
SPECIAL SECTION ON MOBILE SERVICE COMPUTING WITH INTERNET OF THINGS

Received March 21, 2019, accepted April 8, 2019, date of publication April 12, 2019, date of current version September 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910804

Cloud Service Community Detection for
Real-World Service Networks Based on
Parallel Graph Computing
YU LEI 1, (Member, IEEE), AND PHILIP S. YU2, (Fellow, IEEE)
1Department of Computer Science, Inner Mongolia University, Hohhot 010021, China
2Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

Corresponding author: Yu Lei (yuleiimu@sohu.com)

This work was supported by grants from NSFC under Grant (No. 61962040).

ABSTRACT Heterogeneous information networks (e.g. cloud service relation networks and social net-
works), where multiple-typed objects are interconnected, can be structured by big graphs. A major challenge
for clustering in such big graphs is the complex structures that can generate different results, carrying many
diverse semantic meanings. In order to generate desired clustering, we propose a parallel clustering method
for the heterogeneous information net-works on an efficient graph computation system (Spark). We use a
multi-relation and path-based method to create similarity matrices, and implement our method based on
graph computation model. It is inefficient to directly use existing data-parallel tools (e.g. Hadoop) for graph
computation tasks, and some graph-parallel tools (e.g. Pregel) do not effectively address the challenges of
graph construction and transformation. Therefore, we implemented our parallel method on the Spark system.
The experiment results of clustering show our method is more accuracy.

INDEX TERMS Heterogeneous information networks, cluster, parallel computing, service mashup,
community detection.

I. INTRODUCTION
Most of the world’s densely populated areas have entered
the era of cloud computing and the domestic communication
industry is about to enter the 5G era. People need to access
the network anytime, anywhere, using various convenient
cloud services. We established a cloud service community to
provide rich in-site cloud services, thereby attracting service
providers to release more services and finally promoting their
services to fixed and mobile users. The number of service
developers and users are increasing dramatically. Therefore
we built a web site to help them find each other. Furthermore,
we study the web site data and test our various methods on it.
Other researchers are also welcome to test their methods in
the web site. Our web site is indexed and analyzed by a search
engine Baidu. Total page views so far are 16632, and user
locations are shown in Fig.1 according to Baidu’s statistics.

According to these statistics, we want to mine interest-
ing service information. Link-based clustering methods are
able to discover hidden knowledge in big data. Contrast

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuiguang Deng.

FIGURE 1. User locations.

to other algorithms [1], link-based clustering methods use
links instead of object attributes to classify objects when the
attributes are missing. Most link-based clustering methods
are used in homogeneous networks where only one type
of links exists. However, some networks are heterogeneous,
which have multiple types of objects and multiple types
of links. Any two objects can be linked via different types

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 131355

https://orcid.org/0000-0002-8679-6569

Y. Lei, P. S. Yu: Cloud Service Community Detection for Real-World Service Networks Based on Parallel Graph Computing

FIGURE 2. A heterogeneous network for cloud services.

FIGURE 3. API similarity graph under different paths.

of paths. When clustering on diverse paths, different results
will be generated.

A heterogeneous information network is shown in Fig. 2,
which contains four types of objects: developers (D), Follow-
ers (F), APIs (A) and Mashups (M), and four types of links.
Links exist between developers and APIs by the relations of
‘‘develop’’ and ‘‘developed by’’, between APIs and Mashups
by ‘‘integrate’’ and ‘‘integrated by’’, between developers and
Mashups by ‘‘develop’’ and ‘‘developed by’’, between fol-
lowers and Mashups by ‘‘invoke’’ and ‘‘invoked by’’, and
between followers and APIs by ‘‘invoke’’ and ‘‘invoked by’’.

In Fig.2, APIs (third layer) are indirectly connected via dif-
ferent paths. A− D− A denotes a relation between APIs via
developers (fourth layer), whereas A − F − A shows a rela-
tion between APIs via followers (first layer) and A −M – A
shows a relation of Mashups (second layer). Different paths
generate different connection graphs. For example, APIs can
be connected via developers and form two clusters; APIs can
be connected via followers and form two different clusters;
APIs can be connected via a mashup developed cooperatively
by different developers, and construct two different clusters.
Whereas in Fig.3, a connection graph combining the three
paths may generate 3 clusters.

The three clusters carry diverse semantics, and thus users
should choose their desired path. It is easier for domain
experts to specify one path or multiple weighted paths.

Mashup Web sites (e.g., ProgrammableWeb [2]) can help
users classify APIs into different categories.

