
Received March 14, 2019, accepted April 3, 2019, date of publication April 12, 2019, date of current version April 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2911031

Security, Performance, and Applications of
Smart Contracts: A Systematic Survey
SARA ROUHANI AND RALPH DETERS
Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N5C9, Canada

Corresponding author: Sara Rouhani (sara.rouhani@usask.ca)

ABSTRACT Blockchain is the promising technology of recent years, which has attracted remarkable
attention in both academic studies and practical industrial applications. The smart contract is a programmable
transaction that can perform a sophisticated task, execute automatically, and store on the blockchain.
The smart contract is the key component of the blockchain, which has made blockchain a technology beyond
the scope of the cryptocurrencies and applicable for a variety of applications such as healthcare, IoT, supply
chain, digital identity, business process management, and more. Although in recent years the progress toward
improving blockchain technology with the focus on the smart contract has been impressive, there is a lack
of reviewing the smart contract topic. This paper systematically reviews the key concepts and proposes the
direction of recent studies and developments regarding the smart contract. The research studies are presented
in three main categories: 1) security methods and tools; 2) performance improvement approaches; and
3) decentralized applications based on smart contracts.

INDEX TERMS Smart contract, blockchain, review, security, performance, application.

I. INTRODUCTION
Blockchain is a trustable distributed ledger that replicates and
shares data between peer to peer network. Blockchain ini-
tially introduced by an anonymous author, Satoshi Nakamoto,
who developed bitcoin to transfer digital currencies directly
without the need of third parties [1]. As the name implies,
blockchain is a chain of chronological blocks. Each block is
identifying by its hash value and links to the previous block
by referencing the hash of the previous block, as you can
see in figure 1. The only exception is the first block (called
‘‘Genesis block’’), which does not include the hash value
of the previous block and can be considered as the ancestor
block.

Blockchain applications are not limited to monetary trans-
actions. It is possible to program complex transactions, called
smart contract, which runs automatically. Smart Contract is
a program that is stored on blockchain like other transactions
and automatically enforces its terms without the help of
trusted intermediaries. This has made a significant mutation
in blockchain world and has created a new era for blockchain.
Utilizing smart contracts allows us to employ blockchain in
several fields beyond cryptocurrency applications such as

The associate editor coordinating the review of this manuscript and
approving it for publication was Kaigui Bian.

healthcare [2]–[13], supply chain [14]–[19], business pro-
cess management [20]–[25], Internet of Things [26]–[32],
Digital identity [33]–[38], Record Keeping [39]–[43],
Voting [44]–[46] and more [47]–[50]. A review of
major applications based on smart contract is presented
in section V.

Although smart contracts have been utilized recently,
the idea discovered a long time ago. About twenty years
ago, the idea of smart contract expressed by a cryptographer
researcher, Nick Szabo [51], [52]. The base idea is embed-
ding contractual concepts such as liens, bonding, etc. in the
computer components. He introduced four basic objectives
of contract design: observability, verifiability, privity, and
enforceability. Based on Szabo idea, contract parties are able
to observe their performance, verify that the contract has been
performed or breached. Also, smart contract preserves the pri-
vacy of both parties and distribute the information as much as
is needed, and finally it should be run self-enforce. However,
the required technology and protocol was not available in
that time and the idea remained just as a theoretical concept,
today by advancing the blockchain technology smart contract
implementation has become realistic.

There are several generic reviews of blockchain
technology such as [53], [54] or review papers that target
a specific aspect such as security [55] or decentralized

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

50759

https://orcid.org/0000-0002-7585-7805

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

FIGURE 1. Blocks connection in blockchain.

TABLE 1. Summary of the selected papers.

application [56], [57], or particular application such as health-
care [58], [59] or IoT [60]. However, none of them studied
smart contract topic particularly. Although, there is another
review regarding smart contract [55], but it is limited to
Ethereum platform and security aspect. To our knowledge,
our paper is the first review of smart contract topic, which
investigates extensive aspects, considerations, limitations,
platforms, and applications in this field.

We followedKitchenham et al. [61] and Petersen et al. [62]
systematic mapping study methods to provide an extensive
review of smart contract in distributed ledger technology.
We defined following questions regarding smart contract
topic in blockchain technology.

Q1: What are the available platforms and programming
languages for smart contracts?

Q2: What are the limitations of smart contracts?
Q3. What are the presented decentralized applications,

which particularly discuss smart contracts design and
implementation?

Q4. What are the future directions and research gaps?
To address these questions, we identified relevant papers

related to smart contract using a keyword search include
‘‘smart contract’’, ‘‘contract’’ , ‘‘chaincode’’ (chaincode is
the term used by Hyperledger Fabric platform [63] for
smart contract) in scientific databases including but not
limited to IEEE, ACM, Springer, Elsevier, MDPI, Wiley
and preprint arXiv. The studies that only mentioned smart
contract concept, but they did not address the smart con-
tract design features or concerns in the context of repre-
sented methods or application are excluded from our study.

Among all identified papers we selected 90 research studies
from different scientific databases include 16 journal papers,
45 conference papers, and the rest are workshop, sympo-
sium, and preprint papers. After wemeticulously investigated
papers from arXiv preprint database, we decided to selected
16 papers from arXive preprint database based on the rele-
vance and the quality of the paper. Table 1 shows the selected
papers statics based on different scientific databases.

After reviewing and categorizing the selected papers to
address the second pre-mentioned question that asks about
the smart contract challenges, we recognized two main
problems with smart contract design, implementation, and
execution. First, the security of the smart contract, and
second the performance of smart contract execution. There-
fore, we decided to assign separate sections to investigate the
security and performance of smart contracts completely. As a
result, the following sub-questions is also answered in this
paper.

q1: What are the security problems in smart contracts and
how we can address them?

q2: What methods are applied to improve the performance
of smart contracts?

This paper presents the following contributions:
• It reviews and categorizes smart contract platforms,
and domain specific programming languages for smart
contract.

• It introduces smart contract challenges and limitation.
• It systematically reviews studies, which recognize a
problem in smart contract and provide a novel solution
to resolve the problem.

50760 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 2. Blockchain platforms.

• It presents state of the decentralized applications with
the focus on smart contract.

• It discusses future directions and research gaps.

The remainder of this paper is structured as follow:
Section II reviews key concepts, blockchain platforms that
support smart contract, and smart contract programming
languages. The different security methods to detect smart
contract faults before the deployment and smart contract
security analysis tools is explained in section III. Section IV
examines the methods that improves the performance of exe-
cuting smart contracts and smart contract performance anal-
ysis tools. Section V surveys blockchain-based decentralized
application with focus on smart contracts. Finally, section VI,
concludes this survey by presenting the summary of
the contributions and challenges, and outlining future
directions.

II. PLATFORMS OVERVIEW AND KEY CONCEPTS
A. PUBLIC AND PERMISSIONED BLOCKCHAIN
Public blockchain initially introduced by Bitcoin, which its
nodes are untrusted. In addition to public blockchain, there is
also permissioned or private blockchain.

Public or permission-less blockchain is open to the
world. Everybody with an anonymous identity can join the
blockchain, input transactions, and participate in the consen-
sus process. The computational power in public blockchain
significantly increases as the number of blocks and the total
size of data grows. Currently, most public blockchains use a
category of PoW consensus mechanism, which is explained
in the next subsection.

Permissioned or private blockchain works similar to the
public blockchain, but there is a membership layer on top to
authenticate users before joining blockchain, and only per-
missioned users can join the blockchain and they could have
different access levels for submitting the transactions, reading

the transactions, or participating in consensus mechanism.
Because of the initial user filtering, permissioned blockchain
can use lighter consensus mechanism (semi-centralized con-
sensus methods [64]) so, they process transactions faster.
Hyperledger Fabric [63] is a well-known example of the
permissioned blockchain.

B. PLATFORMS
Bitcoin1 is the first platform that utilized blockchain and
mainly developed for managing and transferring Bitcoin
(its cryptocurrency). After Bitcoin, emerging smart contract
by Ethereum 2 leads to a new generation of blockchain
systems along with various applications. In continue we
overview the main blockchain platforms that support smart
contract. Table 2 compares these platforms in different fea-
ture include consensus method, network type, smart contract
language and whether they have their own currency or not.

C. CONSENSUS MECHANISM
Consensus mechanism determines the validating process
of blocks, controlling the malicious behavior and reaching
consensus between all peers. Since the development of dis-
tributed ledger technology several consensus mechanisms
have been proposed, which are different in consumption
power, performance, scalability, and tolerating malicious
behaviors. Wang et al. [64] reviews blockchain consensus
algorithms with the focus on both distributed consensus
system design and incentive mechanism design for
permission-less blockchains. Nguyen and Kim also [68]
present a survey on consensus algorithms. They categorize
the consensus mechanisms into two main groups: proof-
based and voting-based. In the proof-based method, one
leader (or a group of multiple leaders) is selected and is

1https://bitcoin.org/en
2https://www.ethereum.org/

VOLUME 7, 2019 50761

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

responsible for validating and appending a new block to the
blockchain. Their main difference is how the leader can be
selected. In the voting-based, multiple nodes vote for each
block validation and based on consensus policy a minimum
positive are required for block validation. In the follow a
list of consensus mechanisms, which mainly applied by the
blockchain platforms based on table 2 are introduced.

Proof of Work (PoW) [69] is the consensus mechanism
proposed by S. Nakamoto for Bitcoin and then applied
by Ethereum as well. Proof of work is an incentive-based
approach that means nodes (called miner nodes) should solve
a complicated mathematical puzzle to earn rewards. The pro-
cess is like a frequently guessing until the puzzle is solved,
and a value called nonce is reached. The first miner who
solves the puzzle is the winner of the current block. Then
the block broadcasts to other nodes for verification. The
verification process is not a heavy task like the initial puzzle.
After nodes check the proposed block against frauds, the set
of ordered transactions will be committed as a new block to
the blockchain. PoW requires a high computation and energy
power, however it is very resilient against tampering.

Proof of stake (PoS) initially introduced by Peercoin 3 to
reduce the cost of PoW. It is based on the proof of ownership
of the cryptocurrency. In each round, the miner is chosen
based on node’s stake value. As much as the node is wealthier
the chance to be chosen is more. The miner gets rewarded by
proposing a correct block after validating by other nodes. Pos
reduce the amount of computation, but there is a potential
problem that rich get richer every time. That means wealthier
nodes have a better chance to get selected each time.

Delegated Proof of Stake Delegated Proof of Stake (DPoS)
[70] is similar to PoS, but only a subset group of nodes (called
witness) can participate in the block production process. The
block producermembers are selected by stakeholders. Simply
any nodes who own any amount of token is considered as
a stakeholder. Since the number of validator nodes are less,
the process is faster and more efficient.

Proof of Importance (PoI) has been presented by NEM
blockchain platform [71]. Each account is assigned a rat-
ing based on its importance using graph theory techniques.
Accounts with higher importance have higher chance to
attach a new block. As much as the account uses blockchain
and transfers coins, 0 its important rate increases. Unlike
PoW, PoI does not requires high power.

PBFT [72] is based on the Byzantine Fault Tolerate
method. First, a leader is selected. The leader is not perma-
nent and will be replaced frequently. Each round includes
three phases pre-prepared, prepared, and commit for adding
a new block to the blockchain. First, in pre-prepared phase,
the leader orders the transactions and proposes a new block
as a proposal to the remaining nodes. In prepare phase,
the other nodes broadcast their votes to the leader and other
nodes. Finally, if only two-thirds of the nodes accept the
proposal, a new block will be approved and committed to

3https://peercoin.net/

FIGURE 2. PBFT three handshaking phases.

the blockchain. Figure 2 shows the three phases in PBFT.
PBFT can handle less than 33 malicious nodes, so it is suit-
able for permissioned blockchain because an initial filtering
to participate in consensus mechanism is applied. PBFT is
not scalable when the number of nodes grows. Hyperledger
Fabric uses PBFT consensus mechanism.

