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ABSTRACT After the introduction of the OpenCL-based FPGA accelerator design method, FPGAs are
getting very popular among high-performance computing. The key to achieving high performance using
FPGAs is to design pipelined accelerators. We can increase the pipeline depth beyond the border of
one FPGA by connecting multiple FPGAs using high-speed QSFP (quad small form-factor pluggable)
connectors. Such a deeply-pipelined accelerator using multiple FPGAs works similar to a single very large
FPGA. In this paper, we propose a multi-FPGA accelerator architecture for stencil computation by scaling
in spacial and temporal dimensions. According to the experimental results, we achieved performance up to
950 GFLOP/s using one FPGA and nearly doubled the performance using two FPGAs. We achieved a high
power-efficiency with competitive performances compared to high-end GPUs.

INDEX TERMS OpenCL for FPGA, high performance computing, stencil computation, multi-FPGA

acceleration.

I. INTRODUCTION
Recently, there is a growing trend to use FPGAs in
high-performance computing. This is mainly due to the
power-efficient computation in FPGAs, and the easy-to-
use OpenCL-based programming environment [1]-[3]. In the
field of high-performance computing, it is very important to
efficiently use multiple FPGAs to increase performance.
FPGAs usually have a small external memory bandwidth
compared to GPUs. Therefore, unlike GPUs, FPGAs do
not perform efficiently for massive data-parallel operations
that require access to a large amount of data in parallel.
The key of achieving high performance using FPGAs is to
design pipelined accelerators. Such pipelined accelerators
even produce competitive performance compared to GPUs
for data-intensive applications [4], [5]. We can increase the
pipeline depth beyond the border of one FPGA by connect-
ing multiple FPGAs using high-speed QSFP (quad small
form-factor pluggable) connectors. It is possible to send
data directly from a processing element (PE) of one FPGA
to a PE in another FPGA, without using external memory
as a temporal storage. Therefore, multiple FPGAs perform
similar to one large FPGA, and we can expect near-linear

The associate editor coordinating the review of this manuscript and
approving it for publication was Junxiu Liu.

T+2

Iteration
i
n
A

4-point 2-D stencil

T+1 _
Cell(x_y) =

Py Celllyy 1y+ Py~ Cellly_y y + P - Cellly gy + Py~ Cellly 1y

FIGURE 1. Stencil computation using 4-point 2-D stencil.

performance by adding more FPGAs to the system. In order to
design such an accelerator, we have to consider several factors
such as how to partition the application into multiple FPGAs,
how to optimize inter-FPGA data transfers, how to deal with
different clock frequencies in different FPGAs, etc.

Stencil computation is an iterative method where a grid is
updated in each iteration according to a fixed computation
pattern [6]. As shown in Fig.1, a stencil is a shape that
consists of neighboring grid-points called cells. The typical
computation pattern is in the form of a sum of products.
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Stencil computation is used in many scientific computation
applications such as electromagnetic simulations [7], iter-
ative solvers [8], [9], fluid dynamics simulations [10], etc.
Since stencil computation is an iterative computation, we can
process multiple iterations in parallel on different FPGAs.
We can also process multiple portions of a grid in parallel
on different FPGAs. We call this, scaling in time and space
dimensions. The availability of recent high-speed inter-FPGA
data transfers provides an opportunity for us to explore new
approaches, and improve the existing approaches such as [11]
to scale computation on multiple FPGAs.

In this paper, we propose a multi-FPGA accelerator archi-
tecture to scale the stencil computation in both time and
space dimensions. We evaluate the performance of sev-
eral 2-D and 3-D stencil computation benchmarks using
“skewed grids” and ‘‘non-skewed grids”’. According to the
experimental results, we achieved upto 950 GFLOP/s and
1861 GFLOP/s of performance for skewed grids, using one
and two FPGAs respectively. Such performances are very
competitive compared to high-end GPUs. However, the inter-
nal memory capacity of the FPGA becomes a bottleneck
for non-skewed grids. We can reduce the required internal
memory size and improve the performance by dividing the
grid into multiple partitions called tiles. In addition, we can
achieve better power-efficiency using FPGAs compared to
state-of-art high-end GPUs. High-power-efficiency is critical
for high-performance computing systems with many nodes.
The weak point of the proposed FPGA accelerators is the
low-performance for double-precision computation. Since
FPGAs do not contain double-precision floating-point com-
putation units, the performance drops considerably compared
to those of single-precision computations.

The rest of this paper is organized as follows. In section II,
we discuss the previous approaches to accelerate stencil com-
putation using single and multiple FPGAs. In section III,
we describe the proposed approach to scale stencil compu-
tation for multiple FPGAs. In section IV, we evaluate the
proposed approach and compare it against previous work
that use both FPGAs and GPUs. We give our conclusions in
section V.

Il. PREVIOUS WORK

Stencil computation has two types of parallel operations as
shown in Fig.2. Since the computations of the cells in the
same iteration are mutually independent, we can compute
multiple cells in parallel as shown in Fig.2a. We call this
“cell-parallel” computation. The computations of cells in
different iterations have a data dependency, where a value of
a cell is computed using its neighboring cells in the previous
iteration. Fig.2b. shows two consecutive iterations. The cells
in the grey area of iteration 1 are already computed. As a
result, we can compute cell(zl‘ 1 of iteration 2 using the data of
its neighboring cells in iteration 1 in the grey area. Simultane-
ously, we can also compute cell 12’2) of iteration 1. As a result,
we can compute multiple cells in different iterations in par-
allel. We call this “iteration-parallel”” computation. Detailed
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FIGURE 2. Parallel operations in stencil computation. (a) Cell-parallel

computation. (:ell(lI 1 of iteration 1 and cell(lI 3) of iteration 1 are

processed in parallel. (b) Iteration-parallel computation. cell('2 2) of

iteration 1 and cell? .| of iteration 2 are processed in parallel.
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explanation about the parallelism in stencil computation is
available in the previous work, such as [4], [11].