In a heterogeneous information network, we use vary-
ing path and domain knowledge to cluster varying types
of objects, where the domain knowledge is used to assign
weights of varying paths.

To cluster APIs (nodes) into 2 clusters in Fig.3, weights
0.5, 0.3, and 0.2 are assigned to the three paths: A − D − A,
A − F − A and A − D − M − D − A. The combination of
the paths is shown in Fig.3. For a clustering task, we assign
the weight of each path, which should be consistent with the
clustering results implied by the domain knowledge, and then
output the clustering result.

We propose a clustering method for varying types of
objects. An efficient distributed graph-parallel algorithm is
developed. We summarize contributions as follows.

• A novel multiple label propagation model is proposed
to cluster overlapping community in a heterogeneous
real-world service network we built.

• We propose a parallel computing algorithm based on
the multiple label propagation model. The parallel com-
puting algorithm (GMPLA,Graph-basedMultiple Label
Propagation Algorithm) is implemented by graph com-
puting (Spark), where the graph node relations are con-
structed by different paths.

II. RELATED WORK
Different types of relationships have different semanticmean-
ings in determining the similarity between target objects.
Clustering on the homogenous network have been studied
for long. A heuristic density-based approach for community
detection is proposed [1], but it highly depends on the dis-
tance function. Arab and Afsharchi [3] proposed a bottom up
community detection method which starts with fine-grained
communities (the condition is too strict in common cases).
Merging preliminary small communities is done in a hybrid
way to maximize two quality functions: modularity and NMI.
Papadakis et al. [4] proposed an unsupervised distributed
algorithm that finds the entire community structure of a net-
work, on the basis of local interactions between neighboring
nodes. The proposed approach is based on the use of Vivaldi
synthetic network coordinates. Wang et al. [5] developed an
algorithm to extract a hierarchy of overlapping communities,
which can zoom into a network at multiple different reso-
lutions and determine which communities reflect a targeted
behavior. However, time complexity is too high for big data.
Qi et al. [6] proposed an algorithm for community selection.
Based on the Max-Flow Min-Cut theorem, the algorithm can
output an optimal set of local communities automatically.
However, the algorithm is hardly implemented in parallel
style. Dinh and Thai [7] proposed polynomial-time approxi-
mation algorithms for the modularity maximization problem
together with their theoretical justifications in the context of
scale-free networks. This work did not discuss heterogenous
Web service data.

131356 VOLUME 7, 2019

Y. Lei, P. S. Yu: Cloud Service Community Detection for Real-World Service Networks Based on Parallel Graph Computing

Clustering on the heterogenous network also have been
studied. We introduced several clustering methods on the
heterogenous networks. Exploring the heterogenous digital
footprints of LBSN (location-based social networks) users
in the cyber-physical space, Wang et al. [8] proposed an
edge-centric co-clustering framework to discover overlap-
ping communities. Zhou and Liu [9] presented a social
influence based clustering framework for analyzing hetero-
geneous information networks with three unique features.
Kuo et al. [10] predicted the opinion holder in a heteroge-
neous social network without any labeled data. This ques-
tion can be generalized to a link prediction with aggregative
statistics problem. They devised an unsupervised framework
to solve this problem, and evaluated the method using four
datasets: preference (Foursquare), repost (Twitter), response
(Plurk), and citation (DBLP). Tang et al. [11] showed
that representative community detection methods for single-
dimensional networks can be presented in a unified view.
Comar et al. [12] considered the problem of multi-task
learning on heterogeneous network data. They presented a
framework that enables one to perform classification on one
network and community detection in another related network.
Angelova et al. [13] modeled themutual influence of nodes as
a randomwalk in which the random surfer aims at distributing
class labels to nodes while walking through the graph. The
methods of papers solving the problem of heterogenous net-
work are not suitable for the large-scale parallel environment.

Recently researchers proposed several extended label
propagation algorithms. Lin et al. [14] proposed a commu-
nity detection method based on the label propagation algo-
rithmwith community kernel. They assigned a corresponding
weight to each node according to node importance in the
whole network and update node labels in sequence based
on weight. Liu and Murata [15] analyzed a modularity-
specialized label propagation algorithm (LPAm) for detecting
network communities. To escape local maxima, they used a
multistep greedy agglomerative algorithm (MSG) that can
merge multiple pairs of communities at a time. Combining
LPAm and MSG, they proposed a modularity-specialized
label propagation algorithm (LPAm+). The extended label
propagation algorithms have good prospects for solving
large-scale data, but the convergence condition is hard to
determine.

