IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 18, 2019, accepted April 5, 2019, date of publication April 11, 2019, date of current version April 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910732

Enabling Feature Location for APl Method
Recommendation and Usage Location

XIAOBING SUN"“12, (Member, IEEE), CONGYING XU',

BIN LI', YUCONG DUAN"“3, AND XINTONG LU!

!'School of Information Engineering, Yangzhou University, Yangzhou 225009, China

2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

3College of Information Science and Technology, Hainan University, Hainan 570228, China

Corresponding author: Bin Li (Ib@yzu.edu.cn)

This work was supported in part by the Natural Science Foundation of China under Grant 61872312, Grant 61472344, and Grant 61402396,
in part by the Open Funds of State Key Laboratory for Novel Software Technology of Nanjing University under Grant KFKT2018B12,
in part by the Jiangsu Qin Lan Project, in part by the Jiangsu 333 Project, and in part by the Jiangsu Overseas Visiting Scholar Program.

ABSTRACT Given a new feature request during software evolution, developers are used to employing
existing third-party libraries and APIs for implementation. However, it is usually non-trivial to find suitable
APIs and to decide where to use these APIs in the original software. In this paper, we develop an approach
for recommending API methods and usage locations through mining various software repositories. First,
we analyze software repositories and use the feature location technique to localize feature-related files as
API usage locations. Then, we utilize the feature-related files and API libraries to identify potential API
methods for the implementation of the incoming feature request. We evaluate our approach on 5000 feature
requests selected from five Java projects, and the results demonstrate that our approach can achieve 29.7%
and 9.6% improvement in terms of Hit@5 and Hit@10 in recommending API methods, compared with
the existing approach. For API usage localization, our approach can get MAP, MRR, Hit@1, HIt@5, and
Hit@10 values with 0.293, 0.434, 0.303, 0.602, and 0.685, respectively.

INDEX TERMS Feature implementation, API recommendation, API usage location, feature location,

mining software repositories.

I. INTRODUCTION

Developers always face the challenge of implementing a
huge amount of feature requests to meet various users’
requirements during software evolution. To implement a fea-
ture request, developers are used to employing third-party
libraries or Application Programming Interfaces (APIs) to
save the implementation time [1], [2].

However, in order to effectively use third-party libraries
or APIs, developers need to spend a lot of time in under-
standing the methods and classes in the original software.
At present, more than 2.6 million Java third-party libraries
are stored in Maven Central Repository." It is non-trivial
for developers to find suitable methods from such a huge
amount of libraries for usage. Moreover, when using APIs for
maintenance, developers have to go through a tedious process
to identify the locations of related API methods or classes in

The associate editor coordinating the review of this manuscript and
approving it for publication was Hailong Sun.
1 http://mvnrepository.com/repos/central

the original software. After these tedious steps, developers
can utilize these libraries or APIs in the original software to
finish the incoming feature requests implementation.

To alleviate above challenges, lots of work have been
devoted to API recommendation [3]-[9]. Thung et al. pro-
posed an approach to recommend API methods by mining
historical feature request repositories and API libraries [3].
They measured the similarity between the descriptions of
feature requests and API methods to recommend potential
API methods for implementing the incoming feature request.
Our previous work extends Thung et al.’s work, and pro-
posed an approach called MULAPI [10], to improve the accu-
racy of API method recommendation based on API usage
location. In addition to recommend API methods, MULAPI
also recommends API usage locations to guide developers
for feature implementation. Specifically, MULAPI uses the
feature location technique [11] to identify the API usage
locations. However, when using MULAPI, there are nearly
20 parameters to set to recommend API locations, which is
not well for its generalizability.

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

49872

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5165-5080
https://orcid.org/0000-0001-8417-892X

X. Sun et al.: Enabling Feature Location for APl Method Recommendation and Usage Location

IEEE Access

In this paper, we attempt to alleviate the complexity of
using MULAPI, and design a simplified technique based on
MULAPI. Specifically, we simplify the MULAPI by using
fewer parameters (from 17 to 2) during the API location
recommendation process. In this way, the complexity of the
technology is reduced and the generalizability is improved.
In addition, with respect to information retrieval technology
for computing semantic similarity, we employ CNN_NPL?
technology to improve the accuracy.

We evaluate our approach on 5000 feature requests
stored in JIRA® issue tracking system from five Java soft-
ware projects (“Axis2/ Java”, “CXF”, “Hadoop Com-
mon”’, “Hbase” and “Struts2”’), and use Hit@N, MAP and
MRR to evaluate our approach. Our study shows that our
approach achieves 29.7% and 9.6% improvement in terms
of Hit@5 and Hit@10, respectively in recommending API
methods, compared with the state-of-the-art approach [3]. For
recommending API usage locations, our approach can get
MAP, MRR, Hit@1, HIt@5 and Hit@10 values of 0.293,
0.434, 0.303, 0.602 and 0.685, respectively.

