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ABSTRACT A dual parallel factor (PARAFAC)-based approach to jointly estimating the two-dimensional
direction of arrival (2-D DOA) and Doppler is proposed in this paper, where an L-shaped array consisting
of acoustic vector-sensor is used. First, we apply the PARAFAC decomposition to the data model formed by
concatenating the outputs of multi-level delays of the observations, and we get the parameter matrix H, which
accomplish the 2-D DOA estimation and pairing automatically, then the dual PARAFAC decomposition is
applied to the achieved composite steering matrix from the first PARAFAC decomposition, and thus, the
same permutation matrices link the estimates of steering matrices and delay matrices fromX-subarray and Y-
subarray, respectively. Following this, theDoppler and 2-DDOAmatching information are obtained via triple
matching implementation, e.g. 2-D DOA and frequency matching. Finally, Doppler is estimated by delay
matrices. The proposed algorithm is computationally effective for both uniform and non-uniform L-shaped
array as SNR exceeds 15dB, and its performance outperforms the joint angle and Doppler shift ESPRIT
(JAD-ESPRIT) algorithm and the joint angle and Doppler shift PM (JAD-PM) algorithm. The simulation
results justified the effectiveness of the proposed algorithm.

INDEX TERMS Two-dimensional direction of arrival (2-D DOA), Doppler, L-shaped array, dual parallel
factor (PARAFAC), triple matching implementation.

I. INTRODUCTION
In recent decades, array signal processing has made rapid
progress in many fields, e.g., radar, sonar, satellite communi-
cation and so on [1]–[3]. Joint multi-parameter estimation has
been one of the fundamental problems in array signal process-
ing society and has aroused considerable concerns [4], [5].
For such a problem, the observations from the array out-
put often contain multiple parameters to be estimated and
matched synchronously. Many multi-parameter estimation
methods have been proposed recently [4]–[11], exiting pop-
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ular high-resolution methods used to jointly estimate the
angles and carrier frequency include multiple signal classifi-
cation (MUSIC) algorithm [6], estimating signal parameters
via rotational invariance techniques (ESPRIT) algorithm [1],
[19], [20], Propagator method (PM) [8] and parallel factor
(PARAFAC) method [9], [10]. However, all these methods
have limitations to estimate Doppler when sources are mov-
ing, for instance, in ELINT, the radar could be installed on
a moving platform, which yields the Doppler when the radar
is moving towards or moving away from the receiver, such
scenarios pose the joint 2-D DOA and Doppler estimation a
challenging question. Ying and Leus proposed a space-time
compressive sampling (STCS) array architecture to estimate
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Doppler-DOA by exploiting the sparsity in the angle and
frequency domain [12]. Min et al. developed structure of
transmitted signals and applied PRO-ESPRIT to joint time
delays, DOAs and Doppler shifts estimations [13]. However,
joint 2-D DOA and Doppler estimation is still a challenging
problem.

In order to address joint 2-D DOA and Doppler esti-
mation, we propose a dual PARAFAC method to achieve
paired 2-D DOA and Doppler via triple matching imple-
mentation, where the L-shaped array consisting of acous-
tic vector sensors is used. Compared to conventional sen-
sor arrays, acoustic vector sensors can measure the acoustic
pressure as well as all three orthogonal components of the
acoustic particle velocity [14], [15]. To estimate Doppler,
the proposed method introduces multi-level delays of the
observations from L-shaped array. The procedure to estimate
Doppler from parameters matrices can be implemented via
dual PARAFAC decomposition. Eventually, the 2-D DOA
and Doppler together with the carrier frequency can be
estimated and paired by triple matching implementation.
The main contributions of our research are summarized as
follows:

1) We generalize the PARAFAC analysis and propose
a dual PARAFAC model, which is suitable to descript
multi-level delay outputs of L-shaped array configured with
acoustic vector-sensors.

2) We obtain the 2-D DOA and Doppler estimation from
the dual PARAFAC model via dual PARAFAC decomposi-
tion.

3) We propose a triple matching implementation to obtain
the paired 2-D DOA, Doppler and carrier frequency.

4) The parameters estimation performance of the pro-
posed algorithm outperforms the joint angle and Doppler
shift ESPRIT (JAD-ESPRIT) algorithm and joint angle
and Doppler shift PM (JAD-PM) algorithm which can be
extended from [7] and [8].

The remainder of our paper is organized as follows:
Section II presents the dual PARAFAC model of multi-level
delay outputs for L-shaped array. Based on this model,
Section III derives the proposed algorithm as well as the
parameters matching approach. Section IV gives the com-
plexity analysis of the proposed algorithm. Numerical sim-
ulations are showed in Section V to demonstrate the perfor-
mance of the proposed approach and we conclude this paper
in section VI.
Notation: Matrices and vectors are represented by bold-

faced capital letters and lower case letters respectively.
⊗, � and ⊕ denote Kronecker product, Khatri–Rao
product and Hadamard product, respectively. (·)∗, (·)T ,
(·)H and (·)−1 denote complex conjugation, transpose,
conjugate-transpose and inverse, respectively. (·)† denotes
the Moore-Penrose pseudoinverse. ‖·‖F and ‖·‖0 repre-
sent the Forbenius norm and l0–norm. Dn(A) denotes a
diagonal matrix consisting of then-th row of A. abs(·)
the modulus value symbol and angle(·) the phase angle
operator.

FIGURE 1. The structure of the L-shaped array.

