
Received March 11, 2019, accepted April 8, 2019, date of publication April 12, 2019, date of current version April 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910809

Fusion Rule Based on Dynamic Grouping for
Cooperative Spectrum Sensing
in Cognitive Radio
TINGTING YANG 1, YUCHENG WU 1, LIANG LI1, WEIYANG XU 1, (Member, IEEE),
AND WEIQIANG TAN 2, (Member, IEEE)
1School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
2School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China

Corresponding author: Yucheng Wu (wuyucheng@cqu.edu.cn)

This work was supported in part by the Core Electronic Devices through High-End General Chips and Basic Software Products Projects of
China under Grant 2017ZX01030204, in part by the Sichuan Science and Technology Program under Grant 2018GZ0228, in part by the
Chengdu Long Teng Zhong Yuan Information Technology Co. Ltd., in part by the National Natural Science Foundation of China under
Grant 61801132, in part by the Natural Science Foundation of Guangdong Province of China under Grant 2018A030310338, and in part by
the Project of Educational Commission of Guangdong Province of China under Grant 2017KQNCX155.

ABSTRACT In this paper, we study the distributed cooperative spectrum sensing in heterogeneous cognitive
radio networks, where each secondary user (SU) adopts a different spectrum sensing algorithm and expe-
rience a different channel environment. To solve the spectrum sensing problem, we propose a fusion rule
based on dynamic grouping, which can be used in the mobility of the primary user and SUs. By introducing
a grouping parameter, the proposed algorithm can realize the dynamic grouping of SUs. The SUs in group-
1 will not be able to participate in the cooperation, and the SUs in groups-2 and groups-3 have different
weighting factors. The proposed fusion rule is only required to process the independent decision result of
each SU, which significantly reduces the data transmission overhead and processing delay. The simulation
results show that the proposed fusion rule can effectively improve the dynamic grouping of SUs and fuse
detection information, and outperform the or rule, and rule, equal gain combining, and maximum signal-to-
noise ratio under the same conditions.

INDEX TERMS Cognitive radio networks, cooperative spectrum sensing, dynamic grouping, weighting
factors.

I. INTRODUCTION
With the rapid development of mobile internet, cloud com-
puting, internet of things (IoT), and the rapid popularization
of video surveillance, smart terminals, and application stores,
the amount of mobile data is growing exponentially [1], [2].
This means that higher transmission rate and more trans-
mission bandwidth are required to achieve real-time inter-
action of communication data. Due to the ever-increasing
demand of spectrum and unreasonable allocation of fre-
quency resources, the shortage of frequency resources has
become a key factor restricting the implementation of many
services and technologies. Cognitive radio (CR) is considered
to be an effective solution which can overcome the scarcity
of frequency resources and improve spectrum utilization [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Wang.

In heterogeneous cognitive radio networks (CRNs), sec-
ondary users (SUs) continuously monitor the licensed fre-
quency bands and search for frequency bands that are not used
by the primary users (PUs). SUs can opportunistically access
the licensed but unused spectrum to realize communication
and data transmission [4]. When PUs re-access the licensed
frequency bands, SUs must relinquish the frequency bands
within the specified time or reduce their own transmitting
power to avoid interference to PUs. Spectrum sensing can
realize real-time monitoring of spectrum usage status and
provide idle spectrum related information for SUs, which is
the key and prerequisite for implementing CR. The biggest
challenge in spectrum sensing is to achieve reliable spec-
trum detection under low signal-to-noise ratio (SNR) and
high dynamic background noise with acceptable complexity
and detection time [5], [6]. Most of the detection algorithms
have been proposed for spectrum sensing, which is based
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on covariance matrix, radio identification, cyclostationar-
ity, match filtering, and energy detection [7], [8]. Cyclosta-
tionarity detection can achieve reliable spectrum sensing,
but it has high complexity and requires quite a long time
for detection [9]. Match filtering detection is known as an
optimal detection algorithm, but it is not easy to obtain
the prior information of signals emitted by PUs in practi-
cal applications [10]. Energy detection is the most widely
used, because it has low computational complexity, low
detection delay, and easy implementation. More importantly,
it is a blind detection algorithm that does not require prior
information. However, the energy detection cannot guaran-
tee the reliability of spectrum sensing under high inten-
sity dynamic background noise [11], [12]. The limitations of
local single-node spectrum sensing make it difficult to detect
signals of PUs for desired performance under low SNR con-
dition. Consequently, cooperative spectrum sensing (CSS)
is proposed as a potential solution, which can effectively
address issues that arise in spectrum sensing due to noise,
fading, shadowing and hidden terminals [13]–[15].