A. PREVIOUS APPROACHES TO ACCELERATE STENCIL
COMPUTATION USING A SINGLE FPGA
In order to implement cell-parallel computation, we have to
access data in multiple cells in parallel. Since FPGAs have a
relatively small memory bandwidth compared to GPUs, the
computation will become memory-bound. Therefore, reduc-
ing the external memory access and increasing the opera-
tional intensity is the key to improve performance. Therefore,
previous work such as [4], [11], [12] uses iteration-parallel
computations, while caching the intermediate results between
iterations. Fig.3 shows how this method is done. As shown
in Fig.3a, the cells are computed from left-to-right and top-
to-bottom one after the other. Accessed data are stored in a
shift-register array as shown in Fig.3b. In each clock cycle,
data of the shift-registers are moved, and a newly accessed
data value is written to the first shift-register. When all
neighboring data of a cell is available in the shift-register
array, we can begin its computation. In the example in Fig.3,
we compute Cell| | while storing the data of Cell} ,. In the
next clock cycle, the data of Cell(’)’0 is discarded and the data
of Cell} , is stored. Note that the data of Cell , is no longer
required for any computation at this stage.

In this method, only a small portion of the grid is cached.
To compute a N x P grid using a 3 x 3 stencil, we need
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FIGURE 3. The method of caching intermediate data between iterations,
which is used by the accelerators proposed in [4], [11], and [12]. (a) N x P
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a shift-register array of length 2 x N + 4. The length of
the shift-registers only depends on N and not P. Since the
computations of the cells of an iteration are mutually inde-
pendent, we can do the computation after rotating the grid
by 90 degrees. In this case, the shift-register size equals to
2x P+4 anditdoes notdependon N.If N # P, we can access
data along the dimension with the smallest size to reduce
the length of the shift-register array. Therefore, the length
of the shift-register array is decided by the smallest row
or column for 2-D stencils, and the smallest plane for 3-D
stencils. However, if the sizes of all dimensions of a grid are
large, we cannot reduce the length of the shift-register size.
Therefore, using this method for large grids can be difficult.

Another method is to partition the grid into multiple over-
lapped tiles. It is a very popular method used in CPUs
and GPUs [13], [14] to accelerate stencil computation. Fig.4a
shows how to divide a grid into tiles. The tiles are overlapped
in order to share the data on their boundaries. This overlapped
region is called halo region or ghost zone. The computations
and data access of the halo region is redundant. Fig.4b shows
how the computation of a tile is done. To compute a N x M
region, we use a (N + 2) x (M + 2) tile. To compute for ¢
iterations, we need a (N +2 x t) x (M + 2 x t) tile. Therefore,
the halo region increases with the number of iterations. This
results in a large amount of redundant data access, compu-
tations and storage. Overlapped tiling method is used in the
previous work such as [15]. In [15], all the intermediate data
of a tile is stored in the internal memory of the FPGAs, and
computation is done in cell-parallel manner. Although the
internal memory in FPGAs is quite large compared to that
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of a GPU, it is still a scarce resource. When the tile size or
the number of iterations increases, more internal memory is
required and that limits the performance.

The method proposed in [16] uses overlapped tiling with
iteration-parallel computation. It uses cached data of partial
tiles to compute the cells in a new iteration while the cells
in the previous iteration are also been computed. As a result,
the cache requirement is significantly reduced. To implement
this method, CPUs and GPUs require barrier synchronization
of threads, which could limit the performance. This approach
is used for FPGAs in [17]. It uses a shift-register array similar
to that in [4] to cache the data in tiles. When there are enough
data in the shift-register array, the cells in the next iteration
are computed in parallel, similar to that in Fig.2b. The cached
data are replaced by new once when the old data are no longer
been required for further computations. It needs to cache only
a fraction of a data of a tile unlike [15] that caches all the
data of a tile. Moreover, the tile size is much smaller than the
whole grid so that the shift-register length is much smaller
compared to that in [4]. For an added advantage, this method
does not need any synchronization since all the computations
can be precisely scheduled in every time step using single-
work-item kernels in OpenCL [3]. The disadvantages of this
method are very similar to those in the original overlapped
tiling approach. To process more iterations in parallel, a larger
tile size is required and that leads to a large halo region. That
results in many redundant memory accesses, computations
and also storage.

B. PREVIOUS APPROACHES TO ACCELERATE STENCIL
COMPUTATION USING MULTIPLE FPGAS

The research in [18] is one of the earliest work that pro-
posed a multi-FPGA accelerator. It uses tile-based implemen-
tation. It processes tiles independently on different FPGAs
and merge the computation results. The research in [11] uses
HDL-based design with older generation Stratix III FPGAs.
Multiple iterations are processed in parallel using differ-
ent FPGAs. Multiple FPGAs are connected using 1GB/s
HSTC connectors (high speed Terasic connectors) through
the HSMC (high speed mezzanine card) interface [19]. The
results of one FPGA are transferred to another using HSMC
interface. Since the data transfer speed is small, it could often
become the bottleneck. It is also extremely difficult to design
this accelerator in HDL due to different clock frequencies in
multiple FPGAs. The work in [20] also proposes a similar
approach but uses high-speed data transfers between FPGAs.
However, the accelerator in [20] can be used only for a spe-
cific fluid-dynamics simulation application and it does not
consider different applications. Both [11] and [20] have not
explored the feasibility of overlapped tiling, which could be
very important for large grids.

C. PARTITIONING OF STENCIL COMPUTATION AND
STRUCTURE OF FPGA ACCELERATORS

Stencil computation can be partitioned in both space and time
dimensions. Dividing a large grid into multiple partitions and
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FIGURE 4. Stencil computation based on overlapped tiling.
(a) Overlapped tiles. (b) Computation of a tile. To compute a 3 x 3 region
in iteration 2, we need the data of a 5 x 5 tile in iteration 1.

process those partitions in parallel using multiple FPGAs
is called “‘scaling in space dimension”. Processing multiple
iterations of the same grid using multiple FPGAs in parallel
is called “scaling in time dimension”. FPGA accelerators
can be organized in several ways. One way is to connect
all FPGAs to one host CPU. Another way is to connect one
FPGA to another through parallel or serial connection. All
those methods and different grid types should be evaluated to
obtain a proper conclusion.