Clustering based on parallel algorithms have been prosed
recently. Gregori et al. [16] presented a parallel k-clique
community detection method The method has an unbounded,
user-configurable, and input-independent maximum degree
of parallelism, and hence is able to make full use of com-
putational resources. Bu et al. [17] proposed a fast paral-
lel modularity optimization algorithm. To deal with large
graphs with millions of vertices and edges, Prat et al. [18]
proposed a disjoint community detection algorithm called
Scalable Community Detection (SCD). By combining dif-
ferent strategies, SCD partitions the graph by maximizing
the Weighted Community Clustering, which is based on
triangle analysis. Lu et al. [19] presented parallelization

heuristics for fast community detection using the Louvain
method as the serial template. The Louvain method is an
iterative heuristic for modularity optimization. Compared to
the serial Louvain implementation, the parallel implemen-
tation is able to produce community outputs with a higher
modularity for most of the inputs tested. Shi et al. [20]
presented a community-detection solution for massive-scale
social networks using MapReduce. They proposed a set of
degree-based preprocessing and postprocessing techniques
that improve both the community-detection accuracy and per-
formance. Most parallel algorithms are complex, inefficient,
and hard to implement, while parallel LP algorithm is a good
choice.

Cluster ensemble [21] is amethod that composes clustering
results of different methods. Given different partitions of
objects, cluster ensemble methods can find a mean partition.
Nevertheless, the clusters representing different purposes of
clustering tasks may conflict with each other, and undesired
by users.

Instead composing clustering results at output, our method
compose related objects during the formation of clusters.
Our work differs from traditional semi-supervised feature
selection, which focus on vector space features. Our method
provides a source of features (i.e. path), instead of a concrete
feature. In addition, we show that good solution cannot be
obtained by simple combinations of features from different
sources.

III. PARALLEL MULTIPLE LABEL PROPAGATION
ALGORITHM BASED ON GRAPH COMPUTING
A heterogeneous information network is a network where
multiple types of objects link each other with multiple types
of links. Objects can link various types of objects by different
paths in a heterogeneous information network. Each pathmay
lead to different quality of clustering. We must determine
the target type of objects, before we cluster the objects.
Then, we must determine the type of connection. Our parallel
label propagation method will cluster objects once paths are
selected.

A. LABEL PROPAGATION
A label, such as an integer, is associated with each vertex in
the basic label propagation algorithm.

(1) A unique label is initially assigned to each vertex v.
(2) Vertex v iteratively replaces its label by the neighbors’

label which has the maximum quantity.
(3) Finally, the vertices with same label tend to a

community.

Step 2 is called propagation phase, which may not terminates
where all vertices will not change their labels. Asynchronous
updating can be used to ensure the propagation phase con-
verge to a stable state. Vertex v’s new label is updated in
successive iterations according to the labels of its neighbors
in the previous iteration. When each vertex has a label that

VOLUME 7, 2019 131357

Y. Lei, P. S. Yu: Cloud Service Community Detection for Real-World Service Networks Based on Parallel Graph Computing

is used by a maximum number of neighbors, the algorithm
terminates.

We analyzed the basic label propagation algorithm. Its time
complexity is linear to the network size. Step 1 takes
time O(n), step 2 takes time O(n) for each iteration and step 3
takes time O(n) for processing disconnected communities.
The number of iterations required depends on the network
size. We compared asynchronous updating with synchronous
updating. The results show that synchronous updating is
much more stable, but it requires more iterations.

There are also some methods than are able to constrain the
propagation of labels for limiting the size of communities,
and able to detect hierarchical communities. Nevertheless,
the basic label propagation algorithm is not able to detect
overlapping communities.

B. PARALLEL OVERLAPPING COMMUNITIES CLUSTERING
1) LABEL PROPAGATION FOR OVERLAPPING COMMUNITIES
Each vertex belongs to a single community identified by
a label in the basic label propagation algorithm. However,
each vertex may belong to more than one community when
communities overlap. Therefore, more than one community
identifiers are needed for overlapping communities.

As a naive method, we allow a vertex to obtain all labels
that it can obtain from neighbors, and label each vertex
by a unique community identifier in the beginning. In the
successive iterations, the vertex will obtain all of neighbors’
community identifiers into its label set. Each vertex end up
gathered all community identifiers, thus this method does not
work well.