Raft [73] is a fast consensus mechanism used by Quorum
and R3 Corda platforms. There are three states in Raft, leader,
follower, and candidate. The system starts from follower
state. After that specific times out, if a follower does not hear
anything from the leader it transforms to candidate state. The
nodes vote for the next leader. The candidate that receives
maximumvotes becomes the next leader, otherwise it remains
in the election states or returns to the follower state.

Istanbul BFT (IBFT) [74] is inspired by PBFT [72]
with some modification. Similar to PBFT it is three-phase
consensus, pre-prepared, prepare, and commit. The system
can tolerate F faulty nodes if we have N validators and
N = 3F+1. IBFT is a final protocol, it means the fork is
not possible. In IBFT, there is no client to send the proposed
block and every validator can propose the suggesting block.
In each round, one validator is selected by other validators and
the selected validator broadcasts a new block (pre-prepare
message). Then validators that received pre-prepare message
broadcast prepare message. If validators receive 2F+1 pre-
pare message, they enter to prepared phase and then if they
accept the proposed block, they broadcast commit message.
If validators receive 2F+1 commit messages and they enter
to commit phase the block will appended to the blockchain.
Istanbul BFT has been employed by Quorom blockchain.

D. SMART CONTRACTS PROGRAMMING LANGUAGE
Some blockchain platforms such as Hyperledger Fabric,
Neo, EoS, and Tendermint support general programming lan-
guages such as Java, C++, NodeJS, Python, andGo for smart
contracts, however, some other platforms such as Ethereum
presented particularly languages for writing smart contracts
such as Solidity. In this section, we overview the program-
ming languages that particularly designed for developing
smart contracts. Table 2 mentioned the supporting platforms
for these smart contract languages. In general there are two
main trends for developing new programming language for
smart contracts. First, using logic and specifics to make smart
contracts easier to understand and more similar to traditional

50762 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 3. Smart contracts programming language.

contracts. The second studies aim to develop a programming
language to improve the security of the smart contracts.

Seijas et al. also review the scripting languages used in
three blockchain systems [75] in particular Bitcoin, Ethereum
and Nxt. Table 3 shows the summary and the specification of
represented smart contract scripting languages plus Hyper-
ledger fabric that we added for the completion.

1) SOLIDITY
Solidity [76] is the most popular programming language
particularly designed for writing smart contract. Solidity is
an object-oriented, turing complete language and runs on
Ethereum Virtual Machine (EVM). Ethereum is not the only
blockchain platform that supports Solidity, Quorum is also
uses Solidity and EVM. Even platforms such as Hyperldger
Fabric that designed to support general programming lan-
guage (Node, Java, and go) for writing smart contracts has
integrated solidity smart contracts as well [77]. Solidity is
the most well-known and mature contract-oriented language,
however it is vulnerable against security attacks [78], there-
fore many researchers have motivated to improve the security
of the Solidity smart contracts by proposing a mid-level
language or smart contract analyzing tools.

2) LOGIC-BASED SMART CONTRACTS
Idelberger et al. suggest logic-based or declarative language
as a replacement of procedural languages [79] to make smart
contracts more similar to traditional contracts. The advan-
tages of logic-based smart contracts are as follow:

• They are more understandable for contracts parties.
• The contracts parties negotiations can be transferred to
logic-based contract easier.

• They can be validated easier.
• In terms of storage, logic-based contracts are lighter.
• They can ease the interoperability between contracts by
applying rule interchange languages.

• The process of contract modification is easier.

First, the paper examines a Pseudo-code of the licensing
contractual clauses as an example of a typical contract and
then represents the Formal Contract Logic (FCL) imple-
mented by defeasible logic engine SPINdle [80]. For the
implementation of logic-based smart contracts, the study sug-
gests two possible solutions include off-chain and on-chain.
In off-chain option, there is a centralized system at top of
the blockchain and a centralized server execute the smart
contract. In on-chain implementation, the smart contract can

FIGURE 3. SPESC supported expressions and transactions.

form and negotiate off-chain or on-chain, the following steps
include contract storage, enforcement and monitoring, and
the modification needs to be executed on-chain and stores
on blockchain. The noticeable challenges recognized as a
result of the implementation of logic-based smart contracts,
so it requires further studies to implement more efficient and
cheaper logic-based algorithm.

3) SPESC (A SPECIFICATION LANGUAGE FOR SMART
CONTRACTS)
SPESC is a specification language for smart contract and
as the name implies, it determines the specifications of a
smart contract [81]. It creates an abstraction contract on
the top of the smart contract, which written by another
programming language. SPESC has been designed to make
smart contracts understandable for different collaboratives
who are involved in the process of smart contract design
such as business experts and lawyers like logic-based smart
contracts [79]. It presents smart contracts in a similar way as
real-world contracts by the specification that describes each
party, a set of contracts terms, commitment and rights of
the parties, and the conditions of the contract. SPESC smart
contract includes four components, contract parties, proper-
ties, terms (include obligations and rights as subclasses), and
data type definitions (include the primitive type and complex
type as subclasses). SPESC supports various expressions to
define term conditions. Figure 3 shows SPESC supported
expressions and transactions. The paper also examines the
understandability of SPESC by running an experiment based
on questionnaires over fifteen participants from computer
science and law departments. The results demonstrate that
SPESC is more understandable in comparison with solidity
smart contracts, however, the paper did not translate SPESC

VOLUME 7, 2019 50763

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

to solidity or other smart contract programs and deploy it on
a real blockchain platform to investigate possible challenges.

4) BAMBOO
To solve the problem of reentrancy (explains in section III) in
Solidity smart contracts, Yoichi Harai introduces a program-
ming language to create polymorphic contracts for Ethereum
called Bamboo [82]. It forces the state-machine method to
programmers. Babmoo’s syntax influenced by Erlang. The
following code shows three contracts written in bamboo that
they deploy together. The contract A can becomes C or abort
and contract C can become contract D and their orders is
forced by the program.

5) SCILLA (INTERMEDIATE-LEVEL LANGUAGE)
SCILLA [67] is an intermediate-level language for smart
contract that applies formal methods to analyze and verify
the smart contract written in higher-level languages such
as Solidity. They embedded Scilla in Coq (A formal proof
management system) to examine the semantics, safety and
consistency properties of smart contract. SCILLA aims to
achieve expressivity and traceability by representing smart
contract in communicating automata and separating compu-
tation and communication, effectual and pure computation as
well as separating invocation and continuation.

6) FLINT
Flint [66] is a domain-specific statically-typed program-
ming language for Ethereum smart contract, which addresses
security. Flint includes caller capabilities blocks to check
the access permission of Ethereum accounts and contract’s
functions. Creation, duplication, and destruction of assets are
not allowed in Flint, but they can be split, merged or trans-
ferred. Flint also categorizes smart contracts functions into
two groups, mutating function, which changes the contract

state and the other is non-mutating functions. In flint calling
themutating functions by non-mutating functions is restricted
and is not possible.

7) BITML (BITCOIN MODELLING LANGUAGE)
BitML [65] is a high-level programming language for Bitcoin
smart contracts to define the terms of exchanging Bitcoins.
It creates smart contracts in the form of symbolic expressions
(symbolic model), then compiles these expressions to Bitcoin
scripts. Symbolic expressions can be easier analyzed using
formal methods and they argue that any violation at the
computation level is recognizable at the symbolic level as
well. BitML can implement many of the Bitcoin smart con-
tract services such as escrow services, timed commitments,
lotteries, gambling games, but it does not support express
contingent payments (contracts that allow selling solutions
for a class of NP problems).

III. SMART CONTRACTS SECURITY
Smart contracts could handle a large sum of money, digital
assets, stoke, or data. Considering the security aspect of smart
contracts is very important since even a tiny bug can lead
to significant problems like lots of money lose or privacy
leakage. For example, Ethereum well-known crowdfunding
smart contract, DAO (Decentralized Autonomous Organi-
zation), was attacked on June 2016 because of the bug in
its code and resulted in 60 million USD loss [78]. The
attacker exploited the reentrancy vulnerability. The attacker
recursively called the split DAO function to transfer Ether
(Ethereum cryptocurrency) to her or his owned account and
the calls stopped before updating the new balance of the call-
ing contract (the attacker account). Writing secure and bug-
free smart contract is a difficult task [83] as previous studies
show that a significant percentage of smart contacts, which
already deployed on Ethereum blockchain are vulnerable.
Luu et al. investigate 19,366 Ethereum Smart contracts using
their represented tool called OYENTE, and their report shows
that more than 45 percent of them are buggy [84].

This section reviews represented methods and tools to
address the security issues in smart contract. Table 4 shows a
summary of represented methods, which address the security
issues in smart contract.

A. CLASSIFICATION OF SECURITY PROBLEMS
Luu et al. introduce classes of security problems in Ethereum
smart contracts and they propose methods to refine the opera-
tional semantic of Ethereum to increase the security of smart
contract [84]. They also present OYENTE as a symbolic exe-
cution tool, which can detect related bugs in Ethereum smart
contract. The smart contracts vulnerabilities are as follow:

1) TRANSACTION ORDERING DEPENDENCE (TOD)
In Ethereum blockchain the order of transactions execution
is up to miners and clients do not have any control over
them. This problem occurs when there is more than one
transaction that invoked by the same contract, and the order of
those transactions can affect the new state of the blockchain.

50764 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 4. Smart contracts security methods.

The authors suggest guard condition as a solution. The idea is
the transaction confirmation becomes dependent on the guard
condition satisfaction, otherwise the transaction is dropped.

2) TIMESTAMP DEPENDENCE
This problem is related to the smart contracts, which include
conditions that trigger by block timestamp. Block timestamps
are set by miners based on their local system time and so
they can be manipulated by an adversary. The authors suggest
using block index instead of block timestamp because it is
incremental and protected them from manipulation.

3) MISHANDLED EXCEPTIONS
This problem targets the contract that call another contract.
If any exception occurs in called contract, it terminates and
returns false, but it may not notify the caller contract. The
paper suggestion for this problem is adding an explicit throw
and catch EVM instructions.

4) REENTRANCY VULNERABILITY
This problem backs to DAO vulnerability (explained at the
beginning of the section 3). When a contract calls another
contract, the current contract execution waits until the called
contract finishes. This provides an opportunity for the adver-
sary to exploit the intermediary state of the caller contract and
call its methods several times.

B. SMART CONTRACTS SECURITY ANALYSIS TOOLS
1) OYENTE
OYENTE15 is a tool to analyze Ethereum smart contracts
code based on symbolic execution [84]. OYENTE takes
two inputs, Ethereum smart contract bytecode and Ethereum

15https://github.com/melonproject/oyente

TABLE 5. SmartInspect evaluation result.

global state. It checks contract against four previously
mentioned problems in section A. There are four main com-
ponents include CGFBuilder, Explorer, CoreAnalysis, and
Validator. CGFBuilder is responsible for creating a Control
Flow Graph of the contract. Explorer symbolically exe-
cutes contracts. The output of Explorer sends to CoreAnal-
ysis to check the existence of four main problems. Valida-
tor removes false positives to make sure OYENTE reports
accurate problems to the user. OYENTE’s report states that
more than 45 percent of the Ethereum contracts include at
least one of the four indicated problems based on analyzing
19,366 contracts.

2) EthIR
EthIR is an extension of OYENTE. EthIR acts as a decom-
piler that modified CFGs provided by OYENTE to create a
rule-based representation (RBR) of the bytecodes that is ideal
for high-level analyses [90].