In CSS, data fusion and final decision can be executed
in two different modes, namely, centralized CSS or decen-
tralized CSS. In the centralized mode, each SU senses the
specific spectrum separately and reports local detection infor-
mation to fusion center (FC) via reporting channel. FC ana-
lyzes the detection information received from all SUs to
acquire a global decision and related information is fed back
to all SUs. On the other hand, in the decentralized mode,
there is no FC to collect detection information from each
local SU and SUs exchange their detection information with
other neighboring SUs. The final decision is made by each
SU independently. Considering the limited communication
resources between SUs and FC, in this paper, we focus on
the problem of CSS in centralized mode. Meanwhile, hard
decision fusion (HDF) and soft decision fusion (SDF) are the
most commonly used fusion rules in CSS. Normally, OR,
AND and K -out-of-M rules are widely used in HDF, and
each SU is required to send its own decision result to FC.
Equal gain combining (EGC), selection combining (SC) and
maximum ratio combining (MRC) are widely used in SDF.
To the best of our knowledge, SDF performs better than HDF
in the same conditions [13]. Nevertheless, each SU needs
to send its local test statistics to FC in SDF. That means
more bandwidth and longer time are required to transmit
and process detection information [15]. The tradeoff between
transmission bandwidth, detection time, and detection perfor-
mance has being a research focus in CSS field.

A. RELATED WORK
A practical combining rule with low complexity and small
performance degradation for CSS in block-fading channel has
been designed in [5]. The rule is based on the generalized
gauss-laguerre formula solution of the average likelihood
ratio detector, which is implemented by linear functions and
a comparator. The authors in [6] proposed a cooperative
sequential fuzzy hypothesis testing detector to cope with

the influence of noise uncertainty as well as to reduce the
complexity. Each SU takes a sample in each step and sends it
to FC to decide the presence or absence of PU. Accordingly,
the algorithm not only improves the detection performance
but also increases the transmission overhead and detection
time. A simple quantization-based multibit data soft fusion
rule has been presented in [16]. Each SU equips an energy
detector for local spectrum sensing and sends quantized
multibit data which includes detection information, instead
of decision results or primary test statistics to FC. In [17],
a novel clustering scheme which consists pruning, selecting,
and clustering has been proposed to minimize extra detection
overhead and achieve better detection performance at low
SNR. The work of [18] proposed a linear combination rule
which provides nearly optimal performance at affordable
computational cost.Moreover, a general and effectivemethod
to optimize the weighting factors has been given for three
typical scenarios, including the slow fading, the block fading,
and the fast fading. According to [19], channel conditions for
each SU will be different in a real situation. That is, each SU
may undergo independent fading and shadowing. Consider-
ing this, a new fusion rule in a realistic scenario where SUs
are randomly distributed has been proposed in [19]. In [20],
the efficiency of SDF in inhomogeneous background has
been studied from the perspective of quantization theory.
And two novel quantization schemes with two optimization
methods have been presented to obtain the quantizer and
decision threshold of SDF.

In all these cases, they consider all SUs located under the
coverage area of the PU should participate in the CSS, and the
final decision is established based on the detection informa-
tion of all SUs. In fact, it is unwise for all SUs located under
the coverage area of the PU to participate in CSS. In many
scenarios, such as the presence of malicious SUs, not only
increases the overhead of cooperation and information fusion,
but also fails to improve detection accuracy and reliability.
Besides, the above algorithms assume that SUs are equipped
with the same detector types and do not address more realistic
cases where SUs use different detection schemes (known as
heterogeneous CRNs).

B. CONTRIBUTIONS
In this paper, we investigate CSS in heterogeneous CRNs
which only allows some qualified SUs to participate. We con-
sider channel conditions for each SU are different, and the
PU and SUs may move within a certain range. The main
contributions of this paper are as follows.
• We consider a more realistic channel model in which the
signals sent by PU experience different channels to each
SU. This means that the received SNR of each SU is
different. In addition, we assume that the noise in the
electromagnetic environment is dynamic, that is, there
is noise uncertainty.