IIl. SCALING STENCIL COMPUTATION USING

MULTIPLE FPGAS

We can scale stencil computation in both space and time
dimensions. Such scaling is required to increase the pro-
cessing speed using the computation capability of multiple
FPGAs, or to process a large-size problem that can not be
done on a single FPGA due to the lack of resources.

A. SCALING IN TIME DIMENSION: DEEPLY-PIPELINED
FPGA-ARRAY

In this approach, we use iteration-parallel computation on
multiple FPGAs to increase the processing speed. The accel-
erator architecture for this approach is based on our earlier
work [4]. Fig.5 shows the stencil computation architecture
using two FPGAs. It contains a series of pipelined computa-
tion modules (PCMs) connected in an array. The computation
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of an iteration is done in a PCM. The results of one PCM is
stored in shift-registers and accessed by the next PCM. Multi-
ple PCMs process multiple iterations in parallel as explained
in section II. The number of PCMs represents the degree
of iteration parallelism Pj,,. The number of PEs per PCM
represents the degree of cell parallelism P.;;. The total degree
of parallelism is given by Pizer X Peejy.

To increase the processing speed, we have to increase
either Pj,, or P..;. If we increase P..;;, we have to access
the input data of all the cells that are processed in parallel.
That increases the required memory bandwidth. Therefore,
the external memory bandwidth of the FPGA limits the
maximum degree of cell parallelism. We can increase Pjs,
by using multiple FPGAs to increase the processing speed,
without affecting the required memory bandwidth. For this
purpose, we have to send the intermediate results of one
FPGA to another directly.

1) DATA TRANSFERS AMONG MULTIPLE FPGAS

USING 1/0 CHANNELS

Data transfers between FPGAs can be done in several ways.
As shown in Fig.6, FPGAs and a host CPU are connected
through the PCle bus. Multiple FPGAs can also be connected
to each other directly using QSFP connectors. To transfer the
computation results between two FPGAs, we can copy the
results of one FPGA to the host memory and then copy those
to another. However, this approach requires data copying to
the host, which is an additional overhead. Instead, we can
use QSFP connectors. There are two different methods to use
QSFP connectors to transfer data. One method is to use eth-
ernet protocol as discussed in [21]. This method is applicable
for both inter-FPGA data transfers and also CPU-FPGA data
transfers. However, the data are sent as packets where a packet
contains additional overhead such as I/P address, flags, etc.
As a result, the effective data rate can be reduced. The other
method is to use a serial connection between two FPGAs.
The data are send from a PE in one FPGA directly to a PE
in another FPGA. The connection is a dedicated one between
two PEs in two FPGAs. As a result, the additional overheads
such as I/P addresses are not required.

In Intel FPGA SDK for OpenCL [22], channels are used to
transfer data between two kernels. A channel is a hand-shake
based data transfer method between a source and a destination
kernels. The source kernel writes to the channel, and waits
until the data are accessed by the destination kernel. The
destination kernel waits until data are available in the channel.
This is called the “‘blocking behavior” of the channels. To
connect two kernels in two FPGAs, we use /O channels.
I/0 channels behave very similar to normal channels, and the
source and the destination kernels are belonging to two differ-
ent FPGAs. I/O channels are implemented using QSFP serial
connections between two FPGAs. QSFP connectors of mul-
tiple FPGAs are directly connected using fiber optic cables.
One major advantage of the I/O channel based FPGA-to-
FPGA data transfer is the blocking behavior. The source ker-
nel in one FPGA stalls if the data in the channel is not read by
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the destination kernel in the other FPGA. We do not get packet
losses such as those in ethernet-based data transfers [21].
Therefore, we can transfer data between two FPGAs, even
their clock frequencies are different. In addition, we can
achieve more than 99% of the theoretical throughput of an
I/0O channel for both read and write accesses simultaneously.
Using multiple I/O channels in parallel, we can increase the
throughput by a factor of number of channels. Also note
that, the next generation Stratix 10 FPGA boards have four
QSFP28 connectors [23] that provide a throughput of upto
100Gbps per channel.

Fig.7 shows the stencil computation architecture using
multiple FPGAs. Fig.7a shows the inter-FPGA data transfer
between n FPGAs that are connected through I/O channels.
Each FPGA can access either its external memory data,
or channel data from the other FPGA. The datapath has two
phases. In phase 1, PCM 1 of FPGA 1 accesses the data from
the external memory, and the output of PCMj; of FPGA
1 is written to PCM; of FPGA 2 through the I/O channel.
Similarly, the outputs of PCM} of each FPGA are transferred
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FPGA board 2

to the inputs of PCMy of the next FPGA. The output of
PCMj, of FPGA n is written to the external memory of
FPGA n. In phase 2, PCM of FPGA n accesses the data from
the external memory of FPGA n, and the output of PCMj»
of FPGA n is written to PCM; of FPGA n — 1 through the
I/O channel. Similarly, the rest of the outputs are transferred
to the previous FPGAs through the I/O channels. The output
of PCMy1 of FPGA 1 is written to the external memory of
FPGA 1. The phases 1 and 2 are executed one after the other
by the host. In each phase, the input is selected (external
memory or channel) according to a control signal sent by
the host. Similarly, the same control signal is used to decide
whether to write the outputs to the I/O channel or to the
external memory. Intel offline compiler generates complex
datapath to conditionally change the data stream, resulting
more resource usage and less performance.