3) SMARTINSPECT
Once the contract deployed, it is difficult to inspect the
given contract attributes because of the encoded nature of
smart contract data. Bragagnolo et al. address verifying
deployed smart contracts [92]. SmartInspect is a tool to ana-
lyze deployed smart contract using decompilation techniques
and mirror-based [105] reflection for remotely deployed on a
reflection-less system [106] without redeploying the contact
(getter method) or using the API to accumulate raw data
(ad-hoc decoding method). SmartInspect first parses contract
codes to generate AST (Abstract Syntax Tree). Then by inter-
preting the structured representation of AST, it creates the
mirror. In the next step, it uses the mirror to extract contract
data then data present into four different formats 1) REST
2) Pharo widget user interface 3) JSON 4) HTML. The
authors evaluate the represented tool by comparing SmartIn-
spect with getter and ad-hoc decoder methods in nine differ-
ent aspects include four characteristics represented in [106]
interactiveness, distribution, security, and instrumentations in
addition to blockchain important aspects, privacy, pluggabil-
ity, consistency, reusability, and unrestricted types. Table 5
represents the evaluation results.

4) GasTap
GasTap is a platform that calculates the upper bond (Max-
imum) for the required amount of gas for Ethereum smart

VOLUME 7, 2019 50765

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

FIGURE 4. Vandal’s pipeline.

TABLE 6. SmartCheck smart contract code issue classification.

contracts to avoid the out of gas vulnerability [91]. It exploits
available tools in a pipeline that takes a smart contract and
determines the required gas upper limit for its functions.
GasTap first uses OYENTE [84] for construction of the
CFGs, second it employs an improved version of EthIR [90]
for decompiling low-level code to high-level representation,
third it uses SACO [107] to determine the size of the relations,
forth it generates the gas equations, and finally it utilizes
PUBS [108] to solve the gas equations and generate the
closed-form gas bands.

5) SECURIFY
Ttsankov et al. developed SECURIFY [93], another smart
contract security platform. SECURIFY first, decompiles the
EVM bytecode of smart contract and extracts semantic facts
that are data and control flow dependencies of the contract
and finally, it checks the security pattern, which represented
in Domain-specific language (DSL). SECURIFY patterns
include a set of compliance and violation. All the contract
behaviors is labeled by one out of the three labels of Com-
pliance, Violence, and warning. If the semantic fact matches
with compliance pattern it is considered as compliance, else
if it matches with violence it is considered as violence, else
if it matches with neither of the patterns it is considered as
warning behavior.

6) MAIAN
MAIAN is an analysis tool represented by Nikolic et al. [94]
to detect greedy, prodigal, or suicidal behavior of Ethereum
smart contracts based on a trace of vulnerabilities. Greedy
contract refers to a contract that stays alive, but locks Ether
forever. Prodigal contract does not provide any backup solu-
tion in case of attacks and they can leak Ether to an arbitrary
address. Suicidal Contracts are those, which can be killed by
an any arbitrary account by forcing the contracts to commit
suicide. Their analysis on 970,898 contracts detected 34,200
(2.365 distinct) vulnerable contracts.

7) VANDAL
Brent et al. introduce Vandal as a static security analy-
sis framework for smart contracts [95]. Vandal uses an

analysis pipeline to translate smart contract bytecodes to
logic relations, which reflecting the program semantics of
the smart contract. The analysis pipeline includes a byte-
code scraper, a disassembler, a decompiler, and an extrac-
tor. Figure 4 shows Vandal pipeline. Also, it exploits
Souffle’ [109], a declarative language, as a datalog engine
to express security vulnerabilities. This study presents a
list of five vulnerabilities include unchecked send, reen-
trancy, unsecured balance, destroyable contract, and use of
origin.

8) SmartCheck
Tikhomirov et al. classify common Solidity code issues
into four main categories, Security, Functional, Operational,
and Development [96]. They implemented SmartCheck that
translates contract source code (Solidity code) to the XML
format and it looks for problematic patterns using XPath
queries. Table 6 shows the represented code issues classifi-
cation.

9) GASPER
Gas is a unit introduced by Ethereum blockchain and it is
used for the execution fee that sender of transactions or smart
contracts should pay for every operation. In other words,
gas is the fee to reward miners for executing the code.
Gas can be exchanged with Ether, which is Ethereum
cryptocurrency [110]. Chen et al. explain a security vul-
nerability of smart contract that leads to unnecessary gas
consumption. They introduce seven under-optimized patterns
in smart contracts that classified into two groups: useless-
code related, and loop-related [97]. Table 7 shows the seven
under-optimized smart contracts patterns based on Solidity
programming language. They also developed a tool called
GASPER for detecting overcharged three out of seven rep-
resentative patterns automatically: dead code, opaque pred-
icates, and expensive operations in a loop. The result of
scanning 4,240 smart contracts shows that at least 80% of
contracts suffer from one of these three patterns and at least
73.2% of smart contracts suffer from two out three patterns
and 71.7% of smart contracts involve in the risk of all three
patterns.

50766 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 7. Under optimized patterns.

C. FORMAL VERIFICATION
Formal verification is one of the most precise approaches to
verify the accuracy of the system and is one of the earliest
approaches that is employed to verify the behavior of smart
contracts. In this section, we review the studies that address
the security vulnerabilities in smart contract using formal
methods.

Bhargavan et al. propose a framework to analyze and verify
smart contracts written in Solidity programming [85]. The
authors used F* [86], a functional programming language
that works for program verification. They present two tools,
Solidity* as a tool to translate Solidity programs to F* pro-
grams for verifying the source level functional correctness
and EVM*, a tool that works as a decompiler for EVM byte-
codes to perform a stack analysis and creates equivalent F*
programs for verifying low-level properties. Finally, the tool
verifies that both outputs are equivalent. The output of Solid-
ity* checks the dangerous patterns to detect send() function
failure exception and reentrancy. The output of EVM* checks
the limit of gas consumption of smart contract methods.

Amani et al. similarly use the decompilation technique
to verify Ethereum smart contracts at the bytecode level by
using logical framework Isabelle/HOL [87]. They define the
smart contract correctness features by relying on Ethereum
termination guarantee gas concept. They split smart contracts
bytecode into the basic blocks and create a sound program
logic for verification.

Park et al. [88] present another formal verification tool to
verify EVM bytecodes by adopting KEVM [89], which is
a complete executable formal semantics of the EVM. They
represent a group of challenges include Byte-Manipulation
Operations, Arithmetic Overflow, Gas Limit, and Hash Col-
lision in verifying EVM bytecodes and they propose some
techniques to address these challenges. They also instantiate
K reachability logic theorem prover [111] to improve the
scalability.

D. DETECTION OF EFFECTIVE CALLBACK FREE OBJECTS
Grossman et al. present a safety notion called ECF (Effec-
tively Callback Free) and specifically DECF (Dynami-
cally ECF) for executions and SECF (Statically ECF) for
objects [98]. Based on the represented definition ‘‘an execu-
tion of an object is DECF when there exists an equivalent

execution of the contract without callbacks, which starts in
the same state and reaches the same final state. An object
is considered SECF when all its possible executions are
dynamically ECF’’. ECF is a bug detection factor and it
shows DAO and other buggy contracts are not ECF, in addi-
tion, ECF can be used to enable modular reasoning about
objects with encapsulated state. An online polynomial time
and space algorithm is represented to check the execution of
smart contract based on ECF factor and they integrate it into
EVM (Ethereum Virtual Machine) [112] with low runtime
overhead. This algorithm detects conflict memory accesses
and explores commutatively of operations to check the accu-
racy of conditions. The evaluations result indicates that not all
but most non-ECF executions are responsible for vulnerable
executions and there are few bug-free non-ECF contracts.

E. CONTROL FLOW
Fröwis and Böhme expose the mutability problem in smart
contract control flow in Ethereum blockchain [99]. The paper
argues that smart contract control flow is not immutable
and has the potential to change. To address this problem,
this study initially discusses how the call graph generates
from Ethereum smart contracts, then it introduces clean up
strategy based on call graph to avoid biases arising from
attacks against Ethereum. Eventually, it measures the trustless
contracts.

Here are the represented steps to obtain the required con-
tent to analyze call relationships in Ethereum smart contracts
and create a call graph:

First, they extract Ethereum smart contracts bytecode
through JSON_RPC API.16

Second, in order to extract the code of the smart contract,
they iterate again all transactions and chose those that have
no recipient. This technique is limited to contracts, which
created by user accounts not those created by code accounts.

Third, they use the feature of tracingmode in parity client17

to access internal transactions.
Fourth, they store the bytecode, creation block number, and

destruction block number of all extracted smart contracts into
MongoDB.

16https://github.com/ethereum/wiki/wiki/JSON-RPC
17 https://www.parity.io/

VOLUME 7, 2019 50767

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

FIGURE 5. Using the hybrid method based on both PoS and credibility score.

Fifth, they use evmdis18 in order to disassemble the EVM
bytecodes and achieve reaching definition to find the source
of called addresses.

Finally, the call graph is generated from extracted calls.
The study considers smart contract trustless ‘‘if and only

if all calls in its dependency tree have hardcoded addresses,
hence all code that a smart contract can execute is fixed
upon deployment of smart contract’’. They measured trust-
less smart contracts before and after cleanup smart contracts
affected by popular attacks DAO and DOS (Denial of Ser-
vice). The results indicate that before cleanup, 54 percent
of active contracts were trustless based on the represented
definition and after cleanup, the ratio increases to 62 percent,
which means two out of five smart contracts deployed on
Ethereum require trust in at least one-third party.

F. SECURE CONSENSUS METHOD
Watanabe et al. suggest a new consensus method to secure
blockchain applied to smart contracts [100]. This study
addresses the problem of collapse of coin in proof of stake
consensus mechanism. The represented method is based on
the collapse of credibility. Credibility is a metric to define
trustable contract owners. The credibility of the contract
owner is related to how many contracts he or she owns.
If a contract owner attacks blockchain, he or she loses trust
in whole society. However, using only credibility method
increases the chance for fake credibility score and 51% attack.
To overcome this problem, using hybrid blockchain based
on both proof of stack and credibility score is suggested
to address both two problems. Figure 5 shows using the
hybrid method in block mining. Based on the hybrid method,
the two consecutive blocks should not use the same consensus
method.

G. CONNECTING SMART CONTRACT AND OFF-CHAIN
TownCrier is one of the earliest studies that examine connect-
ing smart contracts to an external resource (off-chain) in order
to request the concise pieces of data called datagrams [101].
Town Crier is an authenticated data feed system that acts as a
bridge between Ethereum smart contract andHTTPS-enabled
data source combined with trusted hardware backend.

18https://github.com/Arachnid/evmdis/

FIGURE 6. Town Crier architecture.

The general trusted and secure architecture model includes
threemain components: The TownCrier contract, the Enclave,
and the Relay. The Town Crier contract acts as a frontend
for Town Crier system. It provides an API for the contract
that uses Town Crier service. The Enclave is an instance
of the Town Crier core program running in the Trusted
Execution Environment (TEE), such as SGX enclave and
queries data from https data source. The Relay is an ordinary
user-space application and it has provided to relay network
traffic between smart contract, Enclave, and HTTPS data
source. Figure 6 shows Town Crier architecture. The User
contract requests a datagram from Town Crier contract. Relay
unit relays the request to Enclave and Data Source and finally
forward the response to User contract through Town Crier
contract.

Kothapalli et al. represent SmartCast [102], an incentive
compatible consensus protocol that adapted the work of
Clement [113] to smart contract. The main idea is using smart
contracts to provide incentive compatibility for off-chain con-
sensus protocol. The system financially rewards disinterest
parties for consensus and honest participation. The proto-
col minimizes communication with Ethereum blockchain,
so the transaction cost is minimized as well. Since the com-
munication is the major cost, the paper represents this as
incentive-compatibility. The essential two components in the
smart contract model are: 1) a smart contract program, which

50768 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

FIGURE 7. Hawk platform architecture.

receives information from nodes about each other’s behavior
and detects lazy nodes and based on that payout reward to
each party. 2) local program for each of the parties to execute,
which includes interaction with smart contract and involving
in an off-chain consensus process.