• We assume that not all SUs located under the coverage
area of the PU need to participate in CSS, and some
SUs may increase the cost of cooperation and fail to
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improve the detection performance. At the same time,
in the process of detection information fusion, the SUs
should assign different weighting factors.

• We propose a fusion rule based on dynamic grouping,
which is grouped according to the distance between
the PU and SUs. In our scheme, SUs in different
groups are assigned different weighting factors, the FC
only needs to collect the decision result of each SU.
Therefore, the proposed algorithm is applicable to any
heterogeneous network due to FC does not need to
know the spectrum sensing algorithm performed by
each SU.

The remainder of the paper is constructed as follows.
The system model and detection problem is formulated in
Section II. After that, the fusion rule based on dynamic
grouping for CSS is presented in Section III. And then,
we analyze the effects of different grouping parameter and
weighting factors on the algorithm performance, and com-
pare the performance among OR rule, AND rule, EGC rule,
maximum signal-to-noise ratio algorithm (in short, SNR
rule), and the proposed rule. The corresponding simulation
results are given in Section IV. Finally, Section V draws the
conclusion.

TABLE 1. List of major symbols.

For the sake of the convenience, we present a list of the
major symbols that are used in Table 1 with their definitions.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SIGNAL AND CHANNEL MODEL
We consider a scenario where a heterogeneous CRN con-
sisting of a PU, multiple SUs, and an FC. We assume that
all SUs are located under the coverage area of the PU. The
PU, SUs, and FC are all distributed independently throughout
the region. Specifically, the mobility of PU and SUs should
be considered. To improve the detection performance at low
SNR condition, many SUs participate in spectrum sensing
and collaborate to make a detection decision. The selection
of fusion rule should consider that each SU may use different
algorithms to implement local SS. As Fig. 1 shows, each
SU sends independent detection information to FC, assuming
that there are no burst errors in reporting channel. FC fuses
all detection information through certain rule to obtain a
final detection decision and share it with each SU. In CSS,
data transmission and information fusion lead to an increase
in bandwidth burden, meanwhile, also increase energy con-
sumption and detection delay. Taking the system overhead
and the performance of spectrum sensing into account to
optimize fusion rule utility is an urgent issue in CSS.

FIGURE 1. CSS model with one PU, M SUs, and one FC.

For the SUm, according to Neyman-Pearson criteria,
the spectrum sensing problem can be modeled as a binary
hypothesis test [15]

rm(n) =

{
nm(n), H0

nm(n)+ sm(n), H1
, (1)

where m = 1, . . . ,M , rm(t) is the signal received by SUm,
and nm(t) is additive white Gaussian noise (AWGN)with zero
mean and variance σ 2

m. Meanwhile, sm(t) is supposed to be the
transmitted signal of PU with zero mean and variance σ 2

sm.
Average power Pm can incorporate the effects of fading and
shadowing, and Pm = σ 2

sm. Consistent with [21], we define
Pm = µP/dαm, where P is the PU transmitted signal power,
dm is the distance between PU and SUm. Moreover, µ is a
unitless constant that depends on the antenna characteristics,
and α is a path-loss exponent, respectively. Furthermore,
assume that nm(t) and sm(t) are independent to each other.
Now, consider the case with uncertainty in the noise. Similar
to [22], the distributional uncertainty of noise can be defined
as a single interval σ 2

m ∼ U
(
σ 2
n
/
um,umσ 2

n
)
, where σ 2

n is the

51632 VOLUME 7, 2019



T. Yang et al.: Fusion Rule Based on Dynamic Grouping for Cooperative Spectrum Sensing in Cognitive Radio

nominal noise power and um > 1 indicates the quantifies of
uncertainty of SUm. We define the SNR of PU’s transmission
signal as γ=P

/
σ 2
n . Furthermore, H0 and H1 indicate the

absence and presence of PU, respectively.

