(A1, A,, 4Ae, A,) and vector B = (By, B», 4Ae, B,), and the
cosine of the two vectors is acquired:

1(A; - By)

V2TAN X1 B

We calculate the cosine of #(j|i) and v; as the directional
similarity to update b;; at each routing iteration as equa-
tion (7), where |#(jli)| || and | v;|| are the length of &(j|i) and

aGlnl| = /21 g1, vl = 5
u(jli) - v
bij =
lagioi] ]
At the last iteration, the mathematical expression of updat-
ing bj; is as given in equation (8). The difference in length of

cosf =

Q)

Vj,

)

the two vectors is recorded as d, d = abs( ﬁ(j|i)|” — Hvﬂ”).
d bj;

bi = bi- (1 — - Y 8

i = by ( 1+d) 1+d ®)

Additionally, the squashing function is used only at the last
iteration for the length revising, and we apply L2 normaliza-
tion function at the other routing iterations instead.

Algorithm 1 DRDL
Input:  4(jli), the estimation of capsule i in layer L
Output: v, the output of capsule j in layer L + 1

1: Setb;; =0

2: for r in routing iterations do

3:  if r is not the last routing iteration then
4: cij = softmax(b;j)

S: Si = Zi C,ﬂft(]|l)

6: vj = L2(sj)

by =i iG] ]
8: else

o d=abs(agin] - ]
10: bj=b;/1+d
11: cij = softmax(bj;)
12: S§; = Zi CWTt(}|l)
13: vj = Squashing(s;)
14:  endif
15: end for

16: return v;

As shown in Algorithm 1, let i«(j|i) be the input, which is
obtained by the equation (1), and the output v; is the output of
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FIGURE 3. Example architecture of proposed method networks.

capsule j in layer L + 1. The initial value of b;; is 0 as in line
1. For each routing iteration, we first judge if this is the last
iteration. If not, as in lines 3 to 7, we update b;; by calculating
the directional similarity of the two vector matrices. If it is the
last iteration, as in lines 8 to 14, we update b;; by calculating
the length similarity of the two vector matrices.

D. NETWORK ARCHITECTURE

The network architecture consists of the convolutional part,
vector part, classification, and reconstruction. The input of
the network is a 197 x 197 grayscale image. We first change
the channel from 1 to 3 through a convolutional layer with
a 1 x 1 kernel. Then, we input the 197 x 197 x 3 feature to
the convolution network, which is the InceptionV3 network
shown in Figure 3. The number of layers in the convolu-
tional part can vary. In this example, the pretrained Incep-
tionV3 model with 4 inception blocks is applied to output a
feature map with a size of 10 x 10 and a channel of 768. The
tensor shape turns to 600 x 128 through vector normalization
and reshaping. Finally, 51 x 32 (51 represents the number of
categories, and 32 is the dimension of each capsule) vector
features output is normalized by L2 normalization as the
output of the network, which represents the probability of
the existence of each category. The network on the right side
in Figure 3 is a fully connected decoder network, which is
used for the iris image reconstruction.

IV. EXPERIMENTS

In this section, we verify the validity of the proposed method
on three iris datasets. First, we give the instructions of the iris
image datasets and explain the parameters of the experiments.
Next, we list the performance of several network structures
composed of the convolutional part and vector part in dif-
ferent datasets. Then we compare them with the methods
in [24], [26], and [27]. Finally, we simulate a specific envi-
ronment affected by illumination and discuss the sensitivity
of the network to pupil size. We design a dataset of different
pupil sizes and show that the proposed method is more stable
in this case through experiments. Accuracy and equal error
rate (EER) are used as the evaluation criteria.

VOLUME 7, 2019

TABLE 3. The 3 experimental iris datasets.

Dataset Class Sample Size
JluV3.1 60 28 to 30
Jluv4 86 600 to 1800
CASIA-V4 Lamp 822 20

FIGURE 4. Sample images from the JIuv3.1 (first row), Jluv4 (second row),
and CASIA-V4 Lamp (third row) datasets.

A. DESCRIPTION OF THE DATASETS

The three datasets, the JluV3.1, the JluV4, and the
CASIA-V4 Lamp iris dataset, as in Table 3, comprise 1780,
114904 and 16215 iris images obtained from 60, 86, and
822 subjects respectively. Each subject has the same num-
ber of left eye and right eye images with the resolution
of 640 x 480. The left and right iris images from the same
subject are considered to be different classifications in the
experiment. The samples from the three datasets are shown
in Figure 4. It needs to be mentioned that the data augmen-
tation technique was not employed to increase the number of
samples in this work.