Molina-Jimenez et al. propose requirements to achieve
an effective hybrid method of off-chain and on-blockchain
solutions [114]. The hybrid model combines decentralized
smart contracts and trusted centralized third parties to address
the performance and scalability issues in pure blockchain
approaches.

Here are represented practical cases based on the integra-
tion of centralized and decentralized approach:

1. Indelible blockchain-based log: the blockchain part can
be applied to record passive logs that worth to keep and
duplicate in the blockchain.

2. Cryptocurrency-based payment channel: Using public
blockchain such as Bitcoin or Ethereum for payment process
for the significant amount of money transformation, thus the
transaction fee is negligible.

3. Off-blockchain execution of operations: In order to
increase the performance of the application and avoid trans-
action throughput limitation, it is suggested to execute main
operations off-chain.

H. PRIVACY
In this section, we overview the studies that address privacy
issues in smart contract data or related application.

Hawk is a framework for creating privacy-preserving smart
contracts [103]. Hawk receives a plain program (smart con-
tract) and it’s compiler automatically generates the crypto-
graphic protocol. A Hawk contract includes two parts, private

and public. The private part includes parties’ input data and
currency units, which are cryptographically invisible from the
public views. The rest of the codes, which are not private
consider public. Hawk programs are divided into three pieces
and they executed by three separated entities. First, the piece
that is executed by all consensus nodes, second, the piece
that is executed by the users, and third, the piece that is
executed by the manager, which is a minimally trusted party
and can see users’ private data. Hawk guarantees privacy as
long as the manager does not disclose the private portion.
Figure 7 shows the general overview of Hawk framework.
The paper also provides a formal UC-based (Universal Com-
posability) model of cryptography to investigate the security
of represented protocol and also can be adopted by other
decentralized protocols.

Enigma is a decentralized computation network based on
Ethereum that provides privacy along with computation to
allow different parties store and share secret data [104]. They
have presented a turing-complete scripting language to create
private contracts that support private data. The private data are
handled through the Enigma off-chain platform and the public
parts are executed on the blockchain. The system includes
three distributed databases include 1. a blockchain to control
the system, manage access control, and as a tamper-proof
database of events, 2. a Distributed Hash Table (DHT) for
storing off-chain private data, 3. a Multi-Party Computation
(MPC) to split data into meaningless chunks and distribute
them between different nodes without replication.

Ekiden also uses TEE (Trusted Execution Environment) to
achieve privacy and confidentiality for sensitive data related
to smart contracts beside high-performance execution [115].
They present a proof of publication method to make sure that

VOLUME 7, 2019 50769

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

the SGX enclaves have been synchronizedwith the latest state
of the blockchain.

IV. SMART CONTRACTS PERFORMANCE
The performance of executing transactions and smart con-
tracts is a major challenge in blockchain-based systems and
this prevents them from competing with current applications
in large scale. In this section, we review the studies that aim
to improve the performance of smart contracts.

A. CONCURRENT EXECUTION
Dickerson et al. present a technique based on transactional
boosting methodology [116] to allow miners execute non-
conflicting smart contracts in parallel and then capture the
parallel execution schedule for validators to achieve deter-
ministic result [117]. In order to avoid problems related to
shared data storage, the authors suggest that miners execute
contracts code as speculative actions. If data conflicts is
detected during the runtime, it can resolve by scheduling and
delaying or rolling-back. Miners record the locking schedule
of parallel execution in the relative block. This creates a
happens-before graph of transactions for validators. Valida-
tors convert this schedule into deterministic parallel for-join
program to validate the block concurrently. Testing based on
three concurrent threads indicates that mining process and
validating process can be accelerated up to 1.33x and 1.69x
respectively.

To introduce three smart contract execution model, Yu
et al. suggest breaking down the system states into three
hierarchical states: account state, local state, and federal state,
while the account system is the smallest state unit [118]. Any
change in account state leads to the change in local state
and any change in the local state ends up with the change
in the federal state. This improves performance by separating
the execution of smart contracts from the state management
and proposes a pipeline model to verify and create blocks in
parallel or concurrent.

1. Sequential execution of smart contracts: It is based on
smart contract execution in Ethereum. It is useful for the
contracts that their execution time is short, as this model has
the longest time for block validation.

2. Parallel execution of smart contracts: If a transaction
is recognized as a smart contract, all the nodes execute the
smart contract at the same time, so the local state will update
concurrently. Nodes verify the local state by comparing it
with block state.

3. Non-blocking execution of smart contracts: By separat-
ing execution of smart contract from the process of building
blocks, accelerate the block building, and validating process.
In this model, nodes do not wait for current smart contract to
finish the execution and they accept next transactions imme-
diately. In addition, this study proposes decoupling block
building from state maintenance in blockchain design and
introduce a new blockchain called SBC (State Blockchain)
to handle state maintenance including state synchronization
and storage.

FIGURE 8. BLOCKBENCH abstractions layers and correlated workloads.

Anjana et al. [119] propose using Software Transactional
Memory (STM) [120] systems to execute non-conflicting
transactions of smart contracts concurrently. There are two
types of miners in the represented system include serial miner
and concurrent miner, both type of miners have access to
the same set of transactions. Serial miner executes trans-
actions serially, whereas the concurrent miner executes the
transactions concurrently. The concurrent miner must only
choose non-conflicting transactions for executing concur-
rently. If two transactions access the shared data-object and
at least one of them performs write operation on it, they
have conflict with each other. The concurrent miners iden-
tify conflict transaction with the help of optimistic STM
system. The validation of transactions can also be executed
concurrently. There is a chance that validators re-execute
suggested transactions from miners with different order and
get a different results, which leads to block rejection. In order
to avoid this, the authors suggest concurrent miners provide
a conflict graph. Conflict graph includes all the dependencies
between conflict transactions in the form of an adjacency list.
In summary, every concurrent miner presents a conflict graph
along with the set of proposed transactions, the hash of the
previous block and the final state of each shared objects.

B. PERFORMANCE ANALYSING FRAMEWORKS
1) BLOCKBENCH
BLOCKBENCH [121] is a framework for performance ana-
lyzing of private blockchains. Any private blockchain can
be integrated to BLOCKBENCH, however, the paper con-
ducts an evaluation of three blockchain platforms: Ethereum,
Hyperledger fabric, and Parity. The study identifies four
main abstraction layers for blockchain and then designs four
workloads based on them for Blockchain. Figure 8 shows
blockchain abstractions layers and correlated workloads in

50770 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 8. BLOCKBENCH implemented smart contracts.

TABLE 9. Performance metrics based on [124].

BLOCKBENCH. For evaluation of represented platforms,
the smart contracts related to each workload implemented in
two versions of Solidity for Ethereum and Parity and Golang
for Hyperledger. Table 8 shows the implemented smart con-
tracts in BLOCKBENCH.

2) REALTIME MONITORING
Zheng et al. [124] argue that why Gas is not suitable met-
ric because it is one-sided and inaccurate. They categorize
the performance metric of the blockchain systems into two
groups: overall performance for the users and detailed per-
formance for the developers. The subcategories of each group
are represented in table 9.

They also present a real-time performance monitoring
framework to monitor the performance of the blockchain
systems, which is scalable and includes lower overhead. Here
is the brief explanation of different part of the framework.
• Validating Peer is the essential underlying part of the
blockchain to validate and execute transactions and
smart contracts. The framework focuses on its per-
formance to calculate the performance of the entire
blockchain.

• Log Parser/Analyzer is a terminal corresponding to each
validating peer. This part collected the log data about the
validating peer and hardware consumption.

• Synchronize Peer helps to collect the rest of the data that
is not caught from validating peer without making extra
overhead.

• Data collector/calculator collects data from log analyzer
and synchronize peer and calculate the performance
metrics.

• Web Frontier is the user interface to visualize the col-
lected performance metrics.

Finally, theymonitor the performance of 1000 smart contracts
on four different blockchain platforms, Ethereum, Parity,

TABLE 10. Performance of different platforms based on real-time
monitoring.

Hyperledger Fabric and CITA based on represented perfor-
mance metrics and the proposed framework metrics. Table 10
shows overall performance on these platforms.

V. DECENTRALIZED APPLICATIONS
Emerging smart contract has provided the infrastructure
for non-financial blockchain-based applications in various
domains. Blockchain key characteristics such as decentral-
ized operation, immutable audit trail, data provenance, secu-
rity, and privacy have made it a suitable alternative for
traditional centralized applications and the evolve of smart
contract has made it happen. In this section, we review the
main application domains that employ blockchain and smart
contracts. We categorized them in seven main groups include
healthcare, IoT, identity management, record keeping, sup-
ply chain, BPM, and voting. However, the blockchain-based
applications are not limited to these groups such as [47]–[49].
Tables 11-17 present the studies for each category with
emphasis on designing smart contract for the decentralized
application.

A. INTERNET OF THINGS
The significant increase in IoT devices in last years leads to
exposing insecure big data. The privacy and security of the
data produced by IoT devices are the major challenges in
this field. Exploiting blockchain technology has investigated
by many researchers to address these issues. Samaniego and
Deters [125], [126] introduce blockchain as a service for
IoT systems. They discuss that blockchain and smart con-
tracts can be applied for the configuration of IoT devices,
recording data captures from sensors, and micro-payments.
Panarello et al. represent a survey to analyze the research
related to blockchain and IoT context [60]. They study dif-
ferent application domains and categorize them based on two
usage patterns, device manipulation, and data manipulation.
they also represent the progress level of the presented appli-
cations. In Table 11, the list of related studies in the context
of blokchain and IoT with the focus on smart contract is
presented. Mainly the represented studies focused on using
blockchain and smart contracts to control the access to the
data generated by IoT devices as well as addressing the
privacy concern [26]–[29].

In addition, a few other studies investigated configuration,
registration, resource management, and energy trading in this
context as follow.

Huh et al. [30] implemented a system based on Ethereum
blockchain to configure and synchronize IoT devices by the

VOLUME 7, 2019 50771

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 11. IoT decentralized application.

TABLE 12. Healthcare decentralized application.

decentralized approach provided by blockchain and manage
public key infrastructure (PKI) associated with IoT devices.
In their system, the written smart contracts control the con-
figuration of IoT devices such as tracking the value of the
meter or defining saving policy values.

Ruta et al. [31] propose a framework for Semantic web
of Thing (SWoT) based on blockchain and explore design-
ing smart contracts for registration, discovery, and selec-
tion of the resources. The registration includes adding a
new record to the blockchain and attributes related to
the resource. Resource discovery includes reading from
blockchain based on filtering metrics defined in the smart
contract. Resource discovery selects the best resource based
on related smart contract criteria and changes the state of the
blockchain.

Lombardi et al. [32] present a tamper-proof infrastructure
for energy trading within the smart grids. Smart contract
implements the energy trading layer to define the policies
of trading energy and the security enhancement layer. The
energy trading smart contract is responsible for handling
energy auctions. The Security enhancement contract detects
vulnerable smart meters by information set associated to the
smart meter. The vulnerable smart meters are isolated and
the transactions related to the vulnerable smart meters get out
from the auction.

B. HEALTHCARE
Current healthcare systems suffer from various problems
such as scattered data, difficult access, data consistency,
interoperability and privacy concerns. In general, most of
the studies aim to solve these issues by proposing an
architecture design [9], [11] or implementing a system
based on blockchain and smart contracts [2]–[8], [10]. The
main focus of these studies are the management of users
identity management, access control and sharing medical
data using different available blockchain platforms such as
Ethereum [2], [10], [12] and Hyperledger [5], [6]. Also
Kuo et al. investigate blockchain key benefits for different
healthcare applications such as record management, insur-
ance claim process, clinical research or creating a healthcare
data ledger [58]. In this review paper, we chose studies with
the focus on smart contracts or at least the smart contract
design has been presented in the architecture. Table 12 shows
the healthcare applications based on blockchain and smart
contracts.