B. PROBLEM FORMULATION
For the sake of simplicity, we investigate a centralized CRN
which all SUs are equipped with energy detectors. This is
helpful to analyze the performance of different fusion rule
with mathematical expressions. Besides, it is also helpful to
compare the proposed algorithmwith EGC rule and SNR rule
in simulation, so as to better highlight the superiority of the
proposed algorithm.

1) LOCAL SPECTRUM SENSING
Energy detectors are widely used to estimate the energy of
received signals due to its low complexity and lack of prior
information requirements [23]. Assuming that all SUs use a
fixed number of samples denoted by N , the test statistic of
SUm is given as

Tm =
N∑
n=1

|rm (n)|2. (2)

According to the central limit theorem (CLT), when
N tends to infinite, Tm follows an asymptotically normal
distribution

Tm ∼

{
N (Nσ 2

m
, 2Nσ 4

m), H0

N (N (σ 2
m
+ Pm ), 2N (σ 2

m + Pm)
2), H1

. (3)

Proof: The proof is given in the Appendix A.
Each SU completes spectrum sensing with different pre-

set decision threshold λm according to its own channel
conditions [24], as follows

Rm =

{
H0, Tm < λm

H1, Tm ≥ λm
. (4)

To the best of our knowledge, detection performance
is usually measured by detection speed and detection
accuracy [25]. The detection speed is mainly affected by N .
The detection accuracy is usually described by false alarm
probability Pfm and detection probability Pdm. According
to [16], we have

Pfm = Prob (Tm < λm |H0 ) = Q

(
λm − σ

2
m√

2σ 4
m/N

)
, (5)

Pdm = Prob (Tm ≥ λm |H1 ) = Q

 λm − (σ 2
m + Pm)√

2(σ 2
m + Pm)

2
/N

 ,
(6)

where Q (x) = 1
√
2π

∫
∞

x exp
(
−
t2
2

)
dt .

In practical application, we can fix the false alarm proba-
bility and make the decision threshold adaptively adjust with

the channel environment to improve the utilization rate of idle
spectrum. According to (5), we can obtain

λm =

√
2σ 4

m/NQ
−1 (Pfm)+ σ 2

m. (7)

Obviously, by substituting (7) into (6), we can obtain the final
expression of the detection probability

Pdm = Q

√2σ 4
m/NQ

−1
(
Pfm

)
− Pm√

2(σ 2
m + Pm)

2
/N

 . (8)

2) HARD DECISION FUSION
For HDF, the SUs involved in CSS send the independent deci-
sion result to FC via reporting channel, and FC obtains the
final decision by fusing the received detection information.
Usually, each SU only needs to transmit one-bit decision to
FC, and the transmitted information qm can be defined as

qm =

{
0, Rm = H0

1, Rm = H1
. (9)

The FC combines all decision result and makes a global deci-
sion, the general form ofK -out-of-M rule can be described as



M∑
m=1

qm < K , H0

M∑
m=1

qm ≥ K , H1

. (10)

In fact, (10) represents OR rule when K = 1, and when
K = M denotes AND rule, respectively. The global detection
probability and global false alarm probability for OR rule and
AND rule are given as follows

PdOR = 1−
M∏
m=1

(1− Pdm), (11)

PfOR = 1−
M∏
m=1

(
1− Pfm

)
, (12)

PdAND =
M∏
m=1

Pdm, (13)

PfAND =
M∏
m=1

Pfm. (14)

3) SOFT DECISION FUSION
In SDF, each SU is required to send its own test statistic
to FC. Assuming that ζm denotes the weighting factor of each
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SU, the global test statistic TSDF is

TSDF =
M∑
m=1

ζmTm

∼


N
(
N

M∑
m=1

ζmσ
2
m, 2N

M∑
m=1

ζmσ
2
m

)
, H0

N
(
N

M∑
m=1

ζm(σ 2
m+Pm), 2N

M∑
m=1

ζm(σ 2
m+Pm)

2

)
, H1.