In another way, each vertex v can be labeled by a range
of community identifiers c. We let b(c) of vertex v indicate
the degree of membership of community c, and set sum b(c)
of v is 1. In each label propagation step, the value of b(c)
will change since the vertex constantly obtain neighbors’
labels. Therefore, we let bt (c) indicate the membership in a
certain iteration t , which is based on iteration t−1. In Equ.1,
N (v) denotes all neighbors of v.

bt (c) =

∑
u∈N (v) b

u
t−1(c)

|N (v)|
(1)

We just keep more than one community identifier in each
vertex, and then delete the labels whose bt (c) is less than
a threshold during each propagation step. The threshold is
1/cmax. The parameter cmax shows the maximum number of
communities that a vertex belong, and cmax can be input by
users.

There is a situation that vertex v′s all degree of member-
ship are less than the threshold. Then, the greatest degree of
membership will be kept, and all others will be deleted.When
it has multiple maximum bt (c) that below the threshold,
we randomly select one of them. After deleting these labels,
renormalize the degree of membership is needed so that they
are summed to 1.

2) PROPAGATION THRESHOLD
The design of propagation threshold is critical. Several alter-
native thresholds are considered when we design it in the
propagation phase.

A low-degree vertex may belong to less communities than
a high-degree vertex. Thus, the maximum number of com-
munities of a vertex rely on its degree. To avoid this prob-
lem, an alternative threshold is given: max (1/cmax, c/d(v)).
We keep community labels sent by at least c neighbors of
vertex v, instead of a fraction of neighbors. If d(v) is the
degree of v, the threshold becomes c/d(v) instead of 1/cmax.
The result is that vertex v can belong to d(v)/c communities
at most. However, this threshold is not good enough partly
because low-degree vertices are common and it requires two
parameters.

To specifically deal with the problem that all degree of
membership of a vertex are less than the threshold. Instead
of keeping one of them, we can leave the vertex unlabeled,
and expect that it will be labeled in the future iterations.

To prevent forming excessively large communities,
we count the number of times that a dominant label appears
on a vertex. If a label often appears on vertex v, we set the
label to v only and delete all other labels on vertex v.

3) ALGORITHM
Parallel program pattern is used to implement our above
algorithm (it is necessary to read paper [22]).

IV. EXPERIMENTS
Multiple label propagate algorithm can be implemented in
several ways. However, using data-parallel tools (Hadoop)
to graph computation tasks is inefficient. Thus, new
graph-parallel tools (Pregel, etc.) designed to efficiently exe-
cute graph algorithms are developed. Unfortunately, some
graph-parallel tools do not efficiently address the graph con-
struction and transformation. Spark GraphX combines the
advantages of both graph-parallel and data-parallel systems,
thus we use GraphX as our implementation tool. Comparing
GMLPA with several methods in this section, we show the
efficiency of our algorithm.

A. LABEL PROPAGATION
WeuseDBLP network [23], ProgrammableWeb network, and
a real-world service network [24] for performance study. Sev-
eral clustering tasks are provided for each network followed
by evaluation:

Three clustering tasks are designed for DBLP Network:

(1) Fig.4: Major conferences, including all related authors,
papers and terms in Data Mining, Information Retrieval
and Machine Learning, are clustered. The selected paths
are V −P−T −P−V and V −P−A−P−V . We denote
that Term (T), Author (A), Paper (P), and Venue (V).

(2) Fig.5: Authors are clustered according to the number of
publications and research areas. The selected paths are

131358 VOLUME 7, 2019

Y. Lei, P. S. Yu: Cloud Service Community Detection for Real-World Service Networks Based on Parallel Graph Computing

Algorithm 1 Parallel GMLPA
Randomly assign a label to each node in the beginning
// gather from neighbors
gather(Du, Du−v, Dv) {

obtain bt (c) of Dv
return wu−v bt (c)
//where wu−v is the weight of the edge {u,v}

}
sum(a, b) {return a ∪ b}
apply(Du, acc) {
//Calculate bt (c) of Du from acc, acc contains the result of
the gather.
Let the maximum bt (c) be bmax

i = 0
While (i < type numbers of obtained labels)
{

pw(i) = bt (i) /bmax
// note that if the value of bmax is small, then the

other bt (i) is small
if(pw(i) > threshold)
{B ∪ bt (i)}
//B is the set of labels which u contains

}
Rank bt (c) in B
Only retain top-v bt (c)
if(all of pw(i) < threshold)

{B ∪ bmax}
Normalize bt (c) of Du
Calculate rt

}
// send to neighbors

scatter(Du, Du−v, Dv) {
Activate node v if node u changes sufficiently
if(rt != rt−1)

Activate(v)
}

FIGURE 4. Clustering accuracy for DBLP.