The three iris datasets in the experiment represent three
types of datasets, i.e., (1) the JluV3.1 represents the kind
of datasets with few categories and few samples, (2) the
JluV4 represents the kind of datasets with few categories and
many samples, and (3) the CASIA-V4 Lamp represents the
kind of datasets with many categories and few samples.

B. EXPERIMENTAL SETTINGS
Iris images are divided into two parts for training and testing
after quality evaluation and image preprocessing. We use ran-
dom sampling method to select training and test sets propor-
tionally. The training set and testing set of JIuV3.1 contains
1275 and 255 images respectively. The training set and testing
set of JluV4 contain 46800 and 5200 images respectively.
We select 300 categories in the CASIA-V4 Lamp dataset,
4500 images for training and 1500 for testing. The epoch of
training is 50 and the Learning Rate (LR) varies in different
experiments. A GPU 1080ti is used to accelerate training in
the experiment.

In the experiment of recognition, the decoder network is
not used as an additional loss for training. On the one hand,
the loss function of the decoder has a tiny effect on the
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TABLE 4. Comparisons of different networks on the JIuv3.1 dataset.

TABLE 5. Comparisons of different networks on the Jluv4 dataset.

Network Structure LR  Accuracy% EER%

Network Structure LR  Accuracy% EER%

VGG16_4blocks+DRDL 0.00001  98.43 0.31
VGG16_5blocks+DRDL 0.00001  98.82 0.42
ResNet50_8blocks+DRDL 0.0005 57.25 17.79
ResNet50_9blocks+DRDL 0.0005 62.75 14.46
ResNet50_10blocks+DRDL  0.0005 83.53 6.91
ResNet50_11blocks+DRDL  0.0005 92.16 491
ResNet50_12blocks+DRDL  0.0005 96.47 2.83
ResNet50_13blocks+DRDL  0.0005 69.02 15.8
ResNet50_14blocks+DRDL  0.0005 98.04 0.51

ResNet50_15blocks+DRDL  0.0005 99.22 0.078
ResNet50_16blocks+DRDL  0.0005 98.82 0.64
InceptionV3_1block+DRDL  0.00002  89.02 6.3

InceptionV3_3blocks+DRDL 0.00002  81.96 8.46
InceptionV3_4blocks+DRDL 0.00002  98.04 0.89
InceptionV3_5Sblocks+DRDL  0.00002  99.37 0.039
InceptionV3_6blocks+DRDL  0.00002  98.83 0.21
InceptionV3_7blocks+DRDL 0.00002 98.43 0.45
InceptionV3_8blocks+DRDL 0.00002 97.25 1.7

InceptionV3_9blocks+DRDL  0.00002  97.27 0.78
InceptionV3_10blocks+DRDL 0.00002  85.88 5.31

InceptionV3_11blocks+DRDL 0.00002  72.94 11.36
Iris-Dense+DRDL 0.00001  97.26 1.55
Iris-Inception+DRDL 0.00001  97.65 0.9

Iris-SE+DRDL 0.00001  94.51 1.8

Daugman — 95.7 248
DenseNet_6layers+SVM — 97.8 2.09
non-seg+nonnorm+ResNet50  0.001 97.93 0.32

VGG16_4blocks+DRDL 0.00001  98.12 0.998
VGG16_5blocks+DRDL 0.00001  98.52 0.65
ResNet50_8blocks+DRDL 0.00001  97.75 0.76
ResNet50_9blocks+DRDL 0.00001  95.33 1.02
ResNet50_10blocks+DRDL ~ 0.00001  95.31 1

ResNet50_11blocks+DRDL ~ 0.00001  97.06 1.13
ResNet50_12blocks+DRDL  0.00001 96.87 1.1