(15)

Proof: The proof is given in the Appendix B.
The FC compares the global test statistic with a preset deci-

sion threshold λFC to determine whether the PU exists. The
global detection probability and global false alarm probability
for SDF are given as follows

PfSDF = Q


λFC −

M∑
m=1

ζmσ
2
m√

2
M∑
m=1

ζ 2mσ
4
m/N

 , (16)

PdSDF = Q


λFC −

M∑
m=1

ζm
(
σ 2
m + Pm

)
√
2

M∑
m=1

ζ 2m
(
σ 2
m + Pm

)2
/N

 . (17)

The weighting factors of different SDF rules are different.
For example, the weighting factors of EGC satisfies ζm = 1,
and the weighting factors of MRC based on SNR are defined
as ζm = Pm/σ 2

m. According to (16) and (17), it is obvious
that the weighting factors will directly affect the performance
of SDF.

Under the same conditions, SDF can achieve better per-
formance than HDF, but requires more bandwidth and longer
time to complete data transmission [26]–[28]. When each SU
uses different algorithms for SS, it is not appropriate to use
SDF as the fusion rule. While minimizing the cooperative
overhead, optimizing the detection performance is the focus
of fusion rule research.

III. FUSION RULE BASED ON DYNAMIC GROUPING
FOR COOPERATIVE SPECTRUM SENSING
In a real scenario, the signal sent by the PU goes through
different channel environments to the receiver of SUs, this
means the received SNR of each SU is not equal [29]. At the
same time, SUs in future CRNs are likely to adopt completely
different spectrum sensing algorithms, and the fusion rule
should be appropriate for the information fusion in hetero-
geneous network [30], [31]. Considering the mobility of PU
and SUs, the strategy of fixed clustering for CSS is also inap-
propriate. In order to solve the above problems, we proposed
a fusion rule based on dynamic grouping (in short, DGF)
to make a tradeoff between system overhead and detection
performance. Based on the distance between each SU and

PU, the proposed algorithm selects suitable SUs by dynamic
grouping to participate in cooperation. More importantly,
we assign different weighting factors to SUs in different
groups, and adopt a fusion rule similar to HDF to achieve
information fusion.

A. DYNAMIC GROUPING
Dynamic grouping has been applied to intelligently select
some SUs to participate in CSS in order to minimize coop-
eration overhead without degrading detection performance.
In fact, we can set a certain time interval for dynamic
grouping according to the specific channel environments and
actual requirements. The time interval of dynamic grouping is
related to themoving speed of the PU and SUs. The advantage
of this is that the grouping information can be updated accord-
ing to the location changes of the PU and SUs. The flexibility
of dynamic grouping can better cope with the challenges
brought by the mobility of the PU and SUs. We assume that
each SU knows its own location, as well as the location of PU.
It is also assumed that both PU and SUs are willing to share
their location information to the FC. If the location about PU
or SU is not available, FC can infer a reasonable estimate of
the location of the PU or SU, based on the prior data it collects
from the corresponding PU or SU. Location inference is not
dealt in this paper. As shown in Fig. 2, the PU, SUs, and FC
are randomly distributed within a certain area. Based on the
distance between the SUm and PU, and introducing grouping
parameter θ to improve flexibility and accuracy, grouping
rule can be represented by

D ≤ dm, SUm ∈ G1

θ · D ≤ dm < D, SUm ∈ G2

dm < θ · D, SUm ∈ G3

, (18)

where D is a default value for dynamic grouping, Gj denotes
the group-j. It is assumed that G1 = {SUi, i = 1, . . . , η1},
G2 = {SUi, i = 1, . . . , η2}, G3 = {SUi, i = 1, . . . , η3}, and
η1 + η2 + η3 = M . We think the SUs in group-1 are
too far away from PU, so the received PU signal is weaker
than that received by SUs in group-2 or group-3. Different
from traditional CSS algorithms, the proposed algorithm will
refuse SUs in group-1 to participate in CSS. That is to say,
use dm as a main factor to eliminate SUs with unsatisfactory
detection performance, so as to reduce cooperation overhead
without the loss of performance. Therefore, only the SUs in
group-2 or group-3 are eligible to participate in CSS, and the
FC only needs to collect the detection information of SUs in
the two groups.