II. DATA MODEL
Assume that there are K moving signals impinge on an
L-shaped array consisting of two orthogonal M -element and
N -element linear acoustic vector-sensor arrays along x-axis
and y-axis, respectively. The reference element is placed at
the origin and the sources are moving in line with the origin.
The distance between m-th sensor and the reference element
(m = 1) is dxm, while the distance between n-th sensor and the
reference element (n = 1) is dyn . The structure of the L-shaped
array is shown in Fig. 1.

Assume that the received noise is additive white Gaus-
sian and independent to the incident signals. The K signals
are all uncorrelated narrow-band plane waves propagating
from far-field with known but different center frequency
(f1, f2, ..., fK ). The velocity and the angle paring of the k-th
signal is vk and (ϕk , θk ), respectively, where ϕk and θk are the
azimuth angle and elevation angle. The outputs of X-subarray
and Y-subarray at the t-th snapshot can be respectively mod-
eled as [16]

x0(t) = [Ax �H]s(t)+ nx(t), (1)

y0(t) = [Ay �H]s(t)+ ny(t), (2)

where s(t) = [s1(t), s2(t), · · · , sK (t)]T is the envelope vector
of K signals. AM×K

x = [ax(ϕ1, θ1, f1), · · · , ax(ϕK , θK , fK )]
is the steering matrix of X-subarray, where ax(ϕk , θk , fk ) =
[1, exp(−j2πdx2 fk cosϕk sin θk/c), · · · , exp(−j2πd

x
M fk cos

ϕk sin θk/c)]T .AN×K
y = [ay(ϕ1, θ1, f1), · · · , ay(ϕK , θK , fK )]

is the steering matrix of Y-subarray, where ay(ϕk , θk , fk ) =
[1, exp(−j2πdy2 fk sinϕk sin θk/c), · · · , exp(−j2πdyN fk
sinϕk sin θk/c) ]T . H = [h1,h2, · · · ,hK ] ∈ C4×K

is the 4 × K location vector of K signals, and hk =
[1, cosϕk sin θk , sinϕk sin θk , cos θk ]T . c denotes the signal
propagation velocity, nx(t) ∈ CM×1, ny(t) ∈ CN×1 denote
the M × 1 and N × 1 noise vector from X-subarray and
Y-subarray, respectively.

To estimate the frequency, we introduce the structure of
multi-level delays following the output of the array. As is
shown in Fig. 2, we consider P − 1 levels delay where the
p-th delay is τp = pτ and τ satisfies 0 < τ < 1/(P −
1)max(fk )[17].

Given the p-th delay τp, the output of the p-th delay of X-
subarray can be written as [8]

xp(t) = x0(t − pτ )
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FIGURE 2. The structure of multi-level delay after the sensors array.

= [Ax �H]s(t − pτ )+ nx(t − pτ )

= [Ax �H]Dp+1(Fx)s(t)+ nxp(t). (3)

where nxp(t) = nx(t − pτ ) is the p-th delay noise, Fx is the
delay matrix defined in Appendix A.

Given J snapshots [xp(t1), xp(t2), ..., xp(tJ )], and let Xp =

[xp(t1), xp(t2), ..., xp(tJ )], then Xp can be written as

Xp = [Ax �H]Dp+1(Fx)ST + Nxp, (4)

where SJ×K s(t1), s(t2), . . . , s(tJ )T , Nxpnxp(t1),nxp(t2),
. . . ,nxp(tJ ). By concatenating the outputs from P levels delay
of X-subarray in a column way, we obtain a new data matrix

X4MP×J
=


X0
X1
...

XP−1

=

[Ax �H]D1(Fx)
[Ax �H]D2(Fx)

...

[Ax �H]DP(Fx)

ST+


Nx0
Nx1
...

NxP−1


= [Fx � Ax �H]ST + Nx , (5)

where Nx = [NT
x0,N

T
x1, . . . ,N

T
xP−1]

T is the noise matrix of
X-subarray. Similarly, the outputs from P levels delays of
Y-subarray is written as

Y4NP×J
= [Fy � Ay �H]ST + Ny, (6)

where Ny = [NT
y0,N

T
y1, . . . ,N

T
yP−1]

T is the noise matrix of
Y-subarray, and Fy is the delay matrix defined in Appendix
B.
By stacking X and Y in a data matrix, we have the final

received data matrix

Z =
[
X
Y

]
=

[
Fx � Ax �H
Fy � Ay �H

]
ST +

[
Nx
Ny

]
=

[(
Fx � Ax
Fy � Ay

)
�H

]
ST + N. (7)

III. JOINT 2-D DOA AND DOPPLER ESTIMATION
In this Section, we first propose the dual PARAFAC decom-
position, the aim of which is twofold: the first one is to
achieve automatic paired 2-D DOA estimation, and the sec-
ond is to establish the mappings between estimates and
ground truth of both steering matrices and delay matrices.
We then estimate Doppler and investigate the pairing proce-
dure of 2-D DOA, carrier frequency and Doppler via triple
matching implementation.
Trilinear alternating least square (TALS) algorithm is

an efficient method for the decomposition of PARAFAC

model [11]. The basic idea of TALS is to update one matrix
in PARAFAC model each time until convergence. Based on
TALS, we propose a novel dual PARAFAC decomposition
algorithm to obtain the estimates of parameters matrices in
Z, and achieve the paired 2-D DOA, frequency and Doppler
via triple matching implementation.