A−P−T −P−A, A−P−V −P−A, A−P−A−P−A,
and A− P− A.

(3) Fig.6: Cluster authors studying in machine learning. The
selected paths are the same with previous settings.

FIGURE 5. Clustering accuracy for DBLP.

FIGURE 6. Clustering accuracy for DBLP.

FIGURE 7. Clustering accuracy for ProgrammableWeb.

Three clustering tasks are designed for ProgrammableWeb
Network. ProgrammableWeb contains 6160 mashups
and 12769 APIs. For the ProgrammableWeb network,
we use its subnetwork including 8 categories. They are
Financial (1371), Food (331), Mapping (4343), Music
(1060), Gambling (47), Sports (585), Travel (1044), and
Weather (342).
(1) Fig.7: APIs (A) of the eight popular categories (Financial,

Food, Mapping, Music, Gambling, Sports, Travel, and
Weather) are clustered based on three paths: A − D −
M − D−A, A−F − A and A− D− A.

(2) Fig.8: APIs in the subcategories (booking, transportation,
time) under the upper category ‘‘travel’’ are clustered
based on the same paths.

VOLUME 7, 2019 131359

Y. Lei, P. S. Yu: Cloud Service Community Detection for Real-World Service Networks Based on Parallel Graph Computing

FIGURE 8. Clustering accuracy for ProgrammableWeb.

FIGURE 9. Clustering accuracy for ProgrammableWeb.

FIGURE 10. Clustering accuracy for service network.

(3) Fig.9: APIs in the subcategories (audio, streaming, lyrics)
under the upper category ‘‘music’’ are clustered based on
the same paths.

A real world network is constructed as the test set. Two
clustering tasks are designed for this network.
(1) Fig.10: Three relation matrices for 200 objects are gen-

erated. All relation matrices have different clustering
structure, and they are added some noise to test whether
assigning low weights to low quality relation matrices by
GMLPA can improve the clustering results.

(2) Fig.11: Three relation matrices for 200 objects are gen-
erated with different paths. For improving the cluster-
ing accuracy, we test whether GMLPA can assign low
weights to relation matrices that are irrelevant to the
domain knowledge.

FIGURE 11. Clustering accuracy for service network.

B. ACCURACY EVALUATION
Comparing our algorithm with several methods, we study the
effectiveness of GMLPA for different tasks.

Three methods are used, which did not consider the
path selection problem. All paths are inputs of these algo-
rithms. The first algorithm is a domain-knowledge and adap-
tive k-means algorithm. It is an information theoretic-based
k-means clustering (KLC) by replacing Euclidean distance to
KL-divergence, which is proposed in [24]. We compose all
relation matrices into one single relation matrix for the input,
and objects are high dimensional feature vectors.

The second algorithm is the basic label propagation algo-
rithm (BLPA), which uses link relation to send labels to the
rest of network. We compose all relation matrices into one
single relation matrix for the input. We restrain our paths
that have same start and end type, because BLPA is used for
homogeneous networks. BLPA is a soft clustering method,
i.e. it can discover overlapping communities.

The third algorithm is the ensemble method (like majority
voting), which first uses different types of objects for cluster-
ing and then takes the label that is the majority on different
paths. Either KLC or BLPA can be used as the ensemble
method for clustering algorithms, thus we have the ensemble
methods: KLC-v and BLPA-v.

We use two evaluation metrics to test the clustering results,
and transform the soft clustering labels into hard cluster
labels.

The first metric is accuracy. It is the percentage of target
objects classified to the correct cluster.

The second metric is normalized mutual informa-
tion (NMI), which quantifies the difference between two
random variables. The normalized mutual information of two
discrete variables X and Y , which are vectors containing
cluster labels for all the target objects is computed as:

NMI (X ,Y) =
I (X;Y)

√
H (X)H (Y)

(2)

I (X;Y) =
∑ ∑

p(x, y) log(
p(x, y)
p(x)p(y)

) (3)

where I(X;Y) is the mutual information of two variables
X and Y. The marginal entropies are H(X) and H(Y).

131360 VOLUME 7, 2019

Y. Lei, P. S. Yu: Cloud Service Community Detection for Real-World Service Networks Based on Parallel Graph Computing

The marginal probability distribution functions of X and Y
are p(x) and p(y) respectively. The joint probability distribu-
tion function of X and Y is p(x,y).