B. INFORMATION FUSION
Considering that the SUs in a heterogeneous CRN are
equippedwith different detectors, and to avoid a large number
of transmission requirements brought by CSS, we adopt a
fusion scheme similar to HDF and only process the indepen-
dent decision information from each SU.Within the allocated
detection time interval, the SUs in group-2 or group-3 are
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allowed to use an different detection algorithm to make a
decision. In the next time slot, each SU sends the decision
result qm to FC. The fusion rule can be described as follows

Q = β2

η2∑
i=1

Qi + β3

η3∑
i=1

Qi, (19)

Qi =

{
−1, qi = 0
0, qi = 1

, (20)

RDGF =

{
H0, Q < 0
H1, Q ≥ 0

, (21)

where β2 and β3 are the weighting factors of SUs in groups-
2 and groups-3, respectively. The algorithm proposed in this
paper is not affected by the type of detection algorithm
adopted by SUs, because the FC only cares about the final
decision result of each SU. Therefore, DGF can be well
applied to heterogeneous CRNs.

C. EVALUATION OF THE PROPOSED ALGORITHM
Assume the probability that the distance between the SUm
and PU is not greater than D is ρm, i.e Prob {dm ≤ D} = ρm,
then the probability of L SUs participating in CSS is

PL = Prob {η2 + η3 = L} =
(
M
L

)
ρLm(1− ρm)

M−L , (22)

where L ≤ M . For any SU, we assume the sampling fre-
quency is fs and the time required to transmit unit bit data
is tb. The FC cannot communicate with multiple SUs at the
same time. Assuming that the data processing delay is small
enough to be negligible, so the total detection time of HDF,
SDF (Y -bit quantization), and DGF can be described as

τHDF = M · N · (1/fs)+M · tb, (23)

τSDF = M · N · (1/fs)+M · Y · tb, (24)

τDGF = L · N · (1/fs)+ L · tb. (25)

In fact, the average detection time required by DGF algorithm
should be

τ̄GDF =

M∑
L=1

PL · (L · N · (1/fs)+ L · tb) . (26)

Obviously, the DGF algorithm requires the shortest detection
time and the least bandwidth for data transmission.

Since the SUs participating in CSS are dynamically
screened according to dm, and the SUs under different groups
have different weighting factors, it is not easy to derive the
closed expression of detection probability and false alarm
probability of DGF. Therefore, we use MATLABr to realize
the simulation of algorithm performance in section IV.

IV. SIMULATION RESULTS AND ANALYSIS
In this section, we provide numerical results through
Monte-Carlo simulation to verify the superiority of the DGF
algorithm. Considering the random distribution of M SUs
and one PU in a specific region, it is assumed that each SU

TABLE 2. Basic parameters of system simulation.

FIGURE 2. Dynamic grouping model with one PU, M SUs, and one FC.

adopts the traditional energy detection algorithm and all the
signals are transmitted on an ideal channel with no burst
errors. We consider a binary phase-shift keying (BPSK) mod-
ulated signal is transmitted by PU. The system parameters are
summarized in Table 2.

FIGURE 3. Simulation of dynamic grouping when θ = 0.6.

According to the channel environment and actual require-
ments, we select an appropriateD to select the SUs participat-
ing in CSS, and use grouping parameter θ to achieve dynamic
grouping. Fig. 3 draws a dynamic grouping simulation of the
proposed algorithm when θ = 0.6. Obviously, the values
of D and θ will directly affect the grouping result, and the
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appropriate values will be conducive to achieving a good
performance of DGF algorithm.

FIGURE 4. The detection probability versus γ with different weighting
factors, and θ = 0.6.

When θ = 0.6, N = 4000, and Pfm = 0.1, the curves
of detection probability versus γ with different weighting
factors are shown in Fig. 4. It is evident that theweighting fac-
tors of group-2 and group-3 will directly affect the detection
probability of the proposed algorithm. Consequently, assign-
ing reasonable weighting factors according to the location of
the SU is a prerequisite for guaranteeing the performance of
algorithm.

FIGURE 5. The ROC curves of DGF algorithm with different grouping
parameter, N = 4000 and γ = −5 dB.

In the following simulation, we uniformly set β2 = 0.1,
and β3 = 0.4. Fig. 5 plots the receiver operator characteris-
tic (ROC) curves of DGF algorithm with different grouping
parameter θ under γ = −5 dB. From the result, it is readily
observed that grouping parameter will affect the detection

FIGURE 6. The detection probability versus γ with different number of
samples and grouping parameter. (D = 150 m).

performance of DGF algorithm. Setting an appropriate group-
ing parameter is a key to achieving a better performance.
When other conditions remain unchanged, increasing the
false alarm probability can improve the detection probability.
However, a large false alarm probability leads to the unde-
tectable idle spectrum, resulting in the waste of spectrum
resources.