C. SUPPLY CHAIN
Using blockchain data immutability aspect is the main reason
for applying blockchain in supply chain applications. Track-
ing and monitoring the steps from producing products to
delivery, ensure quality control, providing an integrable and

50772 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 13. Supply chain decentralized application.

the trustable process are the advantages of using distributed
ledger technology in the context of supply chain. Table 13
presents the supply chain applications based on blockchain
and smart contracts.

Korpela et al. [16] investigate digital supply chain inte-
gration requirements and consider blockchain technology as
an accelerator and cost-effective solution. The data has been
collected by interviewing blockchain experts from Finnish
business consortium include 30 companies and operated
in 36 countries. Based on Quality Function Development
(QFD) method [128], the ledger and smart contract are more
required blockchain functionalities to support supply chain
integration, instead of transactions and hash functionalities.
The study explains this by emphasizing on the need for a
standardized data model.

Chen et al. [14] present a supply chain quality insur-
ance framework, which includes four layers, IoT devices,
distributed ledger, smart contract, and business layer. The
required data for monitoring the quality of products, assets,
and transactions generates by IoT devices. Blockchain layer
records the generated data in a secure and trustable ledger.
Smart contract handles the privacy by controlling the access
to the data and providing a digital identity service. Smart
contract layer also enables the intelligence for real-time mon-
itoring, plane logistics data, and predicting the customer
requirements. The business layer includes business enter-
prises and activities.

Similarly, Bocek et al [15] launched a startup called
modum.io20 to monitor and control the quality of the phar-
maceutical supply chain. They used IoT devices for mea-
suring the temperature of every parcel containing phar-
maceutical products and recorded them on blockchain
to make sure about data immutability. Smart contracts
are developed to automatically ensure the GDP (Good
Distribution Practice of medicinal products) compliance.
It means with each shipment a respective smart con-
tract is called and checked if the temperature is accepted
automatically. The details of the establishing Ethereum
blockchain and Solidity smart contracts are presented in this
study.

20https://modum.io/

Kim and Laskowski [18] investigate applying ontologies
for supply chain provenance. The study explains how to
apply TOVE traceability ontologies in blockchain to enhance
the blockchain provenance tracking by translating ontolo-
gies representation to Solidity smart contracts. Formal ontol-
ogy axioms represented in first-order logic convert into
Ethereum smart contract to generate traces related to intended
physical goods. Figurili et al. [19] also implemented a
blockchain application using Azure blockchain workbench
to trace woods from standing trees to final products in order
to fight against fraud. The data captured by RFID sensor
devices adjust to respective smart contract and record on the
blockchain and then become accessible for different parties
to trace the history.

D. BUSINESS PROCESS MANAGEMENT (BPM)
Themain unsolved issue in the collaborative business process
in organizations is the lack of trust, and similar to many
other applications using blockchain has been considered as
a solution to address this issue without relying on any central
authority. Mendling et al. [23] investigate blockchain poten-
tial in the domain of BPM applications, the challenges for
applying this technology and the advantages that it brings
for us.

Weber et al. [20] implemented three cases for integrating
blockchain in BPM by introducing a method to transform
the collaborative business process to a factory contract and
then run its instances as a smart contract. In continue [21],
they represent an optimized resource usage approach to min-
imize the cost in terms of Gas for executing smart con-
tracts that are responsible for executing business process
instances as well as increasing throughput. They translated
(Business Process Model and Notation) BPMN to a reduced
petri-net model and then compiled petri-net model into
Solidity contracts using space-optimized data structure by
reducing the total operations and initialization cost in the
smart contract.

Pourheidari et al. [22] implemented a business process case
study of order processing using Hyperledger Fabric permis-
sioned Blockchain and Hyperledger Composer. The details
of the implementation include extracting assets from business
process, access control component, and configuration.

VOLUME 7, 2019 50773

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 14. BPM (business process management) decentralized application.

Caterpillar [24] is also BPM system based on Ethereum
blockchain. They represent a compiler for compiling BPMN
to Solidity contracts. It supports a variety of BPMN con-
structs such as user, script and service tasks, parallel, exclu-
sive, and event-based gateways, and a lot more in the new
version.21

Table 14 summarizes BPM studies with the focus on smart
contract.

E. RECORD KEEPING
One of the main application of blockchain is considering it as
a secure, tamper-proof and trustable database for record keep-
ing. Inmany applications, this characteristic of the blockchain
has been remarked, such as IOT, Supply Chain, Health care,
and BPM. Also, using blockchain technology and smart
contract has been considered in research studies merely for
record keeping applications as well. Table 15 presents the
summary of these studies.

Lemieux [42] investigate the potential of blockchain for the
record keeping purpose by discussing the problems regarding
records preserving and reliability because of the lack of a
Trusted Digital Repository and the advantages such as the
low-cost transaction fee.

D’Angelo et al. [39] consider employing smart contracts
and blockchain technology alongside with could infrastruc-
ture for the data recording purpose in order to address the
accountability and trust issues in cloud platforms. They assert
three different execution architecture. One of the presented
architecture is ‘‘blockchain-based logging with smart con-
tracts’’. In this architecture, smart contracts act as an arbi-
trator. Smart contracts are responsible for event verification,
Service Level Agreements (SLA) violations, and calculating
fines. So the disputations are resolved automatically based on
the smart contract regulations.

Lemieux [41] conducts a typology for the blockchain-
based record keeping solutions include three main design
patterns mirror type, digital record type, and tokenized type.
Mirror type uses blockchain as a repository of hashes of
original record to guarantee the safety of the records and pre-
serving records from any undesirable changes. This method

21https://github.com/orlenyslp/Caterpillar

has been implemented by both permissioned and public
Blockchains. Digital record types are more than just a reposi-
tory, they apply smart contracts to regulate the records and
create an active and dynamic record keeping system. Tok-
enized type are the most advanced type, which record assets
on the Blockchain beside the regular records. Assets can be
indicative of any valuable good and can be represented by a
token or cryptocurrency and record on the blockchain.

Lemieux also introduces a science-based theoretical
framework for evaluating blockchain-based record keeping
systems [40]. She expresses that a trustworthy record has
three characteristics, accuracy, reliability, and authenticity.
The blockchain tamper-proof characteristic that captures
records as a chain of hashes can guarantee these attributes.
Reliability requires three preconditions, completeness at the
point of the creation, consistency with the formal rules, and
naturalness. Also, there are two preconditions for authen-
ticity: identity and integrity to detect genuine records from
forgery records.

F. VOTING
Blockchain can help to create a secure and privacy-preserving
voting system. Generally, voting systems suffer from trust
issues and the chance of cheating and leakage is remarkable in
centralized voting systems. Table 16 presents voting system
based on smart contracts.

McCorry et al. [44] present a privacy-preserving board-
room voting system using smart contacts and Zero-
knowledge proof protocol. The implementation is based on
Solidity smart contracts and Ethereum public blockchain.
The two main smart contracts are ‘‘voting contract’’ and
‘‘cryptography contract’’. The voting contract implements
the voting protocol and verifies zero-knowledge proofs. The
cryptography contract is responsible for generating two type
of zero-knowledge proofs for the voters: Schnorr proof [130]
and one-out-of-two proof [131].

Shah also proposes a voting system, which integrates
client-server architecture with blockchain [45]. The fourmain
components of the proposed system include User or front-
end interface, Authentication server, Arbitration Server, and
private Blockchain. The smart contract is responsible for

50774 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 15. Record keeping decentralized application.

TABLE 16. Voting decentralized application.

verifying the votes based on the type of the election
(interim or non-interim) and adding the vote as a new record
on the Blockchain.

Chen et al. [46] address the bid price leakage in the bid-
ding system by proposing an approach using smart contracts
implemented in Solidity and Ethereum blockchain. The five
functions implemented by the auction smart contract are:
blindAuction(), bid(), reveal(), auctionEnd(), and withdraw().
The blindAuction activates the contract and records the start
time and end time. The bid function calls by anyone who
wants to send the bid if the deadline does not expire. The
reveal function reveals the bid prices. The auctionEnd checks
the bid deadline to define the ending of the auction and
selecting the winner. Finally, the withdraw function returns
the bids tendered of the losers.

G. DIGITAL IDENTITY
Digital identities provided by centralized solutions raise
several problems such as users privacy and untrusted third
parties. Moreover, usually they cannot provide a single iden-
tity to be adopted for different organizations. Consequently,
users’ private information could be accessible to many third
parties that handle digital identities. Blockchain and smart
contract can contribute in digital identity systems to address
these issues [36]. Bendiab et al. [38] similarly recommend
using blcokchain for cloud identity management system to
address the trust issue in a dynamic and distributed approach.

Mühle et al. present four essential components of self-
sovereign identity (SSI) [37]. Self-sovereign is a concept
that users can manage their own identities and the IDs
can be validated without centralized parties. The four main
represented components include identification, authentica-
tion, verification, and storage. For identification component,
the paper discusses how different blockchain platforms such
as Ethereum and Bitcoin generate an identifier for identities
and how decentralized identity systems such as uPort utilize
it. Authentication component uses Public Key Infrastructure

(PKI) and Zero-knowledge algorithm to authenticate the user
identity. The verification component denotes the process of
raising the claim, which could have multiple attestation. The
paper also discusses two main applied methods for linking
claims and attestations, ‘‘Identity Registry’’ and ‘‘Claim Reg-
istry’’. Lastly, the storage component discusses on-chain and
off-chain solutions and their pros and cons in the context of
privacy and scalability.

Al-Bassam [34] presents an SCPKI system (Smart Con-
tract Public Key Infrastructure). The public keys and
attributes of identity record on the blockchain and the smart
contracts are applied to control and manage them. The study
introduces two design models for smart contracts. In the
first design (full version), all identity information such as
attributes, signatures, and revocations are stored in an array
of attributes and can be accessible to other smart contracts.
The second one is a lighter design, which the other smart con-
tracts do not have access to all identity attributes of a specific
smart contract and they just have access to the attribute ID.
The lighter version consumes less GAS, therefore, less cost.

DeCusatis and Sager [35] present a test result based on
cloud infrastructure, BlackRidge 22 technology, Hyperledger
Fabric blockchain, and chaincode (Hyperledger Fabric smart
contract) to manage digital identities. The implementation is
based on two BlackRidge services: BlackRidge First Packet
Authentication and BlackRidge Transport Access Control
(TAC). Network segmentation and traffic separation have
been suggested to enable multiple organization share the
same blockchain infrastructure to provide precise compliance
audit. The BlackRidge software generates identity in client-
side and inserts it into the first packet heather and it is authen-
ticated by the BlackRidge endpoint installed on Hyperledger
fabric server to secure blockchain from unauthorized access.

Yasin and Liu propose a framework that aggregates online
identities and uses smart contract for ranking the reputation
of the users [33].

22https://www.blackridge.us/

VOLUME 7, 2019 50775

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

TABLE 17. Digital identity decentralized application.

Table 17 presents the summary of the studies related
to the digital identity decentralized applications and smart
contracts.

VI. CONCLUSIONS, CHALLENGES AND FUTURE
DIRECTIONS
This paper studied smart contract as a key component of
distributed ledger technology. To our knowledge, this is the
first study on the smart contract topic. In this research study,
we provided a systematic review on the smart contract history,
supporting platforms, programming languages, security, per-
formance, and decentralized applications. We systematically
searched for papers from different online databases based on
the designed research questions and finally selected 90 papers
based on their relevance and quality.

