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ABSTRACT Various models of fatigue crack growth in different scenarios have been proposed in the
literature. Here, in this paper, we propose a general prognostic framework for tracking crack evolution in
equipment undergoing fatigue and predicting the Remaining Useful Life (RUL). The main contribution of
this work is to integrate Particle Filtering (PF) and a new ensemble model which combines diverse physical
degradation models with respect to their accuracy performance in previous time steps, in order to maximize
the overall prediction capability. To validate the effectiveness of the proposed framework, a case study
concerning multiple fatigue crack growth degradations is extensively investigated.

INDEX TERMS Fatigue crack growth, multiple stochastic degradation, prognostics and health management,
remaining useful life, particle filter, dynamic ensemble.

NOMENCLATURE
A. ABBREVIATIONS
BWWV Best-Worst Weighted Vote
EOP End-Of-Process
IMMPF Interacting Multiple Model Particle Filter
MAPE Mean Absolute Percentage Error
MC Monte Carlo
MSE Mean Square Error
PBM Physics-Based Model
PDF Probability Density Function
PF Particle Filtering
PPI Prognostic Performance Indicator
RMSE Root Mean Square Error
RUL Remaining Useful Life
SMC Sequential Monte Carlo
SME Sample Mean Error
SMeE Sample Median Error
TWEB Timeliness Weighted Error Bias

B. LATIN SYMBOLS
a constant of polynomial crack growth model
b constant of curve fitting model
C material constant
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d width of the specimen undergoing fatigue
crack (mm)

f state transition function
g measurement function
h(x) geometric factor
m material constant
N number of fatigue load cycles (cycle)
NM number of degradation models
NP number of particles
NS number of units under test
p probability distribution
q importance sampling distribution
RULt actual RUL at time t (cycle)
RÛLi

t estimated RUL of the ith degradation
model at time t (cycle)

RÛLt estimated RUL of the ensemble at time t(cycle)
t time(cycle)
Ti
t estimated failure time of the ith degradation

model at time t (cycle)
wi,t
est previous estimation accuracy-based output

weight of the ith degradation model in the
ensemble at time t

wi,t
pre previous prediction accuracy-based output

weight of the ith degradation model in the
ensemble at time t

wi,t
overall overall output weight of the ith degradation

model in the ensemble at time t
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w̃i,t
overall normalized overall output

weight of the ith degradation model in the
ensemble at time t

x degradation state (mm)
xth failure threshold (mm)
x̂t estimated degradation state of the ensemble

at time t (mm)
x̂it estimated degradation state of the ith

egradation model at time t (mm)
x̃itp:t predicted degradation state of the ith

degradation model at time with measurements
that are available up to time tp (tp < t) (mm)

z measurement(mm)

C. GREEK SYMBOLS
α geometric coefficient of fatigue crack
δest time horizon for previous estimates

considered (cycles)
δpre time horizon for previous predictions

considered (cycles)
1K stress intensity factor
1σ cyclic stress amplitude
1t time interval (cycle)
ε weight coefficient of individual degradation

model ν measurement noise
ω state noise

I. INTRODUCTION
The rapid development of technology and computer sci-
ence is bringing opportunities for industrial systems to
evolve smarter and faster, but also more complex. In this
fast-changing environment, unanticipated risks and fail-
ures which may cause large-scale breakdowns with sig-
nificant losses in both production and economics, have
also increased [1]. To cope with this challenging situa-
tion, the development of reliability and health management
strategies for preventing components and systems from such
unexpected failures are urgently required. Specifically, these
strategies aim to monitor health conditions of engineering
components, predict their Remaining Useful Lives (RULs)
and, ultimately, enable optimal maintenance decisions before
the breakdown of the components [2], [3]. In practice, the
reliability of equipment usually starts decreasing due to grad-
ual degradation, e.g., delamination [4], fatigue crack [5]–[8],
corrosion [9], [10], etc., under periodic cyclic loads and
eventually leading to failures. Fatigue crack growth is one
of the most frequent degradations leading to components
and systems failures in several major industries, including
energy [6]–[11], automotive [7], aerospace [8], etc. There-
fore, the demand of prognostic systems for dealing with
fatigue crack growth has recently increased.