The curves of the detection probability versus γ with dif-
ferent number of samples (e.g. 2000, 4000, 6000, and 8000)
are shown in Fig. 6,Pfm = 0.1, and the grouping parameter
is 0.2, 0.4, 0.6, and 0.8 respectively. According to the result
described by Fig. 6, we can find that the DGF algorithm per-
forms even better with the increase of the SNR and sampling
number. However, when sampling number increases from
6000 to 8000, the gain of the algorithm performance is not
obvious, especially when the SNR is relatively high. This
means the sampling number is no longer a major factor lim-
iting the improvement in detection performance. Therefore,
increasing sampling number can obtain a better performance
before the sampling number reaches a certain value. Besides,
comparing the results of different grouping parameter, it can
be concluded that the DGF algorithm based on dynamic
grouping can improve the detection performance effectively
if grouping parameter θ is reasonably selected.
In order to verify the superiority of DGF algorithm,

we choose OR rule, AND rule [32], EGC rule [33], and SNR
rule [34] as the comparison algorithm, and the performance
comparison is given in Fig. 7. Besides, we set N = 4000,
θ = 0.4, and the false alarm probability of each SU is
0.1, i.e. Pfm = 0.1. Obviously, OR rule and AND rule
have the worst detection performance. Although the former
has a high detection probability, it also has a high false
alarm probability. Although the latter has a very low false
alarm probability, the detection probability is also very low.
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FIGURE 7. Comparison of detection performance among OR rule, AND
rule, EGC rule, SNR rule, and DGF.

The simulation results are consistent with the theoretical
analysis in (11) to (14). Moreover, EGC rule has a higher
detection probability than DGF when γ < −4.7 dB. It is also
a pity that EGC rule will bring a relatively high false alarm
probability, which will lead to a decrease in the utilization of
idle spectrum. Although the SNR rule has a low global false
alarm probability, the detection probability is much lower
than the DGF rule when γ < −3.6 dB due to the noise
uncertainty.

To sum up, the DGF algorithm is simple to implement, has
a small system overhead, and has a relatively ideal perfor-
mance when the system parameters are selected reasonably.

V. CONCLUSION
This paper studied a complex heterogeneous CRN with full
consideration of various factors, which is different from the
traditional CSS model. We introduced path-loss factor and
noise uncertainty to simulate the different fading and shadow
experienced by each SU. Besides, we investigated a fusion
rule based on dynamic grouping under the assumption that
each SU undergoes different channel conditions. Considering
the mobility of PU and SUs, a dynamic grouping scheme
based on location information of PU and SUs has been
proposed. Dynamic grouping greatly improves the flexibility
and compatibility of fusion rule. Moreover, SUs in different
groups will be assigned different weighting factors to finish
information fusion. The DGF only requires the FC to collect
the decision result of each cooperative SU, which reduces the
amount of data transmission and data processing. Simulation
results show that the proposed algorithm can obtain a better
performance while reducing the cooperation cost compared
with the existing methods.

APPENDIX A
PROOF OF (3)
Supposed that random variables X1, . . . ,XN are an inde-
pendent and identically distributed samples, whose elements

follow normal distribution with zero mean and variance
σ 2, then the joint probability density function (PDF) of
(X1, . . . ,XN ) is

f (X1, . . . ,Xn)=
1

√
2πσ

exp

(
−
X2
1

2σ 2

)
· · ·

1
√
2πσ

exp

(
−
X2
N

2σ 2

)

=
1(

2πσ 2
)N

2

exp

(
−
X2
1+· · ·+X

2
N

2σ 2

)
. (27)

Define Z = X2
1 + · · · + X2

N , the cumulative distribution
function (CDF) can be expressed as

FZ (z) = Prob (Z < z) (z > 0)