ResNet50_14blocks+DRDL  0.00001  95.23 1.84
ResNet50_15blocks+DRDL  0.00001  94.75 2.16
ResNet50_16blocks+DRDL  0.00001  92.46 3.27
InceptionV3_1block+DRDL  0.00001  98.79 0.35
InceptionV3_2blocks+DRDL 0.00001  95.25 1.33
InceptionV3_3blocks+DRDL 0.00001  97.56 1.13
InceptionV3_4blocks+DRDL  0.00001  98.88 0.295
InceptionV3_5blocks+DRDL  0.00001  98.15 0.67
InceptionV3_6blocks+DRDL  0.00001  98.60 0.84
InceptionV3_7blocks+DRDL 0.00001 97.81 1.42
InceptionV3_8blocks+DRDL 0.00001 94.15 3.55
InceptionV3_9blocks+DRDL 0.00001  93.96 3.49
InceptionV3_10blocks+DRDL 0.00001  80.35 8.15
InceptionV3_11blocks+DRDL 0.00001  67.98 13.54
Iris-Dense+DRDL 0.001 99.42 0.13
Iris-Inception+DRDL 0.001 99.38 0.11
Iris-SE+DRDL 0.001 99.04 0.39

Daugman — 98.6 0.69
DenseNet_6layers+SVM — 96.97 2.59
non-seg+nonnorm+ResNet50  0.001 99.14 0.15

training of the entire network. On the other hand, the decoder
will bring a huge amount of parameters when reconstructing
the image with a higher rate of separation.

C. ANALYSIS OF PERFORMANCE ON STRUCTURES

In this section, we conduct a series of experiments in
three iris datasets through different network structures.
The networks with pretrained VGGI16, ResNet50, and
InceptionV3 model substructure are fine-tuned. The net-
works Iris-Dense+DRDL, Iris-Inception+DRDL, and Iris-
SE+DRDL with shallow convolution structures are fully
trained. We explore the effect on the recognition results of
different convolutional parts combined into a capsule struc-
ture, as listed in Table 4, Table 5, and Table 6. The networks
are all trained with 3 routing iterations, and the output of the
vector part has 32 dimensions. The results of accuracy less
than 50% are not shown.

We use three methods with the best performance
in [24], [26], and [27] as the baseline for comparison. The
first method is Daugman’s gabor phase-quadrant feature
extraction method combined with Hamming distance match-
ing [26]. The second one applies pretrained DenseNet of 6
layers without fine-tuning to extract features from the nor-
malized iris images and uses a multi-class Support Vector
Machine (SVM) for classification, with a one-against-all
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strategy[24]. The third baseline method is the model learned
on the pretrained ResNet50 architecture with fine-tuning
using non-segmented and nonnormalized images[27]. The
results of the baseline are also shown in Table 4, Table 5, and
Table 6.

Daugman’s method [26] achieves recognition accura-
cies of 95.7%, 98.6%, and 92.4% on the JluV3.1,
the JluV4 and the CASIA-V4 Lamp datasets, respec-
tively. The DenseNet_6layers+-SVM [24] achieves recog-
nition accuracies of 97.8%, 96.97%, and 93.65% on the
JluV3.1, the JIuV4 and the CASIA-V4 Lamp datasets, respec-
tively. The non-seg+nonnorm-+ResNet50 [27] achieves
recognition accuracies of 97.93%, 99.14%, and 93.57% on
the JluV3.1, the JluV4 and the CASIA-V4 Lamp datasets,
respectively.

In the experiment involving the JluV3.1 dataset, we change
the vector dimension of the output on the same network to
investigate its influence on the result. Furthermore, we com-
pare the DRDL and the dynamic routing algorithms as well,
as presented in Table 7.

We find that when using the pretrained model substructures
combined with the dynamic routing algorithm, the networks
are unable to converge in the training process, resulting in
bad performance. But the problem is alleviated when using
the pretrained model substructures combined with the DRDL.
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TABLE 6. Comparisons of different networks on the CASIA-V4 Lamp
dataset.

Network Structure LR  Accuracy% EER%
VGG16_4blocks+DRDL 0.000005 93.87 1.21
VGG16_5blocks+DRDL 0.000005 82.13 2.4
ResNet50_8blocks+DRDL 0.00001 86.87 1.52
ResNet50_9blocks+DRDL 0.00001 90.71 1.3
ResNet50_10blocks+DRDL  0.00001 90.60 1.14
ResNet50_11blocks+DRDL  0.00001 90.53 1.04
ResNet50_12blocks+DRDL  0.00001 90.73 1.31
ResNet50_13blocks+DRDL  0.00001 87.87 1.5
ResNet50_14blocks+DRDL  0.00001 81.60 2.34
ResNet50_15blocks+DRDL  0.00001 70.40 5.59
ResNet50_16blocks+DRDL  0.00001 70.27 5.33
InceptionV3_1block+DRDL  0.0001 91.13 1.01
InceptionV3_2blocks+DRDL 0.0001 53.73 5.05
InceptionV3_3blocks+DRDL 0.0001 63.00 4.07
InceptionV3_4blocks+DRDL 0.0001 87.27 14
InceptionV3_5blocks+DRDL  0.0001 92.27 1.17
InceptionV3_6blocks+DRDL  0.0001 82.40 2.5
InceptionV3_7blocks+DRDL  0.0001 82.93 2.74
InceptionV3_8blocks+DRDL 0.0001 63.47 7.71
InceptionV3_9blocks+DRDL  0.0001 52.01 14.18
Iris-Dense+DRDL 0.001 78.07 3.37
Iris-Inception+DRDL 0.001 70.00 5.25