A. DUAL PARAFAC DECOMPOSITION
1) THE FIRST PARAFAC DECOMPOSITION AND ANGLES
ESTIMATION

Let B =
[
Fx � Ax
Fy � Ay

]
, Eq. (7) can be rewritten as

ZI = [B�H]ST + N. (8)

In the noise free case, the can be written as the PARAFAC
model [9]

zpm+pn,j,q =
K∑
k=1

B(pm+ pn, k)S(j, k)H(q, k)

m = 1, . . . ,M; n = 1, . . . ,N ; j = 1, . . . , J ;

p = 1, . . . ,P; q = 1, 2, 3, 4, (9)

whereB(pm+pn, k) is the (pm+pn, k)th element ofB, S(j, k)
is the (j, k)th element of S and H(q, k) is the (q, k)th element
of H. The structure of the PARAFAC model in (9) implies
two other rearranged matrices

ZII = [S� B]HT
+ NII , (10)

ZIII = [H� S]BT + NIII , (11)

Apply the LS fitting to (8), we have

min
B,H,S

∥∥∥ZI − [B�H]ST
∥∥∥
F
, (12)

The LS update for S is

ŜT = [B̂� Ĥ]†ZI , (13)

where B̂ and Ĥ are the previous estimates of B and H,
respectively.
Apply the LS fitting to (10), we have

min
B,H,S

∥∥∥ZII − [S� B]HT
∥∥∥
F
, (14)

The LS update for H is

ĤT
= [Ŝ� B̂]†ZII , (15)

where B̂ and Ŝ are the previous estimates of B and S, respec-
tively.
Apply the LS fitting to (11), we have

min
B,H,S

∥∥∥ZIII − [H� S]BT
∥∥∥
F
, (16)

The LS update for B is

B̂T = [Ĥ� Ŝ]†ZIII , (17)

where Ĥ and Ŝ are the previous estimates ofH and S, respec-
tively.
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Note: the noise term N in Eq. (7) after multi-level delays
might be correlated, which causes samples covariance matrix
to be non-diagonal uniform matrix, which could degrade
the performance of all comparable methods and CRB as
well. To obtain parameters MVU estimation, a pre-whitening
transformation or decorrelation processing is necessary. For
instance, N ∼ N(0,C), let C−1 = DTD, D is the
invertible matrix, we have E[(DN)(DN)T ] = DCDT

=

DD−1DT−1DT
= I, let Z

′

= DZ, we complete the decor-
relation processing.

For the PARAFAC decomposition, we first utilize Gaus-
sian random matrix to initialize the parameter matrices B, H,
S and repeatedly update them until convergence. Define the
sum of squared residuals (SSR) of the k-th decomposition by

SSRk =
4(PM+PN )∑

i=1

J∑
j=1

∣∣cij∣∣2, (18)

where cij is the (i, j)th element of C = Z − [B̂ � Ĥ]ŜT .
Define the convergence speed of the PARAFAC decomposi-
tion as SSRrate = (SSRk − SSRk−1)

/
SSRk−1. When SSRrate

is smaller than a certain small value, the iteration process is
terminated.

The uniqueness of the PARAFAC decomposition can be
guaranteed since the k-rank [18] condition kB + kS + kH ≥
2K + 2 is satisfied [7] where kB, kS and kH are the k-rank of
B, S and H, respectively. The estimates of B, H and S can be
expressed as

B̂ = B5111 +W1, (19)

Ĥ = H5112 +W2, (20)

Ŝ = S5113 +W3, (21)

where51denotes the permutation matrix,11,12 and13 are
the diagonal scaling matrix satisfying111213 = I.W1,W2
and W3 are the estimation errors. Scale ambiguity in B̂ and
Ĥ can be eliminated by dividing each column of the matrices
by its first element, respectively.

Define rk = ĥk (2) + jĥk (3), j is the image number unit,
ĥk (2) and ĥk (3) are the second and third row of ĥk , respec-
tively, the estimates of 2-D DOA are achieved by

ϕ̂ck = angle(rk ) k = 1, 2, · · · ,K , (22)

θ̂ck = sin−1(abs(rk )), k = 1, 2, · · · ,K . (23)

Since we have estimated both azimuth and elevation angles
from the same column of Ĥ, the angles paring procedure is
completed automatically.

2) THE SECOND PARAFAC DECOMPOSITION
Under the noiseless case, B̂ is further written as

B̂ =

[
F̂x � Âx

F̂y � Ây

]
51 =

[
F̂x51 � Âx51

F̂y51 � Ây51

]
=

[
B̂x
B̂y

]
,

(24)

where B̂x = F̂x51 � Âx51 isthe first P×M rows of B̂ and
B̂y = F̂y51 � Ây51 is the last P× N

rows of B̂. Define two matrices Gx and Gy
as

Gx =

(
B̂Tx
)†
=

(
((Fx � Ax)51)

T
)†

= ((Fx51)� (Ax51))
[
51(FTx Fx)⊕ (AT

x Ax)51

]
= (Fx51 � Ax51)DT

x , (25)

Gy =

(
B̂Ty
)†
=

(((
Fy � Ay

)
51
)T)†

=
((
Fy51

)
�
(
Ay51

)) [
51(FTy Fy)⊕ (AT

y Ay)51

]
= (Fy51 � Ay51)DT

y , (26)

where Dx[51(FTx Fx) ⊕ (AT
x Ax)51]T , Dy = [51(FTy Fy) ⊕

(AT
y Ay)51]T . Apply PARAFAC decomposition to Eq. (25)

and Eq. (26), after elimination of scale ambiguity, we can
obtain estimates of Ax , Fx , Ay and Fy

Âx = Ax52 +W11, F̂x = Fx52 +W12, (27)

Ây = Ay53 +W13, F̂y = Fy53 +W14, (28)

where 52 and 53 the permutation matrices, and W11, W12,
W13 andW14 are the estimation noise. The uniqueness of the
second PARAFAC decomposition can be guaranteed since
the k-rank condition kAx + kFx + kDx ≥ 2K + 2 and
kAy + kFy + kDy ≥ 2K + 2 are satisfied, respectively. Note:
the uniqueness condition of PARAFAC decomposition can be
guaranteed as long as the parameters matrices which can be
written as the PARAFAC decomposition model are column
full-rank.