To address this issue, Physics-Based Models (PBMs),
which utilize the physical knowledge of the degradation for
constructing a quantitative analytical model of the equipment
behavior, have gained significant attention for fatigue crack

growth prognostics [12]–[14]. In [13], a failure prognostic
scheme for fatigue crack growth prediction was introduced,
which employed a stochastic crack growth model and a
Bayesian technique to timely update the equipment degra-
dation state from a sequence of monitored measurements.
Other Bayesian-based prognostic approach was presented to
estimate the stress intensive range of the degradation model
in an online manner [14]. The capability of Bayes theorem
was fully exploited for updating knowledge about the current
degradation state of the target equipment and the unknown
parameters in physical models, when a new measurement
becomes available.

Among Bayesian-based prognostic techniques, a sequen-
tial Monte Carlo (SMC) method, known as Particle Fil-
tering (PF) method, has become very popular due to its
capability of effectively handling non-linear systems and
non-Gaussian noises. The key idea behind this method is
to represent the posterior distribution of the equipment state
by a random set of weighted samples, also called particles,
and then compute the estimated state based on the particles
and their associated weights. This methodology has been
widely adopted for state estimation and prediction of crack
growth [15]–[17], Lithium-ion batteries [18], [19], PEM fuel
cells [20], bearings [21], etc.

On the other hand, the performance of model-based
prognostic frameworks for fatigue crack growth largely
depends on the choice of the adopted physics-of-failure
model [22], [23]. Numerous research on modelling fatigue
crack growth have been extensively investigated and devel-
oped [5], [24]–[26]. In [24], a comprehensive comparison
of stochastic models for fatigue crack growth, including the
Markov chain model, the Yang’s power law-based model,
and a polynomial model, was carried out. The results indi-
cated that each degradation model has its own specific
range of applicability, that is, each model is only appro-
priate to certain degradation processes under certain con-
ditions. To the best knowledge of the authors, there is
no general consensus on a prognostic model for fatigue
crack growth under different degradation processes. Recently,
hybrid andmulti-degradationmodel ensembles have attracted
the attention of industrial practitioners and researchers due
to their superiority over individual degradation models in
terms of higher accuracy and better generalization capabil-
ity [19], [27]. Thefundamental idea of these empirical frame-
works is to exploit the diversity of different degradation
models, which can offer complementary information about
the degradation states to be estimated. In an application
of Lithium-ion battery prognostics, an Interacting Multiple
Model Particle Filter (IMMPF) has been presented to com-
bine the estimations from three different battery capacity
degradation models [27]. The results experimentally indi-
cated that the ensemble approach can yield a promising
performance in terms of smaller estimation errors and more
accurate predictions than single models.

In this paper, an ensemble-based prognostic approach is
presented for predicting the evolution to failure and the RUL
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FIGURE 1. Flow diagram of the proposed prognostic framework.

of an equipment undergoing fatigue crack growth. To maxi-
mize the diversity property of the proposed framework, four
stochastic degradation models of fatigue crack growth are
considered in this work. Moreover, PF is used to track the
crack propagation process with nonlinear and non-Gaussian
characteristics and eventually to predict the RUL of the equip-
ment before breakdowns. To further enhance the performance
of the proposed framework, a dynamic weighted ensemble
strategy is proposed in this paper, based on the previous accu-
racy performance in degradation state estimation and RUL
prediction of each single model in the ensemble. Finally, a set
of prognostic performance indicators (PPIs) is employed to
validate the prediction capability of the proposed framework.

The rest of this paper is organized as follows.
Section 2 introduces the degradation models for fatigue
crack and details the proposed prognostic framework.
Section 3 describes the illustrative case study and the experi-
mental results of the proposed framework in comparison with
individual models. Finally, Section 4 concludes the study.

II. ENSEMBLE-BASED FRAMEWORK FOR
FATIGUE CRACK PROGNOSTICS
This section presents the proposed ensemble-based frame-
work for fatigue crack prognostics. Three key issues are
addressed: how to select the degradation models for the
ensemble; how to use the degradation models for estimating
the degradation states and predicting the RUL of the equip-
ment; how to combine the outputs of the individualmodels for
achieving maximum accuracy. Fig. 1 illustrates the flowchart
of the proposed prognostic model; more details are given in
the following sections.

A. DEGRADATION MODELS FOR FATIGUE CRACK
Diversity is an important aspect to consider in the design
of an ensemble modeling framework. To address this issue,
four stochastic fatigue crack degradation models are selected

for exploiting their diversity in the ensemble: Paris-Erdogan,
polynomial, global function-based, and curve fitting models.