A higher value of both metrics shows a better clustering
result, and the two metrics are in the range of 0 to 1.

Accuracy under different lengths of paths are tested,
and the lengths of paths are denoted by Accuracy_L and
NMI_L in above figures. The results are obtained through
20 runs.

We summarize the accuracy for all the aforementioned
tasks in Fig.4 - Fig.11. The results show that GMLPA out-
performs the rest of methods in most tasks. Other meth-
ods obtain relatively good clustering results for certain task,
whileGMLPA still gives good clustering results. We can con-
clude from these results that GMLPA is able to consistently
obtain satisfied results from various tasks in the different
networks.

V. APPLICATION OF OUR ALGORITHM
Our service mashup platform [25] is a standalone platform
that connects API service providers and service users (includ-
ing secondary developers and service users) [26], [27]. The
platform is dedicated to providing users with the most com-
prehensive and convenient services, as well as helping service
providers register services and increase their API invocation
times. The platform has brought together more than 80 ser-
vices required for application development [28]–[31].

VI. CONCLUSION
Clustering in heterogeneous information networks, especially
in service mashup network, is an important task. Objects in
heterogeneous networks connect each other through various
relations. The relations are delegated by meaningful paths in
our model. We construct paths with the domain-knowledge
in service mashup networks. A parallel algorithm GMLPA is
proposed, which is able to cluster varying types of commu-
nities in heterogeneous information networks. Graph-based
computation enable to organize data naturally and to process
data efficiently in parallel, which is the advantage of our
algorithm. The experiments demonstrate that our algorithm
produce stable and accurate results compared with other
clustering methods. In addition, negative paths and weights
automatic assigning by machine learning are future topics.
There are two future directions for this work. On one hand,
we will propose service recommendation mechanisms based
on the novel algorithm, which is an indeed efficient and
effective recommendation approach leveraging deep learning
for trust-aware social recommendations in service commu-
nity; on the other hand, we will try to propose methods and
mechanisms to provide services in complex environment. For
this direction, Deng et al. proposed an optimized service
cache policy for IoT applications by taking advantage of
the composability of services to improve the performance
of service provision systems; and also proposed optimal
and efficient service selection and composition algorithms in
mobile environment, which are proved to be real useful and

practical in real-world applications. These work really gave
us good reference for our future direction of the cloud service
community.

REFERENCES
[1] M. Gong, J. Liu, L.Ma, Q. Cai, and L. Jiao, ‘‘Novel heuristic density-based

method for community detection in networks,’’ Phys. A, Stat. Mech. Appl.,
vol. 403, pp. 71–84, Jun. 2014.

[2] Mashup Website. Accessed: Sep. 16, 2019. [Online]. Available:
http://www.programmableweb.com/

[3] M. Arab and M. Afsharchi, ‘‘Community detection in social networks
using hybrid merging of sub-communities,’’ J. Netw. Comput. Appl.,
vol. 40, pp. 73–84, Apr. 2014.

[4] H. Papadakis, C. Panagiotakis, and P. Fragopoulou, ‘‘Distributed detection
of communities in complex networks using synthetic coordinates,’’ J. Stat.
Mech., Theory Exp., vol. 2014, no. 3, 2014, Art. no. P03013.

[5] X. Wang, L. Tang, H. Liu, and L. Wang, ‘‘Learning with multi-resolution
overlapping communities,’’ Knowl. Inf. Syst., vol. 36, no. 2, pp. 517–535,
2013.

[6] X. Qi, W. Tang, Y. Wu, G. Guo, E. Fuller, and C.-Q. Zhang, ‘‘Optimal
local community detection in social networks based on density drop of
subgraphs,’’ Pattern Recognit. Lett., vol. 36, pp. 46–53, Jan. 2014.

[7] T. N. Dinh and M. T. Thai, ‘‘Community detection in scale-free networks:
Approximation algorithms for maximizingmodularity,’’ IEEE J. Sel. Areas
Commun., vol. 31, no. 6, pp. 997–1006, Jun. 2013.

[8] Z. Wang, X. Zhou, D. Zhang, D. Yang, and Z. Yu, ‘‘Cross-domain com-
munity detection in heterogeneous social networks,’’ Pers. Ubiquitous
Comput., vol. 18, no. 2, pp. 369–383, 2014.

[9] Y. Zhou and L. Liu, ‘‘Social influence based clustering of heterogeneous
information networks,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Chicago, IL, USA, 2013, pp. 338–346.