We can simplify the datapath by designing the accelerator
architecture as shown in Fig.7b. In this architecture, the out-
put of PCMj._1 in FPGA 1 is transferred to PCM1 in FPGA 2.
Similar data transfers are done among all the other FPGAs.
The output of PCMy> of FPGA n is transferred back to FPGA
1 through an I/O channel. All the data transfers among FPGAs
are done simultaneously. In this architecture, the last FPGA
transfers the output to the first FPGA and then it is written
to the external memory. Therefore, the external memory read
and write accesses are done by PCM; and PCM}, of FPGA
1 respectively. All the other FPGAs do not access the external
memory. The datapath among FPGAs is simplified and we
do not need a control signal from the host to change the
input source. If there are no data transfer bottlenecks, we can
obtain near-liner performance by adding more FPGAs to the
system.
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FIGURE 7. Stencil computation accelerator using multiple FPGAs. (a) Inter-FPGA data transfer b
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datapath. The phases 1 and 2 are executed one after the other by the host. (b) Improved stencil computation accelerator

architecture using a fixed datapath.

2) BOTTLENECKS AND LIMITATIONS OF A
DEEPLY-PIPELINED FPGA ARRAY

Processing speed of this approach is decided by the value
of Pj,r. To increase Pj,,, we have to allocate more PCMs.
Since a PCM contains a shift-register array, we have to imple-
ment it using resources such as RAM blocks and registers.
The required shift-registers for 2-D 3 x 3 stencil is given
by Eq.(1).

Shift register size

dsize .
=1{2x + 4| x sizeof (float) X Peeii { X Piter
Pl
(H

VOLUME 7, 2019

The size of the smallest dimension of the grid is denoted by
dsize- When dj;;, increases, the RAM block utilization can be
a bottleneck. Since the total degree of parallelism is given
by Pcenr X Pjer, we can reduce the shift-register size without
affecting the performance by increasing P..;; and decreasing
Pisr. Note that the total degree of parallelism does not change
if we increase the degree of cell parallelism to Py X 2% and
decrease the degree of iteration parallelism to Pj., / 2% where
k is an integer. However, increasing P..; also increases the
required global memory bandwidth and the required channel
throughput given by Eqgs.(2) and (3), respectively. The kernel
frequency is denoted by f.

Memory bandwidth = 2 x sizeof (float) X Peey X f  (2)
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(a) Tiles of a 2-D grid. (b) Tiles of a 3-D grid.

Channel throughput = sizeof (float) X Peeyp X f 3)

Therefore, we can trade RAM blocks with memory band-
width and channel throughput to improve the performance.
We discuss this trade-off in section I'V. In addition, the maxi-
mum grid size is restricted by the global memory size of one
FPGA, and we cannot increase the grid size using multiple
FPGA:s.

B. SCALING IN SPACE DIMENSION: SKEWED
OVERLAPPED TILING

In this approach, we divide a large grid into multiple
overlapped-tiles. The computation of a tile is done using both
cell-parallel and iteration-parallel computations as explained
in section II. The computations in a single FPGA is done
similar to the previous work [17]. However, we improve the
tile partition method to reduce the halo region. As explained
in section II-A, the shift-register size is decided by the size
of only a single dimension for 2-D stencils, and the sizes of
only two dimensions for 3-D stencils. Therefore, instead of
choosing square tiles for 2-D stencils and cubic tiles for 3-D
stencils, as done in previous work, we use skewed-tiles as
shown in Fig.8. Tile partitioning of 2-D and 3-D grids are
shown in Figs.8a and 8b respectively. Since we do not divide
the tiles along the largest dimension, we can remove the halo
regions of it, as shown in Fig.9. Note that, how to obtain
the optimal number of tiles and the optimal tile size is a
difficult problem, and it is not in the scope of this paper. In
the evaluation, we consider many different tile sizes and use
the best results.

We can process tiles in parallel on multiple FPGAs. The
architecture for this implementation is based on the one in [3].
The host computer (CPU) divides the grid into tiles and assign
tiles to different FPGAs. When all the tiles are processed for
P, iterations, the host read and transfer the overlapped (or
shared) data among multiple FPGAs. Since we can decide the
size of each dimension of a tile, we can use a small tile size
to reduce the shift-register size. The data of the whole grid is
shared by multiple FPGAs. Therefore, only a portion of the
grid is stored in the external memory of an FPGA. As a result,
we can reduce the external memory usage and process larger
grids using more FPGAs.

In this method, the host have to update the data
of the overlapped data regions among multiple FPGAs.
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The processing time required for this data transfers is usually
small compared to the processing time in FPGAs. We further
reduce this data access time by using inter-FPGA data trans-
fers. After processing all tiles in all FPGAs for Py, iterations,
we run a small kernel that transfer only the overlapped data
among FPGAs. Therefore, the inter-FPGA data transfer time
is negligible compared to the computation time.

If a grid is fit into the FPGA and the RAM block usage
is not a bottleneck, we must give the priority for the first
approach and scale in time dimension. Since scaling in time
dimension does not require redundant computations, redun-
dant data access or redundant storage, it is very efficient and
provides the best performance. However, if a grid is too large
or the RAM block usage is a bottleneck, we have to evaluate
both approaches to design the best accelerator. If we have
many FPGAs, we can combine both approaches and scale in
both space and time dimensions together.

IV. EVALUATION

We use four 2-D stencil benchmarks and two 3-D stencil
benchmarks as shown in Table 1 for the evaluation. For each
benchmark, we evaluate kernels with different Pj;., and P.y;
values. Then we chose the kernel with the smallest processing
time. We use two ‘‘Nallatech 385A accelerator boards” [24]
that contain Intel Arria 10 10AX115N3F40E2SG FPGAs.
Compilation of the OpenCL codes is done using Quartus
17.1 with Intel FPGA SDK for OpenCL 17.1 [22]. The grid
sizes we used are similar to the recent work [17], but much
larger compared to the previous work, such as [25], [26].

A. EVALUATION USING 2-D AND 3-D STENCIL
COMPUTATION BENCHMARKS

Table 2 shows the performance comparison of one-FPGA and
2-FPGA implementations of 2-D and 3-D stencil computa-
tion benchmarks using single-precision floating-point com-
putations. In this evaluation, we use skewed grids where
the size of one dimension of the grid is significantly
smaller than the others. Such skewed grids are available
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TABLE 1. Stencil computation benchmarks.