=

∫
X2
1+···+X

2
N<z

f
(
X2
1 +· · ·+ X

2
N

)
dX1 · · · dXN

=

∫
X2
1+···+X

2
N<z

1(
2πσ 2

)N
2

× exp
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1 + · · · + X

2
N

2σ 2
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dX1· · ·dXN

=
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2πσ 2
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2
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dr, (28)

where SN−1 denotes the surface area of anN -dimensional ball

with radius r =
√
X2
1 +· · ·+ X

2
N . And 0 (x) is the gamma

function, 0 (x) =
∫
∞

0 tx−1 exp (−t)dt . Then, assume z > 0,
the PDF of Z can be derived as

f (z) =
dFZ (z)
dz

=
2(

2σ 2
)N

2 0
(N
2

) zN−12 exp
(
−

z
2σ 2

) d (√z)
dz

=
1(

2σ 2
)N

2 0
(N
2

) zN2 −1 exp (− z
2σ 2

)
. (29)

Evidently, the random variable Z is gamma-distributed with
shapeN

/
2 and scale 2σ 2, i.e. Z ∼ 0

(
N
/
2, 2σ 2

)
. According

to the properties of gamma distribution, we know the mean
and the variance of Z are Nσ 2 and 2Nσ 4, respectively. When
N becomes large enough, according to the central limit the-
orem (CLT), the gamma distribution is approximated by a
normal distribution, that is,

Z ∼ N
(
Nσ 2, 2Nσ 4

)
. (30)

For the SUm, when there is no PU, the signal received by
the SUm can be denoted as

rm0 (n) = nm (n) =
N∑
i=1

nm (i), (31)
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Tm0 =
N∑
i=1

|nm (i)|2. (32)

Similarly, when the PU exists, we have

rm1 (n) = (nm (n)+ sm (n)) =
N∑
i=1

(nm (i)+ sm (i)) , (33)

Tm1 =
N∑
i=1

|nm (i)+sm (i)|2, (34)

where nm (i) and sm (i) denote the i-th sample point of noise
signal and PU signal, respectively. For all we know, nm (n) ∼
N
(
0, σ 2

m
)
and sm (n) ∼ N

(
0, σ 2

sm
)
. Obviously, we have

rm0 (n) ∼ N
(
0, σ 2

m
)
and rm1 (n) ∼ N

(
0, σ 2

m + σ
2
sm
)
.

Accordingly, by substituting σ 2
= σ 2

m and σ 2
= σ 2

m + σ
2
sm

into (30), we can derive as follws{
Tm0 ∼ N

(
Nσ 2

m, 2Nσ
2
m
)
, H0

Tm1 ∼ N
(
N (σ 2

m + σ
2
sm), 2N (σ 2

m + σ
2
sm)

2
)
, H1

. (35)

By substituting Pm = σ 2
sm into (35), the Tm can be given as

(3), which completes the proof.

APPENDIX B
PROOF OF (15)
For simplicity, supposed that Xm = ζmTm, m = 1, . . . ,M .
According to (3), for any Xm, we have

Xm ∼

{
N
(
Nζmσ 2

m, 2Nζ
2
mσ

2
m
)
, H0

N
(
Nζm(σ 2

m + σ
2
sm), 2Nζ

2
m(σ

2
m + σ

2
sm)

2
)
, H1

.

(36)

It is obvious that X1, . . . ,XM are independent normally
distributed random variables. Without loss of generality,
the characteristic function of Xm can be expressed as

ϕXm (t) = E
(
eitXm

)
, (37)

The characteristic function of the normal distribution with
expected value µ and variance σ 2 is

ϕ (t) = exp
(
itµ−

σ 2t2

2

)
, (38)

The characteristic function of the sum of M independent
random variable is just the product of the M separate char-
acteristic functions, i.e.

ϕX1+···+XM (t)

= E
(
eit(X1+···+XM )

)
= ϕX1 (t) · · ·ϕXM (t)

= exp

(
itµX1 −

σ 2
X1
t2

2

)
· · · exp

(
itµX1 −

σ 2
X1
t2

2

)

= exp

it (µX1 + · · · + µXM )−
(
σ 2
X1
+ · · · + σ 2

XM

)
t2

2

 .
(39)

This is the characteristic function of the normal distribu-
tion with expected value µX1 + · · · + µXM and variance
σ 2
X1
+ · · · + σ 2

XM . Combining (36) and (39), the TSDF can be
given as (15), which completes the proof.
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