Daugman — 92.4 3.63
DenseNet_6layers+SVM — 93.65 4.05
non-seg+nonnorm+ResNet50  0.001 93.57 2.08

It shows that the dynamic routing algorithm works well with
the fully trained shallow networks, but it is incompatible with
the pretrained model substructures in our datasets.

Through the experimental results, we can see that the best
performance is not from the network with the most or least
layers in the convolutional part. On the contrary, the appropri-
ate level of feature extraction achieve better results. As shown
in the result, among the networks using pretrained VGG16-
based architecture, VGG16_5blocks+DRDL (VGG16 with
5 convolutional blocks) achieves the best accuracy
of 98.82% and 98.52% (wathet) on the JluV3.1 and the
JluV4 datasets. VGG16_4blocks+DRDL achieves the best
accuracy of 93.87% on the CASIA-V4 Lamp dataset. For
the pretrained VGG16, choosing 4 blocks is generally bet-
ter, regardless of sample size or the number of labels.
Among the networks using pretrained ResNet50-based
architecture, ResNet50_15blocks+DRDL (ResNet50 with
15 residual blocks) achieves the best accuracy of 99.22%
on the JluV3.1 dataset. ResNet50_8blocks+DRDL achieves
the best accuracy of 97.75% on the JluV4 dataset.
ResNet50_12blocks+DRDL achieves the best accuracy
of 90.73% on the CASIA-V4 Lamp dataset. ResNet50 per-
forms well at a deeper depth due to its skip connection
structures. So the performance is good when applying more
residual blocks. But once the number of labels increases
significantly, the networks with 9-12 residual blocks get a
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better result than those with more deeper structures. Among
the networks using pretrained InceptionV3-based archi-
tecture, InceptionV3_5blocks+-DRDL (InceptionV3 with
5 inception blocks) achieves the best accuracy of 99.37% on
the JluV3.1 dataset. InceptionV3_4blocks+DRDL achieves
the best accuracy of 98.88% on the JluV4 dataset.
InceptionV3_5blocks+DRDL achieves the best accuracy
of 92.27% on the CASIA-V4 Lamp dataset. The networks
with the pretrained InceptionV3 architectures of 4 or 5 incep-
tion blocks work well when the number of samples is small.
But when the training set is sufficient, except for networks
less than 4 or more than 9 inception blocks, the results are all
basically good.

According to the results, we have the following observa-
tions. In the experiment of the JluV3.1 dataset, the results
of the networks with pretrained models and shallow convo-
lution models are basically similar, and the ones with pre-
trained models perform slightly better. In the experiment of
the JluV4 dataset, because there are a sufficient number of
samples, the networks with shallow convolution models can
be fully trained, so the effect is slightly better compared with
the fine-tuned networks. In the experiment of the CASIA-
V4 Lamp dataset, the first dimension of output vectors
increases because the number of categories rises. As a result,
the expressive capacity of the primary features learned by
shallow convolution is very limited with insufficient samples,
leading to the results of networks with shallow convolution
models to decrease obviously. The performance of networks
with transfer learning method also declines, but according to
the feature expression ability learned by pretrained models,
the decline is not very dramatic.

We investigate the influence of another two hyperparame-
ters in the network. As listed in Table 7, in the Iris-Inception
network, we set the vector dimensions of output to 16, 24,
and 32, and adopt the DRDL algorithm and the dynamic
routing algorithm respectively. We find that the effect of
vector dimension on the classification performances is not
very obvious. The network with higher dimension vectors is
not necessarily better than that with lower dimension vectors.
The vectors with higher dimensions have richer views for
describing features, but it is not directly proportional to the
accuracy of recognition. By contrast, the networks applying
the DRDL algorithm get a better result than those applying
the dynamic routing. We show the training loss curve and
training accuracy curve in Figure 5. It can be found that the
training tends to be stable after approximately 20 iterations,
and the network with the output vectors of high dimension
has a faster convergence speed.