Benchmark

Computation

Laplace eq. 2-D

0.25(V; 1 + Vi, + Vi, Vi)

Diffusion 2-D

kl . th—l + kQ : ‘/;t_l’j + k3 : ‘/;tj + k4 ° ‘/;t] + k5 . ‘/itj-l—l

3

Hotspot 2-D

V,fj + k X (power; ; + (V,fﬂ,j + V,Lvt,Lj — 2.0V,L-t,j) X Ry
(Vi + Vi 1 =20V ) x Ry + (TEMPanp — Vi) x Rz)

Jacobi 9-pt. 2-D

kl"/it—l,jfl + kQ'Vit,j—l + k3"/it+1,j—1 + k‘l"/it—l,j + k5~Vz‘Jf;j + k6~‘/if+1,j+
k. Vi i ke Vil ke Vil 51

Diffusion 3-D

kl"/q‘,t,j—l‘k + kZ"/it—l,J,k + k3-‘/7‘,t,_7“k-,—1 + k4-Va,t,J,k + kS-V;,t-H,j,k + k‘ﬁ"/it;j-#l,k

Hotspot 3-D

ky - Vit,j,k + ko - ‘/it.j—l,k + ks - Vit,j+1,k + kg - Vit+1.y,k + ks - Vit—l,j,k + ke - Vit,j,k—l"’_
k7 - Vvt,j,kJrl + kg - power; j x + ko - TEMPanmB

i

TABLE 2. Comparison of 1-FPGA and 2-FPGA implementations of the stencil computation benchmarks with skewed grids.

1-FPGA implementation 2-FPGA implementation
Benchmark N Speed
Grid size Performance Frequency Performance Frequency

GFLOP/s | Cells/s (MHz) GFLOP/s | Cells/s (MHz) P

Laplace eq. 2-D 4096 x 65536 659 164.1 352 1210 302.5 315 1.84
Diffusion 2-D 4096 x 65536 763 84.8 356 1491 165.7 348 1.95
Hotspot 2-D 4096 x 65536 740 493 309 1450 96.7 302 1.96
Jacobi 9-pt. 2-D 4096 x 65536 950 55.9 369 1861 109.5 352 1.96
Diffusion 3-D 128 x 128 x 8192 628 48.3 276 1281 98.5 275 2.04
Hotspot 3-D 128 x 128 x 8192 630 37.1 240 1148 67.6 267 1.82

TABLE 3. Resource utilization of 1-FPGA implementations of skewed grids. Grayed areas indicate the bottleneck resources.

Logic DSP Memory RAM Required memory

Benchmark resources blocks (MB) blocks bandwidth
Laplace eq. 2-D || 161,634 (38%) | 1440 (95%) | 2.2 (34%) | 1142 (42%) 66.3 %
Diffusion 2-D 116,365 (27%) | 1440 (95%) | 1.3(19%) | 737 (27%) 66.9%
Hotspot 2-D 134,723 (32%) | 1440 (95%) | 3.0 (45%) | 1627 (60%) 58.1%
Jacobi 9-pt. 2-D || 114,113 (27%) | 1406 (93%) | 1.5(23%) | 832 (31%) 34.7%
Diffusion 3-D 135,197 (32%) | 1408 (93%) | 3.1 (47%) | 1449 (53%) 51.9%
Hotspot 3-D 147,345 (34%) | 1440 (95%) | 5.4 (81%) | 2396 (88%) 90.1%

in many real world applications. For example, Hotspot 3-D
benchmark [27] is often used to simulate the temperature
distribution of 3-D LSIs [28]. Another example is FDTD sim-
ulation of fiber-optic cables [29] where the cross-section of a
cable is extremely small compared to its length. Therefore,
the size of dimensions corresponds to the cross section is
small compared to the size of the dimension corresponds
to the length. As shown in Table 2, the processing speeds
of 2-FPGA implementations are two times larger compared
to those of 1-FPGA implementations. The processing speed
depends on the clock frequency and the degree of parallelism.
The degree of parallelism is doubled by processing more iter-
ations in parallel in two FPGAs, while the clock frequency is
nearly the same. Therefore, we can obtain near-linear speed-
up using multiple FPGAs. Due to the blocking behavior of the
I/O channels as explained in section III-A.1, we can transfer
data between multiple FPGAs even they have different clock
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frequencies. However, the performance of the whole system
is decided by the smallest clock frequency among all FPGAs.

Tables 3 and 4 show the resource utilization and required
global memory bandwidth of 1-FPGA and 2-FPGA imple-
mentations respectively. Table 4 also shows the required
channel throughput for 2-FPGA implementations. The
grayed areas indicate the bottleneck resources. In both tables,
performances are restricted by the DSP utilization. According
to our experience, it is possible to obtain more than 90% of the
external memory bandwidth for sequential external memory
access. We can also obtain more than 99% of the theoret-
ical channel throughput. For all benchmarks, the required
channel throughput and memory bandwidth can be achieved.
Even though stencil computation is usually memory-bound
in CPUs and GPUs, neither the external memory access nor
the inter-FPGA data transfers are bottlenecks for any stencil
computation benchmark that use skewed grids. As a result,
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we can increase the performance by adding more FPGAs to
the system.

Table 5 shows the power consumption of one and two
FPGA implementations. The power consumption of the
FPGA boards are measured using MMD library functions
of the Nallatech BSP 17.1. It provides access to the power
sensors on the FPGA board. The power consumption is mea-
sured for the whole board including the FPGA, two mem-
ory modules, two QSFP connections and all other on-board
components. The power consumption per FPGA is around
45W~58W for all benchmarks, which is smaller compared
to the typical power consumption of GPUs.

Table 6 shows the performance comparison of 1-FPGA and
2-FPGA implementations for non-skewed grids. The number
of cells and the computation amount are the same as those of
the skewed grids. The performances of Laplace eq. 2-D and
all 3-D benchmarks have reduced significantly compared to
their performances using skewed-grids in Table 2. In addition,
the performance does not scale linearly for some benchmarks.