B. TRIPLE MATCHING IMPLEMENTATION AND DOPPLER
ESTIMATION
The columns of Ĥ have PK = K ! permutations, define ρpx =
Ĥp(2, :) and ρpy = Ĥp(3, :) as the second and the third row of
the p-th permutation of Ĥp, respectively. The elevation angles
of p-th permutation are θ̂p = [θ̂p1, · · · , θ̂pK ].

Define η
j
x = κx

∂ρjx
∂ cos θ j

∣∣∣
θ j=θ̂ j,ϕj=ϕ̂j

, η
j
y =

κy
∂ρjy
∂ cos θ j

∣∣∣
θ j=θ̂ j,ϕj=ϕ̂j

, where κx = j2πdx2 /c, κy = j2πdy2/c,

∂ρjx
∂ cos θ j

∣∣∣
θ j=θ̂ j,φj=φ̂j

and ∂ρjy
∂ cos θ j

∣∣∣
θ j=θ̂ j,φj=φ̂j

are defined in

Appendix C, respectively. Let fi = [fi,1, fi,2, · · · , fi,K ], i =
1, · · · ,PK be the i-th frequency permutation. To obtain the
permutation matrices52 and53, we define

µ(i,j)
x = efi⊕η

j
x , i = 1, · · · ,PK , j = 1, · · · ,PK , (29)

µ(i,j)
y = efi⊕η

j
y , i = 1, · · · ,PK , j = 1, · · · ,PK , (30)

where µ(i,j)
x and µ

(i,j)
y are determined by the angle and

frequency combination {θ j, fi}
PK
i=1,j=1. Define â

(2)
x = Âx(2, :)

and â(2)y = Ây(2, :) as the second row of Âx and Ây, respec-
tively. The projection of µ(i,j)

x and µ(i,j)
y on â(2)∗x and â(2)∗y can

be expressed respectively as

I (i,j)x = < µ(i,j)
x , â(2)∗x >= µ(i,j)

x · â
(2)∗
x , i = 1, · · · ,PK ,
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TABLE 1. Complexity of relevant algorithms.

j = 1, · · · ,PK , (31)

I (i,j)y = < µ(i,j)
y , â(2)∗y >= µ(i,j)

y · â
(2)∗
y , i = 1, · · · ,PK ,

j = 1, · · · ,PK . (32)

The optimal parings {θoptx , foptx } or {θ
opt
y , fopty } should be those

satisfying to maximize I (i,j)x or I (i,j)y , namely,

{θoptx , foptx } = argmax
{θ j,fi}

I (i,j)x , i = 1, · · · ,PK , j = 1, · · · ,PK ,

(33)

{θopty , fopty } = argmax
{θ j,fi}

I (i,j)y , i = 1, · · · ,PK , j = 1, · · · ,PK .

(34)

Thus, we get the paired 2-D DOA and frequency, as well as
the permutation information of Âx and Ây. Since F̂x and F̂y
share the same permutation matrix with Âx and Ây, respec-
tively, no additional paring procedure is needed for Doppler
estimation.

Let the paired angles and frequency of Âx
be [− cos ϕ̂opt,x1 sin θ̂opt,x1 ,− cos ϕ̂opt,x2 sin θ̂opt,x2 , · · · ,

− cos ϕ̂opt,xK ]
and [f opt,x1 , . . . , f opt,xK ], let the paired angles and frequency

of Ây be [− sin ϕ̂opt,y1 sin θ̂opt,y1 ,− sin ϕ̂opt,y2 sin θ̂opt,y2 , · · · ,

− sin ϕ̂opt,yK sin θ̂opt,yK ] and [f opt,y1 , . . . , f opt,yK ]. Denote the k-th
column of F̂x and F̂y as f̂x(ϕk , θk , fk , fd ) and f̂y(ϕk , θk , fk , fd ),
respectively. We have

ĝxk = −angle(f̂x(ϕk , θk , fk , fd ))

= [0, 2πτuk , . . . , 2π (P− 1)τuk ]T = ukqx , (35)

ĝyk = −angle(f̂y(ϕk , θk , fk , fd ))

= [0, 2πτvk , . . . , 2π (P− 1)τvk ]T = vkqy, (36)

where uk = f̂ opt,xk + fdk cos ϕ̂
opt,x
k sin θ̂opt,xk , vk = f̂ opt,yk +

fdk sin ϕ̂
opt,y
k sin θ̂opt,yk , qxk = [0, 2πτ, . . . , 2π (P − 1)τ ]T ,

qyk = [0, 2πτ, . . . , 2π (P − 1)τT ]. From Eq. (35), we can
obtain the estimates of uk and vk via the LS method, respec-
tively. The LS fitting amounts to

min
cxk
‖Exkcxk − gxk‖2F , (37)

min
cyk

∥∥Eykcyk − gyk
∥∥2
F , (38)

where cxk = [cxk0, cxk1]T , cyk = [cyk0, cyk1]T , Exk =
[1M ,qxk ] and Eyk = [1N−1,qyk ]. From Eq. (37), we can
obtain the estimates of cxk