D. ENVIRONMENTAL SIMULATION OF LIGHT INTENSITY

To prove that a network with capsule architecture can learn
the relationship between features and the rule of feature
changing, we design a specific iris recognition environment
for testing the performance of the networks with varied archi-
tectures. Different illumination intensity is generally used to
distinguish genuine and fake irises or verify iris localization
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FIGURE 5. Loss Curve (a) and Accuracy Curve (b) of Iris-Inception model trained on the Jluv3.1 dataset.

TABLE 7. Comparisons of different Iris-Inception architectures on the Jluv3.1 dataset.

Network Structure Dimension of Capsule LR Accuracy% EER%
Iris-Inception+Dynamic routing 16 0.001 96.29 1.8
Iris-Inception+DRDL 16 0.001 96.47 1.67
Iris-Inception+Dynamic routing 24 0.001 95.78 2.12
Iris-Inception+DRDL 24 0.001 98.43 1.23
Iris-Inception+Dynamic routing 32 0.001 96.86 1.08
Iris-Inception+DRDL 32 0.001 97.65 0.9

FIGURE 6. Large pupil under weak light (left), small pupil under intense
light (right).

algorithms. However, little research has been published on
the influence of illumination intensity on iris recognition.
We assume that the model is trained only in the strong light,
and then validated in a weak light environment, and vice
versa. To imitate this particular environment, we build a
small simulated light intensity experimental dataset, includ-
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ing images selected from JluV4, which has a larger number
of samples under different illumination intensities. Because
the iris images are collected through a fixed focus mode,
we divide the pupil size into three grades, level 1, level 2, and
level 3, based on the pupil diameter. To make the simulation
environment more extreme, we consider iris images of level
1 and level 3, i.e., large pupil and small pupil representing
iris images captured in weak and intense light (each image set
has 1200 images from 20 categories) in this section, as shown
in Figure 6 (each row represents the same classification).

Two training strategies are applied: (a) one is to train
with iris images of the large pupil and test with the small
ones; (b) the other one is the opposite. In this way, we can
verify the performance and stability of the model in different
environments. The output vector dimension is 32 and the
epoch of training is 50.

The results including the three baseline methods are
listed in Table 8 and Table 9. We choose three networks,
the 12-layer CNN (6 convolution layers, 2 max pool-
ing layers, and 1 global average pooling layer), VGG16,
and InceptionV3 to represent the convolution network
without vector structure. We additionally choose three
networks, the capsule network,VGG16_5blocks+DRDL,
and InceptionV3_6blocks+DRDL to represent the network
with vector structure.

Although iris normalization will weaken the effect
of pupil dilation on iris texture stretching to a certain
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TABLE 8. Comparisons of different networks with training strategy (a).

Network Structure LR Training Accuracy% Testing Accuracy% DR% EER%
12-layer CNN 0.001 88.09 40.02 54.6 18.26
Capsule Network 0.001 97.71 83.48 14.56 4.74
VGG16 0.0002 86.09 43.51 49.46 13.26
VGG16_5blocks+DRDL 0.0002 99.36 83.34 16.12 4.11
InceptionV3 0.00001 99.55 44.50 553 15.79
InceptionV3_6blocks+DRDL 0.00001 99.64 92.34 7.33 2.98
Daugman — 96.52 18.96 81.2 75.09
DenseNet_6layers+SVM — 98.26 32.09 67.34 36.88
non-seg+nonnorm+ResNet50 0.001 99.91 72.13 27.8 6.47
TABLE 9. Comparisons of different networks with training strategy (b).
Network Structure LR Training Accuracy% Testing Accuracy% DR% EER%
12-layer CNN 0.001 79.55 39.79 49.98 18.24
Capsule Network 0.001 97.47 82.61 15.25 4.9
VGG16 0.0002 97.82 61.50 37.13 10.89
VGG16_5blocks+DRDL 0.0002 99.64 84.93 14.76 4.74
InceptionV3 0.00001 99.73 43.46 56.42 15.74
InceptionV3_6blocks+DRDL 0.00001 99.45 86.13 13.39 3.76
Daugman — 14.5 98.05 80.07
DenseNet_6layers+SVM — 98.89 59.6 39.73 25.1
non-seg+nonnorm-+ResNet50 0.001 99.82 65.39 34.49 9.95