The rest of this paper is organized as follows. In Section II,
we present the technique of feature location and natu-
ral language processing. In Section III, we introduce our
approach. We describe the empirical study in Section IV, and
followed by discussing the related work in Section V. Finally,
We conclude our work in Section VI.

Il. PRELIMINARIES

A. FEATURE LOCATION

In our work, we use the feature location technique to help rec-
ommend API usage locations. Feature location takes a feature
request as input, and maps the feature request to the source
code, i.e., files, classes, methods, code units, etc. [11]. In the
JIRA system, there are several fields for a feature request,4
i.e., description, components, reporter, etc. Then, based on the
software repository mining technique, a set of feature related
files are generated as the locations to implement the feature
request [12].

In this paper, we use the information retrieval technique
to mine the software repository to implement the feature
location technique and identify the feature related code files.
First, we parse source code files into abstract syntax trees to
extract the static source code, i.e., classes, methods, com-
ments, etc. Then, we make use of the natural language
processing technique to compute relevance between feature
requests and source code files. In addition, we mine historical
request repository to search for similar requests. Based on
the similar historical requests, we can identify their corre-
sponding revised files as relevant to the incoming feature
request.

2http://ai.baidu.com/tech/nlp/simnet
3 https://www.atlassian.com/software/jira

4https://issues.apache.org/j ira/secure/ShowConstantsHelp.jspa?
decorator=popup#IssueTypes

VOLUME 7, 2019

B. NATURAL LANGUAGE PROCESSING

The information of a feature request and those stored in
software repositories are mostly expressed with the natural
language format. So we employ the natural language process-
ing (NLP) technique to deal with these information.

In our approach, we employ the CNN_NLP released by
Baidu AI° for natural language processing. The CNN_NLP
is shown to be effective to compute the similarity with a
high accuracy for short texts, which is suitable for the data
in the software repositories. The interface of CNN_NLP is
implemented based on the neural network semantic matching
model with supervised massive data training, which is called
SimNet framework. The SimNet framework uses deep neural
network structure, including input layer, presentation layer,
matching layer, and output layer. The input layer is based
on the sequence of words, and the word sequence is then
converted to a word embedding sequence. The presentation
layer is to construct the word-to-sentence representation and
transform it into one or more low-dimensional dense semantic
vectors with global web information. The matching layer
uses the expression vector of the text to perform the inter-
active calculation. Based on different application scenarios,
two matching algorithms (representation-based matching and
interaction-based matching) are developed and finally the
matching score of two inputs is generated.

We mainly employ the CNN_NLP interface to compute
semantic similarity between two messages in the software
repositories. Given two messages M1 and M2, we input
M1 and M2, and then the interface returns their semantic
similarity result. More details can refer to their web page.’
In the following parts of this paper, we compute the similarity
of two messages as follows:

SimilarityScore(M1, M2) = CNN_NLP(M1,M2) (1)

In this paper, our approach employs this CNN_NLP inter-
face to process natural language information and computes
the similarity result between two messages.

Ill. OUR APPROACH

Figure 1 shows the process of our approach. The input
includes an incoming feature request, source code repository,
historical feature request repository, and API libraries. First,
we mine the source code repository and historical feature
request repository to extract feature related files and historical
similar requests which are related to the new feature request.
Then, these feature related files and similar feature requests
are processed by employing the feature location technique
to identify more accurate feature related files used as API
usage locations recommended to developers. Finally, histori-
cal similar requests, API usage locations and API libraries are
respectively analyzed to recommend API methods. By doing
this, three different lists of API methods are recommended by
mining three different data sources. In this way, a ranked list

5http://ai.baidu.com
6http://ai.baidu.com/tech/nlp

49873

IEEEACC@SS X. Sun et al.: Enabling Feature Location for API Method Recommendation and Usage Location

New Feature — Ranked API
Request . §
] Feature Location Usage Location

v

Recommend
methods from API
Usage Location

<< Mine source Feature —
e code repository [] related files ||
Source Code —
Repository ——
Mine feature Similar -
request 1 requests |
P repository _/—\
e~——
L

Historical

Feature Request

v
Ranked API
Collect methods Integrator Methods
from similar requests

__ Repository __J

0

Mine API libraries for

_——
API Libraries
~—

FIGURE 1. The process of our approach.

of API methods is recommended by combining these three
different lists of API methods.