ĉxk = [ĉxk0, ĉxk1]T = E†
xkgxk , (39)

ĉyk = [ĉyk0, ĉyk1]T = E†
ykgyk , (40)

where ĉxk1 and ĉyk1 are estimates of uk and vk , respectively.
The estimates of Doppler from (39) and (40) can be achieved
by

f̂ opt,xdk = (ĉxk1 − f
opt,x
k )/(cosϕopt,xk sin θopt,xk ),

k = 1, 2, . . . ,K , (41)

f̂ opt,ydk = (ĉyk1 − f
opt,y
k )/(sinϕopt,yk sin θopt,yk ),

k = 1, 2, . . . ,K . (42)

Finally we can get the estimate of Doppler

f̂dk = (f̂ opt,xdk + f̂ opt,ydk )/2, K = 1, 2, . . . ,K . (43)

C. THE PROCEDURE OF THE PROPOSED ALGORITHM
The main step of the proposed algorithm can be summarized
as follows.

1) The introduction of multi-level delays outputs
establishes the fundamental of the dual PARAFAC
model (7).

2) Implement the first PARAFAC decomposition on (7) via
TALS algorithm and obtain the paired 2-D DOA estimation
from Ĥ.

3) Apply the second PARAFAC decomposition to Eq. (25)
and Eq. (26), obtain the estimates of Âx and F̂x , Ây and F̂y,
respectively.

4) Get the Doppler and 2-D DOA matching information
via triple matching implementation, e.g. 2-D DOA and fre-
quency, therefore, Doppler is achieved by delay matrices F̂x
and F̂y.
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FIGURE 3. Running time comparison under different SNR.

FIGURE 4. 2-D DOA and Doppler estimation for uniform L-shaped array.

IV. COMPLEXITY ANALYSIS
For the proposed algorithm, the complexity for each iteration
of the first PARAFAC decomposition is O[3K 2

+ K 2(J +
PM+PN+4)+6K 2P((M+N )(4+J )+4J )+12KP(M+N )J ],
while in the second PARAFAC decomposition, each iteration
inGx andGy costs, O[3K 2

+K 2(K +P+M )+ 6K 2(P(M +
K ) + MK ) + 3K 2PM ], and O[3K 2

+ K 2(K + P + N ) +
6K 2(P(N + K ) + NK ) + 3K 2PN ], respectively. The com-
plexity of the triple matching implementation and Doppler
estimation is O[2K (K !)+K 2(M +N )]. So the complexity of
the proposed algorithm isO[n1(3K 2

+K 2(J+PM+PN+4))]
+6K 2P((M+N )(4+J )+4J )+12KP(M+N )J+n21(3K 2

+

K 2(K + P + M ) + 6K 2(P(M + K ) + MK ) + 3K 2PM ) +
n22(3K 2

+K 2(K+P+N )+6K 2(P(N+K )+NK )+3K 2PN )+
2K (K !) + K 2(M + N ), where n1 are the iteration times of

FIGURE 5. 2-D DOA and Doppler estimation for non-uniform L-shaped
array.

the first PARAFAC decomposition, n21 and n22 are the itera-
tions times of the second PARAFAC decomposition. For the
sake of clarification, we list the complexity of the proposed
algorithm, JAD-ESPRIT algorithm and JAD-PM algorithm in
Table 1.

Basically, it is quite difficult to compare the proposed
methods with other methods directly since the number of
iterations depends on heavily the received data and varies
dramatically from a few to even hundreds of iterations,
and therefore, it is difficult for one to provide the pre-
cise computational complexity. However, the general mea-
sure is to numerically compare the CPU runtime of com-
parable methods as a reference based on the same hard-
ware and software configuration on a computer. In Fig. 3,
we present the actual runtime of the comparable algorithms
versus SNR, computed by the MATLAB R2015b under the
condition of Inter (R) Xeon (R) CPU E5-2620 v3 @2.40GHz
and 8GB random access memory, where M = N =

10,P = 8. And Fig.3 shows clearly that the proposed
algorithm has much close complexity with JAD-ESPRIT as
SNR exceeds 15dB because high SNR leads to faster conver-
gence. On the other hand, the JAD-ESPRIT algorithm has the
needs for eigenvalue decomposition of the covariance matrix
of the received data, which suffers heavy computational
load.

V. SIMULATION RESULTS
We consider a scenario of underwater acoustic signal
detection and assume that there are three far-field inco-
herent sources impinge on a L-shaped array, the 2-D
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FIGURE 6. 2-D DOA and Doppler estimation performance comparison.

DOA and frequency of the sources are (ϕ1, θ1, f1) =
(10◦, 15◦, 1KHz), (ϕ2, θ2, f2) = (20◦, 25◦, 2KHz) and
(ϕ3, θ3, f3) = (30◦, 35◦, 3KHz), respectively. The sources
are moving at the speed of v1 = 25.5m/s, v1 = 34m/s and
v1 = 42m/s, respectively. c = 340m/s, the Doppler are fd1 =
v1
c f1 = 75Hz, fd2 =

v2
c f2 = 200Hz and fd3 =

v3
c f3 = 375Hz.