Table 7 shows the possible bottlenecks of stencil com-
putations using non-skewed grids. The processing speed is
mainly restricted by the global memory bandwidth, RAM
block usage, DSP usage or channel throughput. Non-skewed
grids require a large amount of shift-registers to store the
intermediate results among iterations. Therefore, the demand
for RAMs blocks is large. As explained in section III-A.2,
we can trade global memory bandwidth for RAM blocks
and increase the degree of cell-parallelism. This results in a
shorter lifetime of the intermediate data, thus reducing the
amount of shift registers, as shown by Eq.(1). However, this
also require more data to be accessed in parallel from the
global memory or from the other FPGAs and leads to data
access bottlenecks. As a result, either the global memory
bandwidth, channel throughput or the RAM block usage is
a bottleneck for all 3-D benchmarks and also for Laplace
eq. 2-D benchmark. The performance of these benchmarks
have severely reduced despite having a lot of unused DSP
blocks.

Table 8 shows the trade-off between the RAM block usage
and the data access for Laplace eq. 2-D benchmark. When
the degree of cell-parallelism is 4 (P.y = 4), the RAM
block usage is a bottleneck. As a result, the degree of total
parallelism (Pcey; X Piger) is small. When P..; = 8, we can
increase the degree of parallelism by nearly 50% compared
to that of P,y = 4, using a similar amount of RAM blocks.
However, the required memory bandwidth and the required
channel throughput are also increased by nearly 50%. Since
the memory bandwidth is not a bottleneck and the required
channel throughput is still close to the theoretical maximum,
we can see a large performance improvement. When P, =
16, the degree of parallelism is increased further compared to
that of P..; = 8, and the RAM block usage is no longer a
bottleneck. However, the processing speed is reduced signif-
icantly. When P..;; = 16, the required channel throughput is
182%, and the memory bandwidth is also a bottleneck. Due
to these bottlenecks, the processing speed is decreased. This

53196

1.2 » 1400 1.4
7 %0 i o 1200 times
= 600 times 9
S s00 36 W, 351000 35 §107
@ 400 times imes E 800 imes [@times
@ 300 S 600
& 200 g 400

—

£ 100 o 200
o - 0
€ 0 S e
g laplace Diffusion Hotspot Laplace Diffusion Hotspot

eq.2-D 3D 3-D eq.2-D  3-D 3-D

M Skewed grid M Skewed grid

[] Non-skewed grid [] Non-skewed grid

M Non-skewed grid @ Non-skewed grid
(overlapped tiling) (overlapped tiling)

(a) (b)

FIGURE 10. Performance comparison of “skewed grids", “non-skewed
grids (no tiling)” and non-skewed grids with overlapped tiling".
(a) 1-FPGA implementation. (b) 2-FPGA implementation.

shows that we have to consider both, the RAM block usage
and the data access bottlenecks to improve the performance.
Note that, despite having RAM block usage limitations or
data access bottlenecks, we can still improve the performance
by adding more FPGAs to the array. However, each FPGA
would give sub-optimal performance.

We can increase the performance of the stencil computa-
tions of non-skewed grids by dividing the grid into “skewed
overlapped tiles”. Fig.10 shows the performance compar-
isons using ‘“‘skewed grids”, ‘“‘non-skewed grids and ‘“‘non-
skewed grids divided into tiles”. We use the three benchmarks
that have a very high RAM block utilization compared to
DSPs for this evaluation. The performances of 1-FPGA and
2-FPGA implementations of non-skewed grids are improved
significantly using overlapped tiles, as shown in Figs.10a and
10b. However, the performances of the non-skewed grids are
still smaller than those of the skewed grids, despite both grid
types contain the same number of cells and require the same
amount of computations. The reason for this is the redundant
computations and memory accesses of the halo regions of the
overlapped tiles.

Fig.11 shows the speed-up of 2-FPGA implementations
using non-skewed grids by scaling in either time or space
dimension. We used the skewed-overlapped—tiling imple-
mentation for all 3-D stencil benchmarks and Laplace eq. 2D
benchmark, since the RAM block usage is a bottleneck, and
scale the computation in space dimension using two FPGAs.
We compute the whole grid without dividing it into tile
for all the other benchmarks, and scale the computation in
time dimension. The performances are nearly doubled when
using two FPGAs for all the benchmarks. This results are
very similar to the ones with skewed grids in Table 2. This
shows, we can nearly double the performance using two
FPGAs, for any grid type. Theoretically, it is possible to
achieve near-linear speed-up using multiple FPGAs, since we
can scale the computation in either time or space dimension
depending on the bottlenecks.
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TABLE 4. Resource utilization of 2-FPGA implementations. Grayed areas indicate the bottleneck resources.

Benchmark Logie | DS | Memory | RaM memory | channer

bandwidth | throughput
Laplace eq. 2D | o) | 0n st | 1440 0%) | 4.1 (€250, | 1070 (race) | 207 | 50:4%
Diffusion 2D || b0 | 11 o6 (6t | 1440 0) | 22 ity | 1118 1ty | 2T | 557
Hotspot 2D || (R0 | 130eas (ost) | 1440 0%) | 30 (4se) | 1608 (6200) | S09% | 484%
Jacobi 9-pt. 2D || [Pt | 000 ety | 1443 06ty | 16 (2456, | 818 Gose) | BT | 562%
Diffusion 3-D | o) | 1337107 (x0%) | 1408 (08%) | 31 (47%) | 14d0 (act) | S8% | 881%
Hotspot 3D || (00 | 153300 (a6et) | 1440 08) | 4.4 (6c) | 2s6e oree) | 7% | 853%

TABLE 5. Power consumption of the FPGA accelerator board for stencil computations.