A. MINING SOFTWARE REPOSITORIES

1) MINING SOURCE CODE REPOSITORY

For API usage location, we have to analyze the source code
repository to identify feature related files. We extract the
key information from the source code files by parsing the
source code files into AST (abstract syntax tree) [13], [14],
and then extract their comments, class names, method names
and variable names. To compute the similarity between a
source code file and a feature request, we extract the summary
and description in the incoming feature request and use the
NLP (natural language processing) technique described in
Section II-B to process them. We further analyze the natural
language text and programming language text in the source
code files, respectively [15]. Natural language text contains
comments from the source code files, while programming
language text mainly includes class names, method names
and variable names. Given a new feature request FR, the fea-
ture relevant value of a source code file f is computed as
follows:

SCFScore (FR, f) = a; x CNN_NLP (fcinyn, FRsp)
+ay; x CNN_NLP (f.o, FRsp) (2)

Jfemvn refers to the content of programming language text
in the source code file f; f., refers to the comments in the
source code file f. FRgp is the summary and description of a
feature request FR; CNN _NLP (f, i, FRsp) is the similarity
value between f.,,, and FRy; computed by the CNN natural
language processing technique. We set weights a; and ap
for CNN _NLP (femyn, FRsp) and CNN _NLP (f.,, FRsp). The
values of them are set as 0.5 by default, and the sum of a; and
ap is 1. It aims to limit the maximum value of SCFScore to
be no more than 1.

At this step, we can estimate the correlation between a
source code file and a feature request via the SCFScore value
of the corresponding file based on mining the source code
repository.

49874

"] feature related methods

2) MINING HISTORICAL FEATURE REQUEST REPOSITORY
During the implementation process of a feature request,
some files must be co-changed and the API methods will
be applied to implement it [3], [16]. In addition, there may
be some similar historical feature requests that have been
implemented. At this time, we can refer to revisions of these
similar historical feature requests to use similar API methods
in relevant or the same code files. So identifying these similar
historical requests is helpful to recommend API methods and
their usage locations.

In the process of identifying similar historical requests,
we refer to Thung et al.” approach, which obtains the simi-
larity value between two feature requests by combining dif-
ferent fields in the feature request, i.e., summary, description,
reporter, components and priority. Our approach further con-
siders another field, i.e., ‘linked-issues’, which is necessary
and useful to identify similar historical feature requests.

Then, we compute the similarity value between two feature
requests based on their respective fields, and combine them
into an aggregated value. For each field in the feature request,
their similarity values are computed as follows.

Summary and Description: The information of these two
fields are mostly natural language text. We employ the
CNN natural language processing technique described in
Section II-B to compute the similarity values:

SDScore(FR1, FR2) = CNN_NLP(FR1sp, FR2sp) (3)

FR1sp and FR2gp represent the content in the summary
and description field for FR1 and FR2, respectively.

Components: When a feature request is implemented,
some components in the original software may be revised cor-
respondingly. The similarity value of this field is computed as
follows:

SFr1c () SFR2C
V/NSEr1c X \/NSER2c
SFr1c and Spgra- indicate the components of the incoming

feature request FR1 and the FR2’s, and the numerator is the
size of the intersection between them. NSpgi. and NSrgo.

CompScore(FR1, FR2) =

“

VOLUME 7, 2019

X. Sun et al.: Enabling Feature Location for APl Method Recommendation and Usage Location

IEEE Access

represent the number of components related to FR1 and FR2,
respectively.
Reporter: Reporters are users or developers who reported
these requests. The similarity is computed as follows:
RepScore(FR1, FR2) = 1 (th.e same reporter)
0 (different reporters)
Priority: Each issue in the tracking system has a prior-
ity value (e.g. “Block™, “Critical”, “Major”, ““Minor”” and
“Trivial””).” We assign value 1 for “Blocker”, 2 for “Crit-
ical”, 3 for “Major”’, 4 for “Minor” and 5 for “Trivial”,
respectively. The formula used to compute the ‘priority’ sim-
ilarity value is as follows:
1

PrioScore(FR1, FR2) = - - (6)
1 + |Priopr1 — Prioppo|

Priopg; and Priogg, indicate the values of feature FR1’s
priority field and FR2’s, respectively.

Linked-issues: A new feature request is sometimes linked
to previous issues. Given a new feature request FRI
and a historical feature request FR2, if the linked-issues
field of FR1 contains FR2’s issuekey(ID), the value of
LinkScore(FR1, FR2) is 1, otherwise it is 0.

Finally, we combine the similarity values of the above
fields to obtain an integrated similarity result as follows:

SimScore(FR1, FR2) = by x SDScore(FR1, FR2)
+ by x CompScore(FR1, FR2)
+ b3 x RepScore(FR1, FR2)
+ by x PrioScore(FR1, FR2)
+ bs x LinkScore(FR1, FR2) (7)

SDScore(FR1, FR2), CompScore(FR1, FR2), RepScore
(FR1, FR2), PrioScore(FR1,FR2) and LinkScore(FR1,FR2)
represent the similarity values between FR1’s and FR2’s
summary and description, components, reporter, priority and
linked-issues, respectively. bi-bs are weights of each field
contributing to the SimScore(FR1, FR2).