J is the snapshots and P is the number of delays. M and N
are the numbers of elements of X-subarray and Y-subarray,
respectively. In the following examples, the 2-D DOA and
Doppler estimation performance of the proposed algorithm
is evaluated by the root mean square error (RMSE), which is
defined as

RMSE2−DDOA

=
1
K

K∑
k=1

√√√√ 1
L

L∑
l=1

[(ϕ̂k,l − ϕk )2 + (θ̂k,l − θk )2], (44)

RMSEDoppler

=
1
K

K∑
k=1

√√√√ 1
L

L∑
l=1

(f̂dk,l − fdk )2, (45)

where ϕk , θk and fdkare the true elevation angle, azimuth
angle and Doppler of the k-th source, respectively. ϕ̂k,l , θ̂k,l ,
f̂dk,l are the estimates of ϕk , θk and fdk in l-th trial. L = 1000is
the number of Monte-Carlo trials.

FIGURE 7. 2-D DOA and Doppler estimation performance under
different J.

Simulation 1: In this example, we set M = N = P =
10, J = 100. Fig. 4 and Fig. 5 show the 2-D DOA and
Doppler estimation of the proposed algorithm at SNR=15dB.
Fig. 4 is the example for uniform L-shaped array and the
distance between every adjacent sensor isd = 0.05m. While
in Fig. 5, the array is non-uniform and the distance between
every sensor and the reference element is dx = dy =
0, 0.07, 0.11, 0.14, 0.23, 0.26, 0.264, 0.37,0.406, 0.45m.
As seen in Fig. 4 and Fig. 5, our algorithm is
efficient for both uniform and non-uniform L-shaped
array.
Simulation 2: In this example, we compare the parame-

ters estimation performance of the proposed algorithm with
JAD-ESPRIT algorithm and JAD-PM algorithm and CRB as
well. The array is uniform L-shaped array with d = 0.05m,
and setM = N = P = 10, J = 100. From simulation results
in Fig.6, we can conclude that the angle and Doppler esti-
mation performance of the proposed algorithm is better than
the JAD-ESPRIT and JAD-PM method. It can be observed
that the 2-D DOA estimation curve for the proposed method
is far higher than the CRB, the reason is that in our paper
the 2-D DOA is estimated and paired automatically via theH
matrix only, whose size is 4×K . Note: the proposed method
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FIGURE 8. 2-D DOA and Doppler estimation performance under different
sensor numbers.

does not use the composite steering matrix B to estimate
2-D DOA, however, the 2-D DOA CRB is closely related to
B. On the other hand, the Doppler estimation curve for the
proposed method is relatively closer to the Doppler CRB, the
reason is that the Doppler estimation depends on the delay
matrices Fx and Fy as calculated in (35)-(43).
Simulation 3: Fig.7 shows the 2-D DOA and Doppler esti-

mation performance versus the number of snapshots. In this
example, M = N = P = 10 with J =100, J =200
and J =300, respectively. It is observed that the estimation
performance of both 2-D DOA and Doppler improve with
snapshots (J ).
Simulation 4:Fig.8 shows the 2-D DOA and Doppler esti-

mation performance against the number of array elements.
In this example,P = 10,J = 200 with M = N = 8,
M = N = 12 and M = N = 16, respectively. Fig.8
reconfirms that the estimation performance of both 2-D DOA
and Doppler gets better with the number of array elements
(M, N).
Simulation 5: Fig.9 presents the 2-D DOA and Doppler

estimation performance versus P. In this example,M = N =
10, J = 200 with P = 8, P = 12 and P = 16, respectively.

FIGURE 9. 2-D DOA and Doppler estimation performance under
different P.

Fig.9 indicates that the estimation performance of both 2-D
DOA and Doppler improves as P increases.

VI. CONCLUSIONS
In this paper, we address the problem of joint 2-D DOA
and Doppler estimation for L-shaped array, and propose
an efficient Dual PARAFAC decomposition method. The
proposed method utilizes dual PARAFAC decomposition to
estimate parameters matrices, and achieves the 2-D DOA,
frequency and Doppler paired with triple matching imple-
mentation. The simulation results indicate that the proposed
algorithm is effective for both uniform and non-uniform
L-shaped array, and the estimation performance outperforms
the JAD-ESPRIT algorithm and JAD-PM algorithm. Based
on the current research, we would like to test the proposed
method using real data in the future work.

APPENDIX A
DEFINATION OF Fx, the equation can be derived, as shown
at the top of next page where fdk =

vk
c fk is the Doppler of the

k-th signal.
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Fx =


1 1 · · · 1

e−j2π (f1+fd1 cosϕ1 sin θ1)τ e−j2π (f2+fd2 cosϕ2 sin θ2)τ · · · e−j2π (fK+fdK cosϕK sin θK )τ

...
...

. . .
...

e−j2π (f1+fd1 cosϕ1 sin θ1)1(P−1)τ e−j2π (f2+fd2 cosϕ2 sin θ2)(P−1)τ · · · e−j2π (fK+fdK cosϕK sin θK )(P−1)τ

 .

Fy =


1 1 · · · 1

e−j2π (f1+fd1 sinϕ1 sin θ1)τ e−j2π (f2+fd2 sinϕ2 sin θ2)τ · · · e−j2π (fK+fdK sinϕK sin θK )τ

...
...

. . .
...

e−j2π (f1+fd1 sinϕ1 sin θ1)1(P−1)τ e−j2π (f2+fd2 sinϕ2 sin θ2)(P−1)τ · · · e−j2π (fK+fdK sinϕK sin θK )(P−1)τ

 .