(b

©

FIGURE 7. Reconstructing iris images, 16 rows representing 16 vector
feature dimensions. Each row has 6 reconstructions tweaked in
[-4,-2,-1,1,2,4].

extent by using the linear transformation method, we can
still find that this particular situation will interfere with
iris recognition. Obviously, the network with capsule
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structure is more stable in this particular situation. The
results show that the accuracy of the networks with capsule
architecture decreases by approximately 15%. The accuracy
of InceptionV3_6blocks+DRDL (wathet) network reaches
92.34%, with a decrease of only 7.33% in the first simu-
lation environment, and reaches 86.13%, with a decrease
of 13.39% in the second environment. CNN models lose a
specific input source for training, so its generalization ability
decreases correspondingly. The accuracy of the three deep
convolution networks decreases by approximately 50%. The
test results show that these models have basically lost the
ability to classify correctly. The baseline also does not achieve
good results in this experiment. The performance of [27]
non-seg+non-norm-+ResNet50 decreases relatively small,
and the testing accuracy of more than 65% could be retained.
However, the performance of the other two baseline methods
decreased notably on the testing set.

E. RECONSTRUCTION
Image reconstruction is applied for us to observe the way
of feature vectors express the instances they represent in
the network more intuitively. We use a decoder network to
reconstruct the iris image, and the dimension of the out-
put feature vectors is 16. By adding offsets (—4 to 4) to
the feature dimensions, we can see how the reconstructing
images change. It can be noticed that the differences of
reconstructed images are reflected in the image energy, fuzzy
degree, texture extension direction, and edge thickness.

As shown in Figure 7, we display three reconstruction
examples of the iris images in the JluV4 acquired from a
9-layer CNN+DRDL(4 convolution layers and 1 global aver-
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age pooling layer) network. It is interesting that the recon-
structed image of (c) has obvious noise of the eyelid, but with
the change of offset, some dimension disturbances weaken or
even ignore the eyelid portion.

V. CONCLUSION

In this paper, we introduce the capsule network method
into iris recognition. We build several convolution struc-
tures with different depths according to different outputs
of pretrained classic networks to dock with the capsule
structure. The dynamic routing algorithm is adjusted with
the consideration of direction and length of the vector.
We set up several network instances with different structures
and depths, and we validate them using three iris datasets.
Finally, we simulate an environment with different illumina-
tion intensities, and we train and test iris images with different
pupil sizes (represent different light intensities) to show the
recognition ability of this method when the environment is
varied.

Experiments show that a deep network with capsule
architecture is feasible in iris recognition. In the test
of the JluV3.1 iris dataset, InceptionV3_5blocks+DRDL
achieves the highest accuracy of 99.37%. In the test of
the JluV4 dataset, Iris-Dense+DRDL achieves the highest
accuracy of 99.42%. In the test of the CASIA-V4 Lamp
dataset, VGG16_4blocks+DRDL achieves the highest accu-
racy of 93.87%. Convolution structures with different depths
have obvious effects on the results. Convolution structures
with too deep or too shallow depths in different networks
sometimes make it difficult for the model to learn the
correct and appropriate feature description. In addition,
the network performance with a pretrained model struc-
ture as convolutional part is more stable than that using
shallow full-training convolution structure. The change in
sample size leads to performance variation among net-
works with shallow convolution structures, and this perfor-
mance variation indicates the necessity of transfer learn-
ing. Finally, the simulation experiment shows that the net-
work with capsule architecture guarantees the accuracy to
a certain extent compared with CNNs and the baseline.
InceptionV3_6blocks+DRDL network performs best, and
the test accuracy reaches 92.34% and 86.13% under the two
training
strategies.

This paper describes an attempt to apply the capsule
network in the field of iris recognition and the proposed
method needs to be further optimized. In future, our research
will develop in the following directions: (1) Exploring
other vector forms or vector structures and corresponding
iteration or other learning methods, (2) Applying cap-
sule (vector) feature learning network to deal with iris recog-
nition problems of heterogeneous iris and other specific envi-
ronments, (3) Researching network processing capacity and
processing methods when the number of categories becomes
extremely large.
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