1) PARIS-ERDOGAN MODEL
The popular Paris-Erdoganmodel describes the dynamic evo-
lution of the crack depth x as a function of the load cycle
number N as follows [28]:

dx
dN
= C(1K )m, (1)

where C and m are constants related to the material prop-
erties, and 1K is the Irwin’s stress intensity factor defined
by [29]:

1K = 1σ
√
πx, (2)

where 1σ is the cyclic stress amplitude. In practice, the sta-
tistical variability of the crack growth rate can be addressed
by modifying (1) with an intrinsic process stochasticity [30]:

dx
dN
= eωC(1K )m, (3)

where ω∼N (0, σ 2
ω) is a white Gaussian noise. For a suffi-

ciently small 1t , the Markov chain state-space model of the
degradation state x in (3) can be discretized as follows:

xt = xt−1 + eωC(1K )m1t. (4)

2) POLYNOMIAL MODEL
The polynomial models were first introduced for fatigue
crack growth in order to solve the mismatch between the
traditional power function-based models, i.e. Paris-Erdogan,
and the practical median crack growth curves [24]–[31]:

dx
dN
= eω (a0 + a1x + a2x2), (5)

where ai, i = 0, . . . , 2 are the second-degree polynomial
parameters. Indeed, various works showed that the polyno-
mial models are able to yield the best fit of the linear stage
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of a degradation process, compared to conventional mod-
els [19]–[31]. Specifically, theMarkov process representation
for a polynomial crack growth model can be given as follows:

xt = xt−1 + eω (a0 + a1x + a2x2)1t. (6)

3) GLOBAL FUNCTION
Considering again the Paris-Erdogan model (4) and the fact
that fatigue crack growth generally depends not only onmate-
rial properties but also on equipment geometry, a so-called
global function was introduced by reformulating the stress
intensity factor [32]:

1K = h(x)1σ
√
πx, (7)

where h(x) denotes the geometric factor of fatigue crack,
defined by:

h(x) = α0 + α1
x
d
+ α2

( x
d

)2
+ α3

( x
d

)3
, (8)

where αi, i = 0, . . . , 3and d are geometric coefficients and
the width of the specimen, respectively. The global function-
based model for fatigue crack growth can be, then, written as
follows:

xt = xt−1 + eωC(h(x)1σ
√
πx)m1t. (9)

4) CURVE FITTING FUNCTION
In [32], an empirical crack growth model based on a curve
fitting function was presented, which was shown to outper-
form the conventional models, such as Paris-Erdogan and
polynomial models, in terms of higher prediction accuracy
and lower computational cost:

dx
dN
= eω

(
1

b1xm + b2

)
, (10)

where b1, b2 are model constants. The discretized Markov
process representation for the model can be given as follows:

xt = xt−1 + eω
(

1
b1xm + b2

)
(1K )m1t. (11)

B. DEGRADATION STATE ESTIMATION AND
RUL PREDICTION BY PF
In this work, PF is employed to estimate the current degrada-
tion state of the equipment and to predict its future evolution
until failure. The key idea of PF is based on Bayesian filtering
and Monte Carlo (MC) simulation [33]. The basics of the
method are recalled in the following sections.

1) CURRENT DEGRADATION STATE ESTIMATION
PF assumes that the state model can be represented as a first-
order Markov process, where the current degradation state xt
at time tdepends only on its previous state xt−1. The dynamic
system process can be described by the following equations:

xt = ft (xt−1, ωt−1, (12)

zt = gt (xt , vt ), (13)

where zt denotes the measurement, ωt is the state noise
sequence, and vt is the measurement noise sequence at the
inspection time t {t ∈ N }.
In a Bayesian framework, the system state xt can be

estimated by constructing its posterior probability density
function (pdf), p(xt |z1:t ), via two consecutive steps, namely
prediction and update. In the prediction step, the previous
state estimation xt−1 and the state transition model ft are
utilized to obtain the prior distribution of the system state xt
at current time t via the Chapman-Kolmogorov equation:

p(xt |z1:t−1)=
∫
p(xt |xt−1, z1:t−1)p(xt−1|z1:t−1)dxt−1,

=

∫
p(xt |xt−1)p(xt−1|z1:t−1)dxt−1 (14)

where p(xt |xt−1) is the conditional probability distribution
and is defined by the state model in (12). As a new measure-
ment zt is collected, the required posterior distribution of the
current state xt can, then, be obtained by updating the prior
distribution via Bayes theorem as follows:

p(xt |z1:t ) =
p(xt |z1:t−1)p(zt |xt )

p(zt |z1:t−1)
, (15)

where p(zt |xt )is the likelihood function defined by the mea-
surement model in (13) and p(zt |z1:t−1) is a normalizing
constant given by:

p(zt |z1:t−1) =
∫
p(xt |z1:t−1)p(zt |xt )dxt , (16)