APPENDIX B
DEFINATION OF Fy, the equation can be derived, as shown
at the top of this page where fdk =

vk
c fk is the Doppler of the

k-th signal.

APPENDIX C
Take derivatives of ρpx and ρpy with regards to cos θp, respec-
tively, we have

∂ρpx

∂ cos θp

∣∣∣∣
θp=θ̂p,ϕp=ϕ̂p

=

[
∂ρpx (1)

∂ cos θp,1
, . . . ,

∂ρpx (K )

∂ cos θp,K

]∣∣∣∣
θp
= θ̂p,ϕp = ϕ̂p

= [− cos ϕ̂p1 sin θ̂p1,− cos ϕ̂p2 sin θ̂p2, · · · ,

− cos ϕ̂pK sin θ̂pK ],
∂ρpy

∂ cos θp

∣∣∣∣
θp=θ̂p,ϕp=ϕ̂p

=

[
∂ρpy (1)

∂ cos θp,1
, . . . ,

∂ρpy (K )

∂ cos θp,K

]∣∣∣∣
θp
= θ̂p,ϕp = ϕp

= [− sin ϕ̂p1 sin θ̂p1,− sin ϕ̂p2 sin θ̂p2, · · · ,

− sin ϕ̂pK sin θ̂pK ],

ACKNOWLEDGMENT
The authors would like to appreciate the anonymous review-
ers for their highly valuable feedbacks that significantly
improve the quality of this paper.

REFERENCES
[1] H. Yu, X. Zhang, X. Chen, and H. Wu, ‘‘Computationally efficient

DOA tracking algorithm in monostatic MIMO radar with automatic
association,’’ Int. J. Antennas Propag., vol. 2014, no. 12, pp. 1–10,
2014.

[2] Y. Fayad, C. Wang, and Q. Cao, ‘‘A sequential adaptive method for
enhancing DOA tracking performance,’’ Trans. Nanjing Univ. Aeronaut.
Astronaut., vol. 33, no. 6, pp. 739–746, 2016.

[3] K. Cui, W.Wu, J. Huang, X. Chen, and N. Yuan, ‘‘DOA estimation of LFM
signals based on STFT and multiple invariance ESPRIT,’’ Int. J. Electron.
Commun., vol. 77, pp. 10–17, Jul. 2017.

[4] L. Xu, R. Wu, X. Zhang, and Z. Shi, ‘‘Joint two-dimensional DOA and fre-
quency estimation for L-shaped array via compressed sensing PARAFAC
method,’’ IEEE Access, vol. 6, pp. 37204–37213, 2018.

[5] R. Shafin, L. Liu, Y. Li, A. Wang, and J. Zhang, ‘‘Angle and delay
estimation for 3-D massive MIMO/FD-MIMO systems based on paramet-
ric channel modeling,’’ IEEE Trans. Wireless Commun., vol. 16, no. 8,
pp. 5370–5383, Aug. 2017.

[6] J. D. Lin, W. H. Fang, Y. Y. Wang, and J. T. Chen, ‘‘FSF MUSIC
for joint DOA and frequency estimation and its performance analy-
sis,’’ IEEE Trans. Signal Process., vol. 54, no. 12, pp. 4529–4542,
Dec. 2006.

[7] W. Xudong, ‘‘Joint angle and frequency estimation using multiple-delay
output based on ESPRIT,’’ EURASIP J. Adv. Signal Process., vol. 2010,
no. 1, 2010, Art. no. 358659.

[8] S. Zhongwei X. Zhang, and H. Wu, ‘‘Propagator method-based joint angle
and frequency estimation using multiple delay output,’’ ICIC Exp. Lett.,
vol. 2, no. 4, pp. 827–832, 2011.

[9] L. Xu, X. Zhang, and Z. Xu, ‘‘Novel blind joint 2D direction of arrival and
frequency estimation with L-shaped array,’’ Int. J. Digit. Content Technol.
Its Appl., vol. 5, no. 9, pp. 241–250, 2011.

[10] Z. Xiaofei, F. Gaopeng, Y. Jun, and X. Dazhuan, ‘‘Angle—Frequency
estimation using trilinear decomposition of the oversampled output,’’
Wireless Pers. Commun., vol. 51, no. 2, pp. 365–373,
2009.

[11] J. B. Kruskal, ‘‘Three-way arrays: Rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statistics,’’
Linear Algebra Appl., vol. 18, no. 2, pp. 95–138, 1975.

[12] Y. Wang and G. Leus, ‘‘Space-time compressive sampling array,’’
in Proc. IEEE Sensor Array Multichannel Signal Process. Workshop,
Oct. 2010, pp. 33–36.

[13] M. Yi, P. Wei, and X.-C. Xiao, ‘‘Joint estimation of time delays, Doppler
shifts and DOAs of multipath signals,’’ in Proc. Int. Conf. Commun.
Circuits Syst., Jun. 2004, pp. 822–825.

[14] A. Gunes and M. B. Guldogan, ‘‘Joint underwater target detection
and tracking with the Bernoulli filter using an acoustic vector sensor,’’
Digit. Signal Process., vol. 48, pp. 246–258, Jan. 2016.

[15] J. Cao, J. Liu, J. Wang, and X. Lai, ‘‘Acoustic vector sensor: Reviews
and future perspectives,’’ IET Signal Process., vol. 11, no. 1, pp. 1–9,
2016.