In order to tackle practical and competitive decentralized
applications, improvements toward the security and perfor-
mance of smart contracts are required. We have provided a
classification of different security approaches for detecting
smart contract vulnerabilities and examined presented tools
and their implementation. Also, we have introduced different
approaches to optimize the performance of smart contract
execution and run the smart contract transactions concur-
rently. Performance analysis frameworks for measuring the
performance of different blockchain platforms is highlighted
as well.

Based on our wide survey of decentralized applications,
we have presented seven different categories for smart
contract-based applications. The problems that each category
addresses and tries to solve has been discussed, as well as
implementations details with the focus on smart contract
structure and purpose. The significant interest in applying
decentralized ledger technology in various fields demon-
strates that we can expect to see a demanding trend for
more variety of business markets and more areas based
on this novel technology, specifically along with cloud
services.

Access control management, sharing resources, and record
keeping are the primary focus of the decentralized applica-
tions specifically in the fields of the healthcare, and IoT,
so despite the verity of the applications their focus is narrow
down to these three aspects.

Ethereum and Solidity are currently the dominant plat-
form and programming language so far. We expect that in
future more research studies focus on permissioned platforms
such as Hyperledger Fabric, Quorum, Corda, and Tendermint
because of their desirable features for enterprise applica-
tions. Also, most of the proposed solutions are dependent
on a specific platform and are not applicable as a generic
solution.

Many proposed applications require integration between
on-chain and off-chain. Although some studies recommended
using SGX to overcome the potential security problems,
the other possible challenges such as cache attacks [135] are
not investigated and requires further studies.

In order to improve the performance of the applications
based on distributed ledger technology two main approaches
recognized, using lighter consensus mechanism, and run-
ning transactions concurrently. However, the performance
of the blockchain-based solutions only compared with other
blockchain solutions and still, there is a big gap between
the performance of the blockchain-based solution and current
applications. Research toward improving the performance of
executing smart contracts and the overall blockchain-based
applications are still in early stages. A lot of research needs
to be done to fill this gap and make blockchain-based appli-
cations competitive in real markets.

REFERENCES
[1] S. Nakamoto. (2017). Bitcoin: A Peer-to-Peer Electronic Cash System.

[Online]. Available: http://www.bitcoin.org/bitcoin.pdf
[2] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, ‘‘MedRec: Using

blockchain for medical data access and permission management,’’ in
Proc. 2nd Int. Conf. Open Big Data (OBD), Aug. 2016, pp. 25–30.

[3] Q. I. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani,
‘‘MeDShare: Trust-less medical data sharing among cloud service
providers via blockchain,’’ IEEE Access, vol. 5, pp. 14757–14767,
2017.

[4] Q. Xia, E. B. Sifah, A. Smahi, S. Amofa, and X. Zhang, ‘‘BBDS:
Blockchain-based data sharing for electronic medical records in cloud
environments,’’ Information, vol. 8, no. 2, p. 44, 2017.

[5] S. Rouhani, L. Butterworth, A. D. Dimmond, D. G. Humphery, and
R. Deters, ‘‘Medichaintm: A secure decentralizedmedical data asset man-
agement system,’’ in 2018 IEEE Conf. Internet Things, Green Comput.
Commun., Cyber, Phys. Social Comput., Smart Data, Blockchain, Com-
put. Inf. Technol., Congr. Cybermatics, Aug. 2018, pp. 14757–14767.

[6] T. Mikula and R. H. Jacobsen, ‘‘Identity and access management with
blockchain in electronic healthcare records,’’ in Proc. 21st Euromicro
Conf. Digital Syst. Design (DSD), Aug. 2018, pp. 699–706.

50776 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

[7] X. Yue, H.Wang, D. Jin, M. Li, andW. Jiang, ‘‘Healthcare data gateways:
Found healthcare intelligence on blockchain with novel privacy risk
control,’’ J. Med. Syst., vol. 40, no. 10, p. 218, 2016.

[8] K. Peterson, R. Deeduvanu, P. Kanjamala, and K. Boles, ‘‘A blockchain-
based approach to health information exchange networks,’’ in Proc. NIST
Workshop Blockchain Healthcare, vol. 1, 2016, pp. 1–10.

[9] A. Theodouli, S. Arakliotis, K. Moschou, K. Votis, and D. Tzovaras,
‘‘On the design of a blockchain-based system to facilitate healthcare
data sharing,’’ in Proc. 17th IEEE Int. Conf. Trust, Secur. Privacy Com-
put. Commun./12th IEEE Int. Conf. Big Data Sci. Eng., Aug. 2018,
pp. 1374–1379.

[10] T. Nugent, D. Upton, and M. Cimpoesu, ‘‘Improving data transparency in
clinical trials using blockchain smart contracts,’’ NCBI, U.S. Nat. Library
Med., Tech. Rep. F1000Research, vol. 5, 2016.

[11] Z. Shae and J. J. P. Tsai, ‘‘On the design of a blockchain platform for
clinical trial and precision medicine,’’ in Proc. IEEE 37th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jun. 2017, pp. 1972–1980.

[12] P. Zhang, J. White, D. C. Schmidt, G. Lenz, and S. T. Rosenbloom,
‘‘FHIRChain: Applying blockchain to securely and scalably share clinical
data,’’ Comput. Struct. Biotechnol. J., vol. 16, pp. 267–278, Jul. 2018.
doi: 10.1016/j.csbj.2018.07.004.

[13] P. Zhang, M. A. Walker, J. White, D. C. Schmidt, and G. Lenz, ‘‘Metrics
for assessing blockchain-based healthcare decentralized apps,’’ in Proc.
19th Int. Conf. e-Health Netw., Appl. Services (Healthcom), Oct. 2017,
pp. 1–4.

[14] S. Chen, R. Shi, Z. Ren, J. Yan, Y. Shi, and J. Zhang, ‘‘A blockchain-
based supply chain quality management framework,’’ in Proc. IEEE 14th
Int. Conf. e-Bus. Eng. (ICEBE), Nov. 2017, pp. 172–176.

[15] T. Bocek, B. B. Rodrigues, T. Strasser, and B. Stiller, ‘‘Blockchains
everywhere—A use-case of blockchains in the pharma supply-chain,’’ in
Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), May 2017,
pp. 772–777.

[16] K. Korpela, J. Hallikas, and T. Dahlberg, ‘‘Digital supply chain transfor-
mation toward blockchain integration,’’ in Proc. 50th Hawaii Int. Conf.
Syst. Sci., 2017, pp. 1–5.

[17] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, and E. Di Sciascio, ‘‘Supply
chain object discovery with semantic-enhanced blockchain,’’ in Proc.
15th ACM Conf. Embedded Netw. Sensor Syst., Nov. 2017, p. 60.

[18] H. M. Kim and M. Laskowski, ‘‘Toward an ontology-driven blockchain
design for supply-chain provenance,’’ Intell. Syst. Accounting, Finance
Manage., vol. 25, no. 1, pp. 18–27, Jan. 2018.

[19] S. Figorilli et al., ‘‘A blockchain implementation prototype for the elec-
tronic open source traceability of wood along the whole supply chain,’’
Sensors, vol. 18, no. 9, p. 3133, Sep. 2018.

[20] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and
J.Mendling, ‘‘Untrusted business processmonitoring and execution using
blockchain,’’ in Business Process Management. New York, NY, USA:
Springer, 2016, pp. 329–347.

[21] L. García-Bañuelos, A. Ponomarev,M. Dumas, and I.Weber, ‘‘Optimized
execution of business processes on blockchain,’’ in Business Process
Management. New York, NY, USA: Springer, 2017, pp. 130–146.

[22] V. Pourheidari, S. Rouhani, and R. Deters, ‘‘A case study of execution
of untrusted business process on permissioned blockchain,’’ in Proc.
IEEE Confs Internet Things, Green Comput. Commun., Cyber, Phys.
Social Comput., Smart Data, Blockchain, Comput. Inf. Technol., Congr.
Cybermatics, Aug. 2018, pp. 1588–1594.

[23] J. Mendling et al., ‘‘Blockchains for business process management-
challenges and opportunities,’’ ACM Trans. Manage. Inf. Syst. (TMIS),
vol. 9, no. 1, p. 4, Feb. 2018.

[24] O. Löpez-Pintado, L. García-Bañuelos, M. Dumas, and I. Weber, ‘‘Cater-
pillar: A blockchain-based business process management system,’’ Ph.D.
dissertation, BPM, Barcelona, Spain, 2017.

[25] P. Rimba, A. B. Tran, I. Weber, M. Staples, A. Ponomarev, and X. Xu,
‘‘Comparing blockchain and cloud services for business process exe-
cution,’’ in Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Apr. 2017,
pp. 257–260.

[26] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, ‘‘FairAccess: A new
Blockchain-based access control framework for the Internet of Things,’’
Secur. Commun. Netw., vol. 9, no. 18, pp. 5943–5964, 2017.

[27] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, ‘‘Towards a novel
privacy-preserving access control model based on blockchain technology
in IoT,’’ in Proc. Europe MENA Cooperation Adv. Inf. Commun. Technol.,
2017, pp. 523–533.

[28] R. Xu, Y. Chen, E. Blasch, and G. Chen. (2018). ‘‘Blendcac:
A blockchain-enabled decentralized capability-based access control for
iots.’’ [Online]. Available: https://arxiv.org/abs/1804.09267.

[29] S.-C. Cha, J.-F. Chen, C. Su, and K.-H. Yeh, ‘‘A blockchain connected
gateway for ble-based devices in the Internet of Things,’’ IEEE Access,
vol. 6, pp. 24639–24649, 2018.

[30] S. Huh, S. Cho, and S. Kim, ‘‘Managing IoT devices using blockchain
platform,’’ in Proc. 19th Int. Conf. Adv. Commun. Technol., Feb. 2017,
pp. 464–467.

[31] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, A. Pinto, and E. D. Sciascio,
‘‘A blockchain infrastructure for the semantic web of things,’’ in Proc.
26th Italian Symp. Adv. Database Syst., Aug. 2018, pp. 258-269.

[32] F. Lombardi, L. Aniello, S. de Angelis, A. Margheri, and V. Sassone,
‘‘A blockchain-based infrastructure for reliable and cost-effective IoT-
aided smart grids,’’ in Proc. Living Internet Things Cybersecurity IoT,
2018, pp. 1–6.

[33] A. Yasin and L. Liu, ‘‘An online identity and smart contract management
system,’’ in Proc. IEEE 40th Annu. Comput. Softw. Appl. Conf. (COMP-
SAC), vol. 2, Jun. 2016, pp. 192–198.

[34] M. Al-Bassam, ‘‘Scpki: A smart contract-based PKI and identity sys-
tem,’’ in Proc. ACM Workshop Blockchain, Cryptocurrencies Contracts,
Apr. 2017, pp. 35–40.

[35] C. DeCusatis, M. Zimmermann, and A. Sager, ‘‘Identity-based network
security for commercial blockchain services,’’ in Proc. IEEE 8th Annu.
Comput. Commun. Workshop Conf. (CCWC), Jan. 2018, pp. 474–477.

[36] A. Grüner, A. Mühle, and C. Meinel. (2018). ‘‘On the rele-
vance of blockchain in identity management.’’ [Online]. Available:
https://arxiv.org/abs/1807.08136

[37] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel, ‘‘A survey on
essential components of a self-sovereign identity,’’ Comput. Sci. Rev.,
vol. 30, pp. 80–86, Nov. 2018.

[38] K. Bendiab, N. Kolokotronis, S. Shiaeles, and S. Boucherkha, ‘‘WiP:
A novel blockchain-based trust model for cloud identity management,’’
in Proc. IEEE 16th Intl. Conf. Dependable, Autonomic Secure Comput.,
Aug. 2018, pp. 724–729.