However, there is usually no analytical solution to (14)
and (15)[19]. To address this issue, PF utilizesMC simulation
to approximate the true probability distribution with a set
of weighted random particles {x it ,w

i
t , i = 1, ..,NP}, where

NP is the total number of particles. In fact, these particles
evolve statistically independently of each other, according to
the probabilistic state model (12). In this regard, the posterior
distribution at time t can be approximated as:

p(xt |z1:t ) ≈
NP∑
i=1

witδ
(
xt − x it

)
, (17)

where δ(.) is the Dirac Delta function, often used to represent
a discrete distribution as a continuous probability density
function p(x):

p(x) =
n∑
i=1

piδ (xt − xi), (18)

where x = {x1, . . . , xn} is a discrete distribution with corre-
sponding probabilities {p1, . . . , pn}.
In particular, the particle x it is sampled from the importance

sampling distribution q(xt |z1:t ) and its associated weightwit is
given by:

wit =
p(z1:t |x it )p(x

i
t )

q(x it |z1:t )
. (19)

By setting q(xt |z1:t ) = p(xt |xt−1) defined in (12), the par-
ticle weight wit can be updated with a new collected measure-
ment zt as follows:

wit = wit−1p(zt |x
i
t ), (20)
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where p(zt |x it ) is the likelihood of measurement zt given the
particle x it . Note that theweights are normalized as

∑
i
wit = 1.

2) FUTURE DEGRADATION EVOLUTION PREDICTION
Once the posterior distribution p(xt |z1:t ) of the current degra-
dation state is estimated, it is possible to predict the future
degradation evolution and the RUL of the equipment. How-
ever, note that there is no available information for estimat-
ing the likelihoods of the future degradation states, because
future measurements zt+l, l = 1, . . . ,T − t , where T is
the time horizon of interest for the analysis, have not been
collected yet. The only available information is the dynamic
state model (12). Then, the l-step ahead posterior distribution
p(xt+l |z1:t ) can be written as follows:

p(xt+l |z1:t ) =
∫
. . .

∫ t+l∏
j=t+1

p(xj|xj−1)p(xt |z1:t )
t+l−1∏
j=t

dxj.

(21)

The numerical evaluation of the integrals in (21) requires
significant computational effort. In this paper, an approach
presented in [34] is adopted with the assumption that the
particle weights do not change from time t to time t + l,
i.e., wit = wit+1 = . . . = wit+l . Accordingly, the predicted
distribution at time t + l is given by:

p(xt+l |z1:t ) ≈
NP∑
i=1

witδ(xt+l − x
i
t+l), (22)

where the particle x it+l is obtained by iteratively applying the
state model (12) to the corresponding particle of the current
state x it .
Finally, the RUL associated to each particle at the present

time t can be calculated with reference to the earliest time that
the degradation state exceeds the failure threshold xth:

R
_

UL it=
{
(T it − 1− t)

∣∣∣g(xT it−1,pit, vt )<xth, g(xT it , pit ,vt )≥xth}
(23)

where T it is obtained by simulating the particle evolution via
the state model (12). The predicted RUL distribution is, then,
given by:

p(RUL|z1:t , xi < xth) ≈
NP∑
i=1

witδ(RÛLt − RÛL
i
t ). (24)

More details can be found in [35], [36].

C. SELECTIVE ENSEMBLE BASED ON PREVIOUS
ESTIMATION AND PREDICTION ACCURACIES
With respect to the way of calculating the weights of the
models in an ensemble, the existing ensemble methods can
generally be divided into three categories: (a) simple vote
ensemble [37], where all individual models outputs are
given the same weight coefficients in the voting strategy;
in this scheme, majority vote is the most popularly used
rule; (b) weighted ensemble [27], which combines individual

models with different weight coefficients: each individual is
assumed to have a different contribution to the performance
of the ensemble model; (c) selective ensemble [38], which
includes only an optimal subset of models. This latter method
has recently attracted increasing interest, due to its capability
of significantly reducing the bias and variance in the ensem-
ble estimation [38].