[10] T.-T. Kuo, R. Yan, Y.-Y. Huang, P.-H. Kung, and S.-D. Lin, ‘‘Unsuper-
vised link prediction using aggregative statistics on heterogeneous social
networks,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Chicago, IL, USA, 2013, pp. 775–783.

[11] L. Tang, X. Wang, and H. Liu, ‘‘Community detection via heterogeneous
interaction analysis,’’ Data Mining Knowl. Discovery, vol. 25, no. 1,
pp. 1–33, 2012.

[12] P. M. Comar, P.-N. Tan, and A. K. Jain, ‘‘Simultaneous classification
and community detection on heterogeneous network data,’’ Data Mining
Knowl. Discovery, vol. 25, no. 3, pp. 420–449, 2012.

[13] R. Angelova, G. Kasneci, and G. Weikum, ‘‘Graffiti: Graph-based clas-
sification in heterogeneous networks,’’ World Wide Web, vol. 15, no. 2,
pp. 139–170, 2012.

[14] Z. Lin, X. Zheng, N. Xin, and D. Chen, ‘‘CK-LPA: Efficient community
detection algorithm based on label propagation with community kernel,’’
Phys. A, Stat. Mech. Appl., vol. 416, pp. 386–399, Dec. 2014.

[15] X. Liu and T.Murata, ‘‘Advancedmodularity-specialized label propagation
algorithm for detecting communities in networks,’’ Phys. A, Stat. Mech.
Appl., vol. 389, no. 7, pp. 1493–1500, 2010.

[16] E. Gregori, L. Lenzini, and S. Mainardi, ‘‘Parallel K-clique community
detection on large-scale networks,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 8, pp. 1651–1660, Aug. 2013.

[17] Z. Bu, C. Zhang, Z. Xia, and J. Wang, ‘‘A fast parallel modularity opti-
mization algorithm (FPMQA) for community detection in online social
network,’’ Knowl.-Based Syst., vol. 50, pp. 246–259, Sep. 2013.

[18] A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey, ‘‘High qual-
ity, scalable and parallel community detection for large real graphs,’’
in Proc. 23rd Int. Conf. World Wide Web, Seoul, South Korea, 2014,
pp. 225–236.

[19] H. Lu, M. Halappanavar, and A. Kalyanaraman, ‘‘Parallel heuristics
for scalable community detection,’’ in Proc. IEEE 28th Int. Parallel
Distrib. Process. Symp. Workshops, Phoenix, AZ, USA, May 2014,
pp. 1374–1385.

[20] J. Shi, W. Xue, W. Wang, Y. Zhang, B. Yang, and J. Li, ‘‘Scalable commu-
nity detection in massive social networks using MapReduce,’’ IBM J. Res.
Develop., vol. 57, no. 3, pp. 12:1–12:14, 2013.

[21] K. Punera and J. Ghosh, ‘‘Consensus-based ensembles of soft clusterings,’’
Appl. Artif. Intell., vol. 22, pp. 780–810, Sep. 2008.

[22] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, ‘‘GraphX: Graph processing in a distributed dataflow frame-
work,’’ in Proc. USENIX Conf. Oper. Syst. Design Implement. (OSDI),
2014, pp. 599–613.

VOLUME 7, 2019 131361

Y. Lei, P. S. Yu: Cloud Service Community Detection for Real-World Service Networks Based on Parallel Graph Computing

[23] Research Website. Accessed: Sep. 16, 2019. [Online]. Available:
http://dblp.uni-trier.de/

[24] S. Basu, A. Banerjee, and R. Mooney, ‘‘Semi-supervised clustering by
seeding,’’ in Proc. 19th Int. Conf. Mach. Learn. (ICML), 2002, pp. 1–8.

[25] Mashup Website We Built. Accessed: Sep. 16, 2019. [Online]. Available:
http://www.servicebigdata.cn

[26] Y. Duan, Z. Lu, Z. Zhou, X. Sun, and J. Wu, ‘‘Data privacy protection for
edge computing of smart city in a DIKW architecture,’’ Eng. Appl. Artif.
Intell., vol. 81, pp. 323–335, May 2019.

[27] Z. Song, Y.Duan, S.Wan,X. Sun, Q. Zou, H.Gao, andD. Zhu, ‘‘Processing
optimization of typed resources with synchronized storage and computa-
tion adaptation in fog computing,’’ Wireless Commun. Mobile Comput.,
vol. 2018, pp. 3794175:1-3794175:13, May 2018.