[39] G. D’Angelo, S. Ferretti, and M. Marzolla. (2018). ‘‘A blockchain-
based flight data recorder for cloud accountability.’’ [Online]. Available:
https://arxiv.org/abs/1806.04544

[40] V. L. Lemieux, ‘‘Blockchain and distributed ledgers as trusted record-
keeping systems,’’ in Proc. Future Technol. Conf. (FTC), 2017,
pp. 41–48.

[41] L. L. Victoria, ‘‘A typology of blockchain recordkeeping solutions and
some reflections on their implications for the future of archival preser-
vation,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2017,
pp. 2271–2278.

[42] V. L. Lemieux, ‘‘Trusting records: Is blockchain technology the answer?’’
Records Manage. J., vol. 26, no. 2, pp. 110–139, Jul. 2016.

[43] H. Guo, E. Meamari, and C.-C. Shen, ‘‘Blockchain-inspired event record-
ing system for autonomous vehicles,’’ in Proc. 1st IEEE Int. Conf. Hot
Inf.-Centric Netw. (HotICN), Aug. 2018, pp. 218–222.

[44] P. McCorry, S. F. Shahandashti, and F. Hao, ‘‘A smart contract for
boardroom voting with maximum voter privacy,’’ in Proc. Int. Conf.
Financial Cryptogr. Data Security. Cham, Switzerland: Springer, 2017,
pp. 357–375.

[45] S. Shah. Block Chain Voting System. [Online]. Available: https://
www.economist.com/sites/default/files/northeastern.pdf

[46] Y.-H. Chen, S.-H. Chen, and I.-C. Lin, ‘‘Blockchain based smart contract
for bidding system,’’ in Proc. IEEE Int. Conf. Appl. Syst. Invention
(ICASI), Apr. 2018, pp. 208–211.

[47] S. Gec, D. Lavbič, M. Bajec, and V. Stankovski. (2018). ‘‘Smart contracts
for container based video conferencing services: Architecture and imple-
mentation.’’ [Online]. Available: https://arxiv.org/abs/1808.03832

[48] S. A. Suchaad et al., ‘‘Blockchain use in home automation for children
incentives in parental control,’’ in Proc. Int. Conf. Mach. Learn. Mach.
Intell., Feb. 2018, pp. 50–53.

[49] S. Rouhani, V. pourheidari, and R. Deters, ‘‘Physical access control man-
agement system based on permissioned blockchain,’’ in Proc. IEEE Conf.
Internet Things, Green Comput. Commun., Cyber, Phys. Social Comput.,
Smart Data, Blockchain, Comput. Inf. Technol., Congr. Cybermatics,
Jul. 2018, pp. 1078–1083.

[50] K. Salah, M. Rehman, N. Nizamuddin, and A. Al-Fuqaha, ‘‘Blockchain
for AI: Review and open research challenges,’’ IEEE Access, vol. 7,
pp. 10127–10149, 2019.

VOLUME 7, 2019 50777

http://dx.doi.org/10.1016/j.csbj.2018.07.004

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

[51] S. Nick. (2017). The Idea of Smart Contracts. [Online]. Available:
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html

[52] S. Nick. (1997). Formalizing and Securing Relationship on
Public Networks. [Online]. Available: http://firstmonday.org/ojs/
index.php/fm/article/view/548/469

[53] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, ‘‘Where is
current research on blockchain technology?—A systematic review,’’ PloS
One, vol. 11, no. 10, 2016, Art. no. e0163477.

[54] Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, ‘‘Blockchain challenges
and opportunities: A survey,’’ Int. J. Web Grid Services, vol. 14, no. 4,
pp. 352–375, 2016.

[55] N. Atzei, M. Bartoletti, and T. Cimoli, ‘‘A survey of attacks on ethereum
smart contracts (SoK),’’ in Principles Security Trust. New York, NY,
USA: Springer, 2017, pp. 164–186.

[56] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. Leung,
‘‘Decentralized applications: The blockchain-empowered software sys-
tem,’’ IEEE Access, vol. 6, pp. 53019–53033, 2018.

[57] F. Casino, T. K. Dasaklis, and C. Patsakis, ‘‘A systematic literature review
of blockchain-based applications: Current status, classification and open
issues,’’ Telematics Inform., vol. 36, pp. 55–81, Mar. 2018.

[58] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, ‘‘Blockchain distributed
ledger technologies for biomedical and health care applications,’’ J. Amer.
Med. Inform. Assoc., vol. 24, no. 6, pp. 1211–1220, 2017.

[59] M. Hölbl, M. Kompara, A. Kamišalić, and L. N. Zlatolas, ‘‘A systematic
review of the use of blockchain in healthcare,’’ Symmetry, vol. 10, no. 10,
p. 470, Oct. 2018.

[60] A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito,
‘‘Blockchain and IoT integration: A systematic survey,’’ Sensors, vol. 18,
no. 8, p. 2575, 2018.

[61] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, ‘‘Systematic literature reviews in software engineering—A
systematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15,
Jan. 2009.

[62] K. Petersen, R. Feldt, S.Mujtaba, andM.Mattsson, ‘‘Systematic mapping
studies in software engineering,’’ Ease, vol. 8, pp. 68–77, Jun. 2008.

[63] E. Androulaki et al., ‘‘Hyperledger fabric: A distributed operating system
for permissioned blockchains,’’ in Proc. 13th EuroSys Conf., Apr. 2018,
p. 30.

[64] W. Wang et al. (2018). ‘‘A survey on consensus mechanisms and min-
ing management in blockchain networks.’’ [Online]. Available: https://
arxiv.org/abs/1805.02707

[65] M. Bartoletti and R. Zunino, ‘‘Bitml: A calculus for bitcoin smart
contracts,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
Oct. 2018, pp. 83–100.

[66] F. Schrans, S. Eisenbach, and S. Drossopoulou, ‘‘Writing safe smart
contracts in flint,’’ in Proc. Conf. Companion 2nd Int. Conf. Art, Sci.,
Eng. Program., Apr. 2018, pp. 218–219.

[67] I. Sergey, A. Kumar, and A. Hobor. (2018). ‘‘Scilla: A smart
contract intermediate-level language.’’ [Online]. Available: https://
arxiv.org/abs/1801.00687

[68] G.-T. Nguyen and K. Kim, ‘‘A survey about consensus algorithms used
in blockchain,’’ J. Inf. Process. Syst., vol. 14, no. 1, pp. 101–128, 2018.

[69] J. Garay, A. Kiayias, and N. Leonardos, ‘‘The bitcoin backbone protocol:
Analysis and applications,’’ in Advances in Cryptology—EUROCRYPT.
New York, NY, USA: Springer, 2015, pp. 281–310.

[70] F. Schuh and D. Larimer. (2017). Bitshares 2.0: General Overview.
[Online]. Available: http://docs.bitshares.org/_downloads/bitshares-
general. pdf

[71] (2019).Nem Technical Reference. [Online]. Available: https://nem.io/wp-
content/themes/nem/files/NEM_techRef.pdf

[72] M. Castro and B. Liskov, ‘‘Practical byzantine fault tolerance and
proactive recovery,’’ ACM Trans. Comput. Syst., vol. 20, no. 4,
pp. 398–461, 2002.

[73] D. Ongaro and J. Ousterhout, ‘‘In search of an understandable consensus
algorithm,’’ in Proc. USENIX Annu. Tech. Conf., 2014, pp. 305–319.

[74] (2017). Istanbul Byzantine Fault Tolerant Consensus Protocol. [Online].
Available: https://github.com/ethereum/EIPs/issues/650

[75] P. L. Seijas, S. J. Thompson, and D. McAdams, ‘‘Scripting smart con-
tracts for distributed ledger technology,’’ IACR Cryptol. ePrint Arch.,
Tech. Rep. 2016 1156, 2016.

[76] C. Dannen, Introducing Ethereum Solidity. New York, NY, USA:
Springer, 2017.

[77] R. Zubairy. (2019). Create a Blockchain App for Loyalty Points With
Hyperledger Fabric Ethereum Virtual Machine. [Online]. Available:
https://developer.ibm.com/patterns/loyalty-points-fabric-evm/

[78] V. Buterin. (2016). Critical Update Re: Dao Vulnerability Ethereum
Blog. [Online]. Available: https://blog.ethereum.org/2016/06/17/critical-
update-re-dao-vulnerability/

[79] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor, ‘‘Evaluation of
logic-based smart contracts for blockchain systems,’’ in Rule Technolo-
gies. Research, Tools, and Applications. New York, NY, USA: Springer,
2016, pp. 167–183.

[80] H.-P. Lam and G. Governatori, ‘‘The making of SPINdle,’’ in Rule
Interchange and Applications. New York, NY, USA: Springer, 2009,
pp. 315–322.

[81] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu, ‘‘Spesc: A specification
language for smart contracts,’’ in Proc. IEEE 42nd Annu. Comput. Softw.
Appl. Conf. (COMPSAC), Jul. 2018, pp. 132–137.

[82] Y. Hirai. (2018). Bamboo: A Language for Morphing Smart Contracts.
[Online]. Available: https://github.com/pirapira/bamboo

[83] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, ‘‘Step by
step towards creating a safe smart contract: Lessons and insights from
a Cryptocurrency lab,’’ in Financial Cryptography and Data Security.
New York, NY, USA: Springer, 2016, pp. 79–94.

[84] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making
smart contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun.
Security, Oct. 2016, pp. 254–269.

[85] K. Bhargavan et al., ‘‘Formal verification of smart contracts: Short
paper,’’ in Proc. ACM Workshop Program. Lang. Anal. Security,
Oct. 2016, pp. 91–96.

[86] N. Swamy et al., ‘‘Dependent types andmulti-monadic effects in f,’’ ACM
SIGPLAN Notices, vol. 51, no. 1, pp. 256–270, Jan. 2016.

[87] S. Amani and M. Bégel, M. Bortin, and M. Staples, ‘‘Towards verifying
ethereum smart contract bytecode in Isabelle/HOL,’’ in Proc. 7th ACM
SIGPLAN Int. Conf. Certified Programs Proofs, Jan. 2018, pp. 66–77.

[88] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu, ‘‘A formal verifi-
cation tool for ethereum vm bytecode,’’ in Proc. 26th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2018, pp. 912–915.

[89] E. Hildenbrandt et al., ‘‘Kevm: A complete semantics of the ethereum
virtual machine,’’ inProc. IEEE 31st Comput. Secur. Found. Symp. (CSF),
Oxford, U.K., Jul. 2018, pp. 204–217.

[90] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey. (2018). ‘‘Ethir:
A framework for high-level analysis of ethereum bytecode.’’ [Online].
Available: https://arxiv.org/abs/1805.07208

[91] E. Albert, P. Gordillo, A. Rubio, and I. Sergey. (2018). ‘‘Gastap:
A gas analyzer for smart contracts.’’ [Online]. Available:
https://arxiv.org/abs/1811.10403

[92] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, ‘‘SmartInspect:
Solidity smart contract inspector,’’ in Proc. Int. Workshop Blockchain
Oriented Softw. Eng. (IWBOSE), Mar. 2018, pp. 9–18.

[93] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev.
(2018). ‘‘Securify: Practical security analysis of smart contracts.’’
[Online]. Available: https://arxiv.org/abs/1806.01143

[94] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. (2018).
‘‘Finding the greedy, prodigal, and suicidal contracts at scale.’’ [Online].
Available: https://arxiv.org/abs/1802.06038

[95] L. Brent et al. (2018). ‘‘Vandal: A scalable security analysis
framework for smart contracts.’’ [Online]. Available: https://arxiv.org/
abs/1809.03981

[96] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, ‘‘SmartCheck: Static analysis of
ethereum smart contracts,’’ in Proc. IEEE/ACM 1st Int. Workshop
Emerg. Trends Softw. Eng. Blockchain (WETSEB), Jun. 2018, pp. 9–16.