In this section, we present a selective ensemble approach
for prognostics of fatigue crack growth based on a best-worst
weighted vote (BWWV) strategy [39]. A novel ensemble
weight constructed by using both previous estimation and
prediction accuracies of each individual model in the pop-
ulation is proposed.

1) PREVIOUS ESTIMATION ACCURACY-BASED
OUTPUT WEIGHT CALCULATION
Suppose that we have a sequence of measurements collected
until the current time t , {zj, j = 1, . . . , t}. The degrada-
tion states described by the individual models, {x̂ ij , i =
1, . . . ,NM , j = 1, . . . , t}, whereNM is the number of individ-
ual models in the population (NM = 4 in this study), can be
estimated by using the PF described in Section 2.2. A weight
coefficient of the ith model, based on the Root Mean Square
Error (RMSE) of its previous estimates with respect to the
corresponding measurements, can be calculated as follows:

εit =

√√√√ 1
δest

t∑
k=t−δest

(zk − x̂ ik )
2, (25)

where δest is the time horizon of previous estimates consid-
ered (δest = 50 load cycles in the case study that follows).
The previous estimation accuracy-based output weight of

each single model is, then, obtained based on the BWWV as
follows:

wi,test = 1−
εit − ε

min
t

εmax
t − εmin

t
, (26)

where εmin
t = min

i
{εit } and ε

max
t = max

i
{εit }. By using the

BWWV strategy, a maximum weight, wtest = 1, is assigned
to the model in the ensemble with highest accuracy at the
present time t , and a null weight, wtest = 0, is given to the
model with least accuracy, which is equivalent to removing
the model from the ensemble for the estimation at time t .

2) PREVIOUS PREDICTION ACCURACY-BASED
OUTPUT WEIGHT CALCULATION
Due to the fact that there is no available information from
observations to predict the future equipment RUL, the pre-
diction accuracy of each model in the ensemble for the previ-
ous time steps is used to calculate the corresponding output
weight.

We first identify a time instant tp before the present time t
in the time horizon, where t = tp + δpre (δpre = 100 load
cycles in the following case study), as illustrated in Fig. 2. The
state prediction x̃tp:t (the dashed line) of one model at time tp
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FIGURE 2. Sketch of the previous predictionaccuracy-based output
weight calculation approach.

is obtained by iteratively applying the system model to the
estimated state x̃tp , which is set to ztp in this study. We can
now calculate the weight coefficient of the ith model, based
on the RMSE of its predictions for degradation states between
time tp and t , with respect to the measurements:

εit =

√√√√ 1
δpre

t∑
k=tp

(zk − x̃ ik )
2. (27)

Subsequently, the previous prediction accuracy-based output
weight of each single model is computed as:

wi,tpre = 1−
εit − ε

min
t

εmax
t − εmin

t
, (28)

3) OUTPUT WEIGHT CALCULATION
Finally, the complete output weight of the ith model in the
ensemble at time t is calculated as an average of the pre-
vious estimation accuracy-based and the previous prediction
accuracy-based weights:

wi,toverall =
wi,test + w

i,t
pre

2
. (29)

The output weight is, then, normalized as:

w̃i,toverall =
wi,toverall

NM∑
i
wi,toverall

, (30)

Once the output weights for all models are updated,
a weighted-sum strategy is used to obtain the degradation
state estimation and the RUL prediction of the ensemble as
follows:

x̂t =
NM∑
i=1

x̂ it × w̃
i,t
overall, (31)

R
_

ULt =
NM∑
i=1

RÛL it × w̃
i,t
overall, (32)

where x̂t and R
_

ULt are the degradation state estimation and
the RUL prediction of the proposed ensemble at the present
time t , respectively; RÛL it is the RUL prediction of the ith
model in the ensemble.

III. CASE STUDY
A case study of fatigue crack growth is carried out in
this work to demonstrate the effectiveness of the proposed
method, including crack depth measurements of 100 simu-
lated degradation trajectories, as shown in Fig. 3. The com-
mon Paris-Erdogan model in (4) is adopted for describing the
evolution of the crack depth with the parameters predefined
as follows:

FIGURE 3. 100 fatigue crack growth degradation trajectories.