1-FPGA implementation 2-FPGA implementation
Benchmark Power | Performance per Watt || Power | Performance per Watt
() (“5) () (“5)

Laplace eq. 2-D | 49.1 13.1 100.4 12.0
Diffusion 2-D 50.5 15.1 99.2 15.0
Hotspot 2-D 48.8 15.1 94.0 15.4
Jacobi 9-pt. 2-D | 52.9 17.9 107.6 17.3
Diffusion 3-D 57.2 11.0 117.7 10.9
Hotspot 3-D 45.6 13.8 91.0 12.6

TABLE 6. Comparison of 1-FPGA and 2-FPGA implementations of the stencil computation benchmarks with non-skewed grids. (overlapped tiling is not

used).
1-FPGA implementation 2-FPGA implementation
Benchmark N Speed
Grid size Performance Frequency Performance Frequency

GFLOP/s | Cells/s (MHz) GFLOP/s | Cells/s (MHz) “up

Laplace eq. 2-D 16384 x 16384 485 121.2 299 828 206.9 327 1.71
Diffusion 2-D 16384 x 16384 740 82.2 345 1333 148.1 320 1.80
Hotspot 2-D 16384 x 16384 611 40.7 296 1204 80.3 300 1.97
Jacobi 9-pt. 2-D 16384 x 16384 874 51.4 340 1769 104.0 340 2.02
Diffusion 3-D 512 x 512 x 512 105 8.1 267 100 15.5 271 0.95
Hotspot 3-D 512 x 512 x 512 33 2.0 221 66.7 39 242 2.00

Table 9 shows the 1-FPGA performance of double-
precision floating-point computation using skewed grids.
Processing speeds of the double-precision computations
are significantly smaller compared to those of the
single-precision computations shown in Table 2. FPGAs
only contain single-precision computation units, and do
not contain double-precision computation units. Therefore,
double-precision multiplication is done using logic resources,
registers and DSPs, while double-precision addition is done
using logic resources and registers. Since Laplace eq. 2-D
benchmark can be done using additions only, we can see
0% DSP usage. (Multiplication by 0.25 can be implemented
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using bit-shift operations). The performances are limited
mainly by the logic resource utilization. Usually, it is very
difficult to fit a kernel that has more than 80% logic resource
utilization. For double-precision computations, a CPU or a
double-precision capable GPU such as P100 or V100 is more
suitable than FPGAs.

B. COMPARISON AGAINST OTHER FPGA-BASED
ACCELERATORS

Fig.12 shows the comparison against the previous work [17]
and [30]. This work and [17] use the same type of FPGA
boards, the same benchmarks and the same grid sizes.
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TABLE 7. Bottleneck factor for the stencil computations of non-skewed grids. (Overlapped tiling is not used. Hardware resources are shown for each

FPGA separately in 2-FPGA implementation.).

1-FPGA implementation 2-FPGA implementation
Benchmark DSP RAM Required DSP RAM Required | Req. channel
blocks blocks bandwidth blocks blocks bandwidth | throughput
Laplace eq. 2-D || 1440 (95%) | 1876 (69%) 112% 1008 (66%) | 2506 (92%) 61% 105%
1008 (66%) | 2506 (92%) 7 7
Diffusion 2-D 1440 (95%) | 1872 (69%) 65% 1440 (95%) | 1903 (70%) 60% 102%
1440 (95%) | 1903 (70%) 5 ?
Hotspot 2-D 1440 (95%) | 2496 (92%) 106% 1440 (95%) | 2546 (94%)
113% 96.0%
1440 (95%) | 2546 (94%)
Jacobi 9-pt. 2-D || 1387 (91%) | 1279 (47%) 64% 1406 (92%) | 2273 (84%) 300 549,
1443 (95%) | 2300 (85%) v ¢
Diffusion 3-D 256 (17%) | 2364 (87%) 100% 256 (17%) | 2364 (87%) 1029 173%
256 (17%) | 2364 (87%) ¢ 7
Hotspot 3-D 144 (9%) 2429 (90% 125% 144 9%) | 2390 (88%) 91% 1559%
144 (9%) | 2390 (88%) ’ ’
TABLE 8. Trade-off between RAM block usage and data access for 2-FPGA implementation of Laplace eq. 2-D benchmark.
Parallelism Resources Data access Performance
‘ DSP RAM Required | Required channel
Peeur | Piter blocks blocks bandwidth throughput GFLOP/s
528 (35%) | 2579 (95%)
4 44 528 (35%) | 2565 (94%) 33% >6% 487
1008 (66%) | 2506 (92%)
8 42 1008 (66%) | 2506 (92%) 61% 105% 828
1440 (95%) | 1890 (70%)
16 30 1440 (95%) | 1890 (70%) 107% 182% 471

TABLE 9. 1-FPGA implementations of double-precision floating-point stencil computation benchmarks. Grayed areas indicate the bottleneck resources.

Performance Clock . Resource utilization
Benchmark (GFLOP/s) Frequency Logic Registers Memory RAM DSP

(MHz) resources (MB) blocks blocks

Laplace eq. 2-D 115 273 362074 (85%) | 716,611 | 2.0 (30%) | 1056 (39%) 0 (0%)
Diffusion 2-D 104 294 357,436 (84%) | 748,742 | 1.6 (24%) | 853 (31%) | 720 (47%)
Hotspot 2-D 101 263 357,749 (84%) | 739,379 | 3.7 (56%) | 2051 (76%) | 416 (27%)
Jacobi 9-pt. 2-D 93 282 353,403 (83%) | 430,118 | 0.7 (10%) | 467 (17%) | 720 (47%)
Diffusion 3-D 74 260 323,812 (76%) | 639,492 | 3.1 (47%) | 1889 (70%) | 616 (41%)
Hotspot 3-D 52 221 270,302 (63%) | 536,729 | 3.9 (59%) | 2225 (82%) | 448 (30%)

The work in [30] uses a fully automated approach to
implement stencil computations on AlphaData ADM-PCIE-
KU3 FPGA board that contains Xilinx XCKU060 FPGA.
All grids are non-skewed ones. When using a single FPGA,
the processing speeds of the proposed method are larger than
those of [30]. One major reason for the better performance
in this work is the larger memory bandwidth and internal
memory capacity of our Nallatech 385A board compared to
the ADM-PCIE-KU3 board used in [30]. We also achieved
similar or slightly better processing speed compared to those
of [17]. Since we used skewed tiles, the halo reghion is much
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smaller compared to the square or cubic tiles used in [17].
This could be the reason for the better performance in this
work. Moreover, we can improve the performance more than
1.8 times by using two FPGAs, and can expect near-liner
performance by using more FPGAs.