[97] T. Chen, X. Li, X. Luo, and X. Zhang, ‘‘Under-optimized smart contracts
devour your money,’’ in Proc. IEEE 24th Int. Conf. Softw. Anal., Evol.
Reengineering (SANER), Feb. 2017, pp. 442–446.

[98] S. Grossman et al., ‘‘Online detection of effectively callback free objects
with applications to smart contracts,’’ ACM Program. Lang., vol. 2, p. 48,
Dec. 2017.

[99] M. Fröwis and R. Böhme, ‘‘In code we trust?—Measuring the control
flow immutability of all smart contracts deployed on ethereum,’’ in Proc.
Int. Workshops Data Privacy Manage., Cryptocurrencies Blockchain
Technol. ESORICS DPM/CBT@ESORICS, Oslo, Norway, Springer,
2017.

[100] H. Watanabe, S. Fujimura, A. Nakadaira, Y. Miyazaki, A. Akutsu, and
J. Kishigami, ‘‘Blockchain contract: Securing a blockchain applied to
smart contracts,’’ in Proc. IEEE Int. Conf. Consum. Electron. (ICCE),
Jan. 2016, pp. 467–468.

50778 VOLUME 7, 2019

S. Rouhani, R. Deters: Security, Performance, and Applications of Smart Contracts: A Systematic Survey

[101] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, ‘‘Town crier: An
authenticated data feed for smart contracts,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, Oct. 2016, pp. 270–282.

[102] A. Kothapalli, A. Miller, and N. Borisov, ‘‘SmartCast: An incentive com-
patible consensus protocol using smart contracts,’’ in Int. Conf. Financial
Cryptogr. Data Secur., 2017, pp. 536–552.

[103] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘‘Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,’’ in Proc. IEEE Symp. Security Privacy (SP), May 2016,
pp. 839–858.

[104] G. Zyskind, O. Nathan, and A. Pentland. (2015). ‘‘Enigma: Decentral-
ized computation platform with guaranteed privacy.’’ [Online]. Available:
https://arxiv.org/abs/1506.03471

[105] G. Bracha and D. M. Ungar, ‘‘Mirrors: Design principles for meta-level
facilities of object-oriented programming languages,’’ in Proc. OOPSLA,
Vancouver, BC, Canada, 2004, pp. 331–344.

[106] N. Papoulias, ‘‘Remote debugging and reflection in resource constrained
devices,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Sci. Technol.
Lille-Lille I, Villeneuve-d’Ascq, France, 2013.

[107] E. Albert et al., ‘‘Saco: Static analyzer for concurrent objects,’’ in Proc.
Int. Conf. Tools Algorithms Construct. Anal. Syst., 2014, pp. 562–567.

[108] E. Albert, P. Arenas, S. Genaim, and G. Puebla, ‘‘Automatic inference of
upper bounds for recurrence relations in cost analysis,’’ in Proc. Int. Static
Anal. Symp., 2008, pp. 221–237.

[109] H. Jordan, B. Scholz, and P. Subotić, ‘‘Soufflè: On synthesis of pro-
gram analyzers,’’ in Proc. Int. Conf. Comput. Aided Verification, 2016,
pp. 422–430.

[110] V. Buterin et al., ‘‘A next-generation smart contract and decentralized
application platform,’’ Ethereum, Zug, Switzerland, White Paper, 2014.

[111] A. Stefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu, ‘‘Semantics-based
program verifiers for all languages,’’ ACM SIGPLAN Notices, vol. 51,
no. 10, pp. 74–91, 2016.

[112] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum Project Yellow Paper, vol. 151, pp. 1–32, Apr. 2014,
[Online]. Available: http://gavwood.com/paper.pdf

[113] A. Clement, H. C. Li, J. Napper, J.-P. Martin, L. Alvisi, and M. Dahlin,
‘‘Bar primer,’’ in Proc. DSN, vol. 8. Jun. 2008, pp. 287–296.

[114] C. Molina-Jimenez, E. Solaiman, I. Sfyrakis, I. Ng, and J. Crowcroft.
(2018). ‘‘On and off-blockchain enforcement of smart contracts.’’
[Online]. Available: https://arxiv.org/abs/1805.00626

[115] R. Cheng et al., ‘‘Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contract execution,’’ arXiv preprint
arXiv:1804.05141, 2018.

[116] M.Herlihy and E. Koskinen, ‘‘Transactional boosting: Amethodology for
highly-concurrent transactional objects,’’ in Proc. 13th ACM SIGPLAN
Symp. Principles Pract. Parallel Programming, 2008, pp. 207–216.

[117] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, ‘‘Adding con-
currency to smart contracts,’’ in Proc. ACM Symp. Principles Distrib.
Comput., Jul. 2017, pp. 303–312.

[118] L. Yu, W.-T. Tsai, G. Li, Y. Yao, C. Hu, and E. Deng, ‘‘Smart-contract
execution with concurrent block building,’’ in Proc. 11th IEEE Symp.
Service-Oriented Syst. Eng. (SOSE), Apr. 2017, pp. 160–167.

[119] P. S. Anjana, S. Kumari, S. Peri, S. Rathor, and A. Somani. (2018).
‘‘An efficient framework for concurrent execution of smart contracts.’’
[Online]. Available: https://arxiv.org/abs/1809.01326

[120] N. Shavit and D. Touitou, ‘‘Software transactional memory,’’ Distrib.
Comput., vol. 10, no. 2, pp. 99–116, 1997.

[121] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
‘‘Blockbench: A framework for analyzing private blockchains,’’ in Proc.
ACM Int. Conf. Manage. Data, May 2017, pp. 1085–1100.

[122] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
‘‘Benchmarking cloud serving systems with YCSB,’’ in Proc. 1st ACM
Symp. Cloud Comput., Jun. 2010, pp. 143–154.

[123] M. J. Cahill, U. Röhm, and A. D. Fekete, ‘‘Serializable isolation for
snapshot databases,’’ ACM Trans. Database Syst., vol. 34, no. 4, p. 20,
Dec. 2009.

[124] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, ‘‘A detailed and
real-time performance monitoring framework for blockchain systems,’’
in Proc. 40th Int. Conf. Softw. Eng. Softw. Eng. Pract., Jun. 2018,
pp. 134–143.

[125] M. Samaniego and R. Deters, ‘‘Blockchain as a service for IoT,’’
in Proc. IEEE Int. Conf. Internet Things (iThings), Dec. 2016,
pp. 433–436.

[126] M. Samaniego and R. Deters, ‘‘Hosting virtual IoT resources on edge-
hosts with blockchain,’’ in Proc. IEEE Int. Conf. Comput. Inf. Technol.
(CIT), Dec. 2016, pp. 116–119.

[127] K. Korpela, U. Kuusiholma, O. Taipale, and J. Hallikas, ‘‘A framework for
exploring digital business ecosystems,’’ in Proc. 46th Hawaii Int. Conf.
Syst. Sci., Jan. 2013, pp. 3838–3847.

[128] B. Clegg and B. Tan, ‘‘Using qfd for e-business planning and analysis
in a micro-sized enterprise,’’ Int. J. Qual. Rel. Manage., vol. 24, no. 8,
pp. 813–828, 2007.

[129] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
‘‘SNARKs for C: Verifying program executions succinctly and in zero
knowledge,’’ in Advances in Cryptology–CRYPTO. New York, NY, USA:
Springer, 2013, pp. 90–108.

[130] C. P. Schnorr, ‘‘Efficient signature generation by smart cards,’’
J. Cryptol., vol. 4, no. 3, pp. 161–174, 1991.

[131] R. Cramer, I. Damgård, and B. Schoenmakers, ‘‘Proofs of partial knowl-
edge and simplified design of witness hiding protocols,’’ in Proc. Annu.
Int. Cryptol. Conf., 1994, pp. 174–187.

[132] C. Lundkvist, R. Heck, J. Torstensson, Z. Mitton, and M. Sena. (2018).
Uport: A Platform for Self-Sovereign Identity. [Online]. Available:
http://blockchainlab.com/pdf uPort_whitepaper_DRAFT20161020.pdf

[133] D. Reed, J. Law, and D. Hardman. (2018). The Technical Founda-
tions of Sovrin A White Paper From the Sovrin Foundation. [Online].
Available: https://www.evernym.com/wp-content/uploads/2017/07/The-
Technical-Foundations-of-Sovrin.pdf

[134] shocard. (2017). Shocard With Shocoin Tokens Whitepaper
Identity Management Verified Using the Blockchain. [Online].
Available: http://www.lianzhiliao.com/media/whitepapers/ShoCard-
Whitepaper_en.pdf

[135] F. Brasser and U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, ‘‘Software grand exposure:SGX cache attacks are prac-
tical,’’ in Proc. 11th USENIX Workshop Offensive Technol., Aug. 2017,
pp. 1–10.

SARA ROUHANI is currently pursuing the Ph.D.
degree in computer science with the University of
Saskatchewan, Canada, under the supervision of
Prof. R. Deters. She is also a Research Assistant
with the Multi-User Adaptive Distributed Mobile
and Ubiquitous Computing (MADMUC) Labora-
tory led by Prof. R. Deters and Prof. J. Vassileva.
Her research interests include distributed systems,
blockchain, and smart contracts.

RALPH DETERS received the Ph.D. degree
from Federal Armed Forces University, Munich,
Germany, in 1998. He joined the University of
Saskatchewan as a Research Associate, in 1998,
where he is currently a Full Professor with the
Department of Computer Science. His research
interests include distributed ledger technology,
the Internet of Things, and cloud/edge computing.

VOLUME 7, 2019 50779

	INTRODUCTION
	PLATFORMS OVERVIEW AND KEY CONCEPTS
	PUBLIC AND PERMISSIONED BLOCKCHAIN
	PLATFORMS
	CONSENSUS MECHANISM
	SMART CONTRACTS PROGRAMMING LANGUAGE
	SOLIDITY
	LOGIC-BASED SMART CONTRACTS
	SPESC (A SPECIFICATION LANGUAGE FOR SMART CONTRACTS)
	BAMBOO
	SCILLA (INTERMEDIATE-LEVEL LANGUAGE)
	FLINT
	BITML (BITCOIN MODELLING LANGUAGE)

	SMART CONTRACTS SECURITY
	CLASSIFICATION OF SECURITY PROBLEMS
	TRANSACTION ORDERING DEPENDENCE (TOD)
	TIMESTAMP DEPENDENCE
	MISHANDLED EXCEPTIONS
	REENTRANCY VULNERABILITY

	SMART CONTRACTS SECURITY ANALYSIS TOOLS
	OYENTE
	EthIR
	SMARTINSPECT
	GasTap
	SECURIFY
	MAIAN
	VANDAL
	SmartCheck
	GASPER

	FORMAL VERIFICATION
	DETECTION OF EFFECTIVE CALLBACK FREE OBJECTS
	CONTROL FLOW
	SECURE CONSENSUS METHOD
	CONNECTING SMART CONTRACT AND OFF-CHAIN
	PRIVACY

	SMART CONTRACTS PERFORMANCE
	CONCURRENT EXECUTION
	PERFORMANCE ANALYSING FRAMEWORKS
	BLOCKBENCH
	REALTIME MONITORING

	DECENTRALIZED APPLICATIONS
	INTERNET OF THINGS
	HEALTHCARE
	SUPPLY CHAIN
	BUSINESS PROCESS MANAGEMENT (BPM)
	RECORD KEEPING
	VOTING
	DIGITAL IDENTITY

	CONCLUSIONS, CHALLENGES AND FUTURE DIRECTIONS
	REFERENCES
	Biographies
	SARA ROUHANI
	RALPH DETERS