• The model constants are C = 0.1 and m = 1.3;
• The state and measurement noise variances are σ 2

ω =

1.10 and σ 2
v = 2.25, respectively.

The crack depths, with a 10−4 mm initial length, are
recorded every load cycle. The failure threshold is xth =
100 mm. And the fatigue simulation for each degradation
trajectory is performed with a total 800 load cycles.

A. PERFORMANCE EVALUATION
In this section, the robustness of the proposed ensemble-
based prognostic framework is exploited for tracking a
fatigue crack growth trajectory and, then, predicting the
equipment RUL. The results are compared with four models
of fatigue crack growth to validate the improved performance
in terms of degradation state estimation and RUL prediction.
To evaluate the prognostic framework, five widely used PPIs
are considered: a) Timeliness Weighted Error Bias (TWEB);
b) Sample Mean Error (SME); c) Mean Absolute Percentage
Error (MAPE); d) Mean Square Error (MSE); e) Sample
Median Error (SMeE). Details of their definitions are given
in Appendix.

When a new measurement is collected, the estimation of
the current degradation state for each individual model is
also timely updated by using PF as described in Section 2.2.
Fig. 4 illustrates the estimation results of four single models
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FIGURE 4. Degradation state estimation for the considered degradation trajectory using
individual models.

over the lifetime of the considered degradation trajectory. The
first degradation trajectory from the simulated crack depth
dataset described in Section 3.1 is taken. Each model shows a
distinctive characteristic in different stages of the degradation
evolution of the fatigue crack, which is perfectly suitable for
diversity in the proposed ensemble.

FIGURE 5. Degradation state estimation for the considered degradation
trajectory using the proposed ensemble.

Based on the estimations of the individual models, the out-
put weights can be determined and used to update the results
of the state estimation and RUL prediction by the proposed
ensemble, as shown in Figs. 5 and 6, respectively. As can be

FIGURE 6. RUL prediction for the considered degradation trajectory
using the proposed ensemble.

seen in Figs. 5 and 6, the individual fatigue crack growthmod-
els do not perform verywell in the RUL prediction throughout
the time horizon considered because of their low accuracy in
estimating the current degradation state. In contrast, the pro-
posed approach has a performance which is superior to any
individual model throughout the entire life of the equipment,
yielding a RUL prediction close to the true RUL.

To further investigate the performance of the proposed
method, four different randomly chosen scenarios are consid-
ered, whose results are depicted in Figs. 7 and 8. As shown
in these figures, the proposed ensemble method consistently
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FIGURE 7. Degradation state estimation using the proposed ensemble with different available measurements.

FIGURE 8. RUL prediction using the proposed ensemble with different available measurements.

exhibits satisfactory performance in estimating the equipment
crack growth trend and accurately predicting the RUL. This is
due to the proposed prognostic approach which benefits from

the diverse accuracy of the individual models by a weighting
scheme that can adaptively select the best set of models.
Furthermore, in Fig. 8, the confidence intervals show that the
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TABLE 1. Performance comparison in terms of MSE of degradation state
estimations.

TABLE 2. Performance comparison in terms of PPIs of RUL predictions.

RUL prediction accuracy of the proposedmethod is improved
with more available data.

Tables 1 and 2 present the average performances in terms
of degradation state estimation and RUL prediction, which

have been calculated based on 100 crack depth growth sce-
narios. The results clearly show that the proposed prognostic
approach consistently outperforms the individual models for
all of the prognostic metrics.

IV. CONCLUSIONS
In this paper, a prognostic modelling framework for fatigue
crack growth is proposed. The main original contribution of
the work is to combine the PF and a new adaptive ensemble
approach, which integrates models of diverse accuracies in
previous estimations and predictions for maximizing the gen-
eralized prediction performance. The proposed framework is,
then, applied to track the degradation evolution and predict
the equipment RUL.Various prognosticmetrics are employed
to evaluate the prediction performance. The results indicate
that the proposed ensemble-based prognostic framework out-
performs conventional models and is a powerful tool for
prognostics of fatigue crack growth.

A limitation of the study is the lack of a real application
for validation. Even though several simulation tests were per-
formed to prove the effectiveness of the proposed approach
in terms of different PPIs, a real case study of fatigue crack
growth is still needed. Further research on addressing this
issue with practical applications of fatigue crack can be con-
sidered in future work.

TABLE 3. Detailed definitions of the PPIs.
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APPENDIX
See Table 3.
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