There are some other works such as [11], [12], [20], [26]
that shows the performances of stencil computation acceler-
ators using FPGAs. The work in [11] shows 260 GFLOP/s
using 9 Stratix III DE3 FPGA boards [31]. The fluid simula-
tion accelerator proposed in [12] shows 519 GFLOP/s using
one FPGA, and a similar accelerator proposed in [20] shows
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FIGURE 12. Performance comparison against [17] and [30].

4,808 GFLOP/s using 16 FPGAs. The work in [26] shows
less than 12 GFLOP/s processing speed using low-end Xilinx
Zinq FPGAs. However, a direct and a fair comparison with
these works is difficult due to the differences in FPGA boards,
unknown algorithms an unknown grid sizes, etc.

C. COMPARISON AGAINST GPU-BASED ACCELERATORS
To compare the performance with GPU accelerators,
we implement 2-D stencil computation benchmarks on Titan
XP (Pascal) GPU [32]. We use two types of GPU imple-
mentations. The baseline GPU performance is achieved with-
out using any cache blocking method. We also evaluate
the GPU performance using temporal blocking. Temporal
blocking [13], [14], [16] is a technique that uses the cache or
shared memory to re-use the data between consecutive itera-
tions without accessing the external memory. The baseline
performances of GPUs are 76% to 91% of the maximum
performances predicted by the roofline model [33], and we
achieved 1.5 to 2.3 times speed-up using temporal blocking.
We achieved higher performances for Laplace eq. 2-D and
Diffusion 2-D benchmarks, while lower performances for
Hotspot 2-D and Jacobi 9-pt. 2-D benchmarks using a single
FPGA. The 2-FPGA implementation provides the highest
performances for all benchmarks. The comparison results
against GPU implementations are similar for both skewed and
non-skewed grids of 2-D stencils, despite the small perfor-
mance reduction for non-skewed ones.
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FIGURE 14. Performance comparison against GPU-implementations of
diffusion 3-D benchmark. The performance of GPUs are obtained
from [17] and [34].

Fig.14 shows the comparison with the GPU using diffusion
3-D benchmark. The performance of K20X GPU is obtained
from the work in [34], and the performances of the other
GPUs are obtained from [17]. Both [17] and [34] use tempo-
ral blocking to increase the performance. The performances
of 1-FPGA and 2-FPGA implementations of skewed-grids
are slightly better than the performances of “GTX 980 Ti”
and “P100” GPUs respectively. We observed a 40% perfor-
mance reduction for non-skewed grids compared to skewed
grids. The latest high-end V100 GPU gives the largest pro-
cessing speed among all implementations. We need four
FPGAs to exceed the performance of a single V100 GPU.

Fig.15 shows power-efficiency comparison of GPU and
FPGA implementations using Diffusion 3-D benchmark.
Power consumption data of FPGAs are measured using MMD
library API of the Nallatech BSP 17.1, while the power
consumption data of GPUs are taken from [17]. Work in [17]
measured the power consumption using NVDIA NVML
library [35] that can access the on-board power sensors of the
GPU boards. The power-efficiency is obtained by dividing the
performance from the average power consumption. The aver-
age power consumption is calculated by measuring the power
consumption over hundred times. According to the results,
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FIGURE 15. Comparison of the power-efficiency of GPU and FPGA
implementations using diffusion 3-D benchmark. The power-efficiency
data of GPUs are taken from [17].

the power-efficiency of FPGA implementations are similar
or better than all GPU implementations. We achieved a better
power-efficiency using FPGAs, especially for the skewed-
grids. Note that the Diffusion 3-D benchmark has the worst
power-efficiency among all FPGA implementations as shown
in Table 5. Therefore, we could expect even better results
by comparing the power-efficiency of the other benchmarks.
However, it is very difficult to do a fair comparison due to
the unavailability of power consumption data in the previ-
ous work of optimized GPU implementations. In addition,
the power consumption of the FPGA implementations are
significantly smaller compared to those of GPU implemen-
tations. This observation is very important when designing
supercomputers. If the power consumption is large, we need
large power supply units, better cooling systems and also have
to deal with a large peak current. Since all of these adds-up to
the total cost, we can see a huge potential in FPGAs in the
field of high-performance computing. The next generation
Stratix 10 FPGAs [23] are expected to provide much higher
performance compared to middle-range Arria 10 FPGAs we
used in this work.

V. CONCLUSION

In this paper, we proposed a scalable accelerator for stencil
computations using multiple FPGAs. We can scale stencil
computation in both time and space dimensions. Scaling in
time dimension does not require redundant computations or
memory accesses. However, this method is suitable for stencil
computations of skewed grids or some 2-D stencils where
the RAM block usage is not a bottleneck. Usually, the RAM
block usage is large for 3-D stencils with non-skewed grids,
and scaling in space dimension is required to accelerate these
computations. We can nearly double the performance of all
benchmarks with any grid-type using two FPGAs, by scaling
on either time or space dimension. Theoretically, we can
expect near-linear performance using more FPGAs. We have
shown that our 2-FPGA accelerator produces over 1 TFLOP/s
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of processing speed for all 2-D and 3-D stencil computations.
The performance are comparable to high-end GPUs at a
significantly low power consumption. The power-efficiency
is better than many high-end GPUs. As a result, we can see a
huge potential to use FPGAs in the field of high-performance
computing.

Obtaining the optimal tile size for multi-FPGA accelerator
is an important area that should be considered in future work.
Previous work such as [17] and [30] have formulated models
to predict performance of single FPGA implementations. We
have to include inter-FPGA communications also in perfor-
mance models of multi-FPGA accelerators to find the optimal
tile size.
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