[28] S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu, ‘‘On deep learning for trust-
aware recommendations in social networks,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 28, no. 5, pp. 1164–1177, May 2017.

[29] S. Deng, Z. Xiang, J. Yin, J. Taheri, and A. Y. Zomaya, ‘‘Composition-
driven IoT service provisioning in distributed edges,’’ IEEE Access, vol. 6,
pp. 54258–54269, 2018.

[30] S. Deng, L. Huang, J. Taheri, J. Yin, M. Zhou, and A. Y. Zomaya,
‘‘Mobility-aware service composition in mobile communities,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 47, no. 3, pp. 555–568,
Mar. 2017.

[31] S. Deng, L. Huang, D. Hu, J. L. Zhao, and Z. Wu, ‘‘Mobility-enabled
service selection for composite services,’’ IEEE Trans. Services Comput.,
vol. 9, no. 3, pp. 394–407, May/Jun. 2016.

YU LEI received the master’s and Ph.D. degrees
in computer science and technology from the
State Key Laboratory of Networking and Switch-
ing Technology, Beijing University of Posts and
Telecommunications, in 2009 and 2014, respec-
tively, under the guidance of M. Luoming, who
is a Distinguished Chang Jiang Scholar. He is
currently with the College of Computer Science,
InnerMongolia University, China, where he is also
with the InnerMongolia Engineering Lab of Cloud

Computing and Service Software. His research interests include service
computing, cloud technologies, and service-oriented applications.

PHILIP S. YU is a Fellow of the ACM and the
IEEE. He received several IBM honors, includ-
ing the two IBM Outstanding Innovation Awards,
the Outstanding Technical Achievement Award,
the two Research Division Awards, and the 94th
Plateau of Invention Achievement Awards. He was
an IBMMaster Inventor. He received the Research
Contributions Award from the IEEE International
Conference onDataMining, in 2003, and the IEEE
Region 1 Award for ‘‘promoting and perpetuat-

ing numerous new electrical engineering concepts,’’ in 1999. He is on
the Steering Committee of the IEEE Conference on Data Mining and the
ACM Conference on Information and Knowledge Management and was a
member of the IEEE Data Engineering Steering Committee. In addition to
serving as a Program Committee Member on various conferences, he was
the Program Chair or Co-Chair of the 2009 IEEE International Conference
on Service-Oriented Computing and Applications, the IEEE Workshop of
Scalable Stream Processing Systems (SSPS’07), the IEEE Workshop on
Mining Evolving and Streaming Data, in 2006, the 2006 joint conferences of
the 8th IEEEConference on E-Commerce Technology (CEC’ 06) and the 3rd
IEEE Conference on Enterprise Computing, E-Commerce and E-Services
(EEE’ 06), the 11th IEEE International Conference on Data Engineering,
the 6th Pacific Area Conference on Knowledge Discovery and Data Mining,
the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, the 2nd IEEE International Workshop on Research
Issues on Data Engineering: Transaction and Query Processing, the PAKDD
Workshop on Knowledge Discovery from Advanced Databases, and the
2nd IEEE International Workshop on Advanced Issues of E-Commerce and
Web-based Information Systems. He served as theGeneral Chair or Co-Chair
of the 2009 IEEE International Conference on Data Mining, the 2009 IEEE
International Conference on Data Engineering, the 2006 ACM Conference
on Information and Knowledge Management, the 1998 IEEE International
Conference onData Engineering, and the 2nd IEEE International Conference
on Data Mining. He was the Editor-in-Chief of the IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, from 2001 to 2004. He also served as an
Associate Editor for the ACM Transactions on the Internet Technology, from
2000 to 2010, and Knowledge and Information Systems, from 1998 to 2004.
He is the Editor-in-Chief of the ACM Transactions on Knowledge Discovery
from Data.

131362 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	PARALLEL MULTIPLE LABEL PROPAGATION ALGORITHM BASED ON GRAPH COMPUTING
	LABEL PROPAGATION
	PARALLEL OVERLAPPING COMMUNITIES CLUSTERING
	LABEL PROPAGATION FOR OVERLAPPING COMMUNITIES
	PROPAGATION THRESHOLD
	ALGORITHM

	EXPERIMENTS
	LABEL PROPAGATION
	ACCURACY EVALUATION

	APPLICATION OF OUR ALGORITHM
	CONCLUSION
	REFERENCES
	Biographies
	YU LEI
	PHILIP S. YU