[16] X. Zhang, J. Li, H. Chen, and D. Xu, ‘‘Trilinear decomposition-based
two-dimensional DOA estimation algorithm for arbitrarily spaced acoustic
vector-sensor array subjected to unknown locations,’’Wireless Pers. Com-
mun., vol. 67, no. 4, pp. 859–877, 2012.

[17] W. Xudong, X. Zhang, J. Li, and J. Bai, ‘‘Improved ESPRIT method
for joint direction-of-arrival and frequency estimation using multiple-
delay output,’’ Int. J. Antennas Propag., vol. 2012, no. 1, 2012,
Art. no. 309269.

[18] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang,
E. E. Papalexakis, and C. Faloutsos, ‘‘Tensor decomposition for signal
processing and machine learning,’’ IEEE Trans. Signal Process., vol. 65,
no. 13, pp. 3551–3582, Jul. 2017.

[19] J. Lin, X. Ma, S. Yan, and C. Hao, ‘‘Time-frequency multi-invariance
ESPRIT for DOA estimation,’’ IEEE Antennas Wireless Propag. Lett.,
vol. 15, pp. 770–773, Aug. 2016.

[20] S. Ren, X. Ma, S. Yan, and C. Hao, ‘‘2-D unitary ESPRIT-like
direction-of-arrival (DOA) estimation for coherent signals with a uni-
form rectangular array,’’ Sensors, vol. 13, no. 4, pp. 4272–4288,
2013.

VOLUME 7, 2019 51757



R. Wu et al.: Joint 2-D DOA and Doppler Estimation for L-Shaped Array via Dual PARAFAC

RIHENG WU (M’12) received the Ph.D. degree in
measurement technology and instruments from the
Beijing Institute of Technology, Beijing, China,
in 2007.

He was a Research Associate Fellow with
the Department of Electrical Engineering and
Computer Science, The University of Tennessee,
Knoxville, TN, USA, from 2007 to 2008.
From 2009 to 2015, he was with hi-tech companies
in MO, KS, USA, including Leggett and Garmin

International Inc., where he owned two authorized U.S. patents. Since 2016,
he has been with the Information Engineering Department, Wenjing College,
Yantai University, Yantai, China, where he is currently a Full Professor. His
research interests include signal processing in communication and radar,
array signal processing, optimizations. Dr. Wu serves as a member of the
Technical Program Committees of numerous IEEE conferences, including
ICC (2011 and 2012), WCNC (2009, 2010, 2011, 2012, 2013, and 2017),
CCNC (2011, 2012, and 2018), APMC2017, and VTC. He serves as an
Editor of the International Journal of Computing and Digital Systems-V7
(IJCDS’018), Journal of Engineering and Computer Innovations (JECI), The
Magazine of the IEEE Vehicular Technology Society, in 2010.

LE XU received the B.Eng. degree from the
Nanjing University of Aeronautics and Astronau-
tics, Nanjing, China, in 2016, where he is currently
pursuing the master’s degree in communication
and information systems with the College of Elec-
tronic and Information Engineering. His current
research interests include array signal processing
and compressed sensing theory.

ZHENHAI ZHANG received the B.Eng. degree
from the Harbin University of Science and Tech-
nology (HUST), Harbin, China, in 1997, and the
M.S. and Ph.D. degrees from the School ofMecha-
tronics Engineering, Beijing Institute of Technol-
ogy (BIT), Beijing, China, in 2004 and 2008,
respectively.

From 2010 to 2011, he was a Postdoctoral
Researcher with Fukuda Laboratory, Department
of Micro-Nano Systems Engineering, Nagoya

University, Japan. In 2012, he joined the School of Mechatronics Engi-
neering, Beijing Institute of Technology, where he is currently an Asso-
ciate Professor. He has authored or coauthored more than 55 peer-reviewed
journal publications and conference papers. He held over 25 invention
patents. His research areas include MEMS/NEMS sensors and test tech-
nology, panorama sensor, bionic robot, locomotive robot, tip-based preci-
sion micro/nano-manipulation systems, bio-inspired robotics, micro/nano-
robotics, and micro/nano systems for biomedical applications.

Dr. Zhang has served as a Council Member of Sensor Branch of the China
Instrument and Control Society, a Committee Member of the Optoelectronic
Technology Professional Committee of Chinese Society of Astronautics,
an Editorial Board Member of Computer Measurement and Control, and a
Project Evaluation Expert of the National Natural Science Fund Committee.

YANGYANG DONG was born in Bengbu, Anhui,
China. He received the B.Eng. and Ph.D. degrees
in electronic science and technology from Xid-
ian University, Xi’an, China, in 2012 and 2017,
respectively. Since 2017, he has been a Lecturer
with the School of Electronic Engineering, Xidian
University, where he also held a postdoctoral posi-
tion. His current research interests include array
signal processing, multilinear algebra, and infor-
mation geometry.

51758 VOLUME 7, 2019


	INTRODUCTION
	DATA MODEL
	JOINT 2-D DOA AND DOPPLER ESTIMATION
	DUAL PARAFAC DECOMPOSITION
	THE FIRST PARAFAC DECOMPOSITION AND ANGLES ESTIMATION
	THE SECOND PARAFAC DECOMPOSITION

	TRIPLE MATCHING IMPLEMENTATION AND DOPPLER ESTIMATION
	THE PROCEDURE OF THE PROPOSED ALGORITHM

	COMPLEXITY ANALYSIS
	SIMULATION RESULTS
	CONCLUSIONS
	REFERENCES
	Biographies
	RIHENG WU
	LE XU
	ZHENHAI ZHANG
	YANGYANG DONG