3) MINING API LIBRARIES

A direct and convenient way of recommending API methods
is searching API libraries to identify relevant API methods.
In the API libraries, API documents contain textual descrip-
tion for explaining each API in the library. Developers often
investigate into API documents to identify suitable API meth-
ods to implement a feature request. So we mine API libraries
through identifying the relevance between API description
and feature request text. The details will be described in
Section III-C.2-3.

B. FEATURE LOCATION

We employ the feature location technique to localize feature
related files to obtain the API usage locations. For implement-
ing the new feature request, developers need to modify some

7https://issues.apache.org/j ira/secure/ShowConstantsHelp.jspa?
decorator=popup#IssueTypes

VOLUME 7, 2019

feature related files. In our approach, we make use of the fea-
ture location technique to get these related files as API usage
location. Feature location is a process to identify the potential
locations in the software to implement an incoming feature
request. In our approach, we localize feature related files from
two aspects. First, we mine source code repository through
computing the semantic similarity of text in feature requests
and source code files. Then, we search for similar closed or
resolved feature requests in historical feature request repos-
itory, and extract the files modified for implementing these
similar feature requests. Finally, we combine the results from
the above two steps to get the list of potential API usage
locations.

Mining source code repository has been described in
Section III-A, and other steps of feature location are shown
as follows:

1) COLLECTING FEATURE RELATED FILES

FROM SIMILAR HISTORICAL REQUESTS

During the process of implementing a feature request, some
feature related files are modified. Similar historical feature
requests may involve modification to the same or relevant
files. Thus, we can collect those files which are involved in
implementing those similar feature requests as the feature
location result.

According to the step described in Section III-A, we can
identify the top-k most similar feature requests from histor-
ical feature request repository. After that, we compute the
feature relevant value for each candidate file based on the
top-k similar feature requests. Given a file f, we compute
the feature relevant value for a new feature request FR as
follows:

County

SFRScore (FR, f) = (8)

County indicates the number of similar feature requests that
the file f was modified for their implementation.

2) INTEGRATING FEATURE LOCATION RESULTS

After the above steps, we get two sets of values for feature
related files, i.e., SCFScore (FR, f) by mining source code
repository and SFRScore (FR,) by mining historical feature
repository. To generate the final API usage locations, we com-
bine the two sets of values as follows:

FLScore (FR,f) = a x SCFScore (FR, f)
+ b x SFRScore (FR, f) ®
a and b are the weights for source code repository based value
and similar historical request repository based value, respec-
tively. The source code file with the highest FLScore (FR, f)

value is viewed as the most suitable API usage location
recommended to developers.

C. API METHOD RECOMMENDATION
To identify potential API methods for implementing the
incoming feature request, we mine three different data

49875

IEEE Access

X. Sun et al.: Enabling Feature Location for APl Method Recommendation and Usage Location

sources, and extract three different sets of feature related API
methods. Then, we integrate the three sets of methods into a
list of potential API methods, which will be recommended to
developers for implementing features.

1) RECOMMENDING APl METHODS FROM

APl USAGE LOCATIONS

In this step, we recommend API methods based on the API
usage location recommendation as shown in Section III-B.
Given a new feature request FR, its relevant files f and an
API method m, we compute API’s feature relevant value as
follows:

RecScore” (FR,m) = a1 X CNN_NLP(fn;, mg)
+az x CNN_NLP (fy1, mq) ~ (10)

fu and my are the natural language text in the file f and
method m, respectively; fp; is the programming language code
in f. The weights for similarity of natural language part and
programming language part are 1 and o, respectively. The
values of them are set as 0.5 by default, and the sum of
a; and ap is 1, which aims to limit the maximum value of
RecScore™ (FR, m) to be no more than 1.

2) COLLECTING API METHODS FROM SIMILAR HISTORICAL
FEATURE REQUESTS FOR RECOMMENDATION
In this step, we extract API methods that were involved to
implement these feature requests.

We compute feature relevant values for each API method
based on similar historical feature requests by using the fol-
lowing equation.

Count
RecScore! (FR, m) = Oblin o (11)

Count,, represents the number of similar feature requests
that the method m was used for these features’ implemen-
tation, and k shows the number of similar historical feature
requests.

3) MINING API LIBRARIES FOR FEATURE RELATED METHODS
To use API methods for implementing a feature request,
the corresponding API descriptions in the API libraries
should be relevant to this feature request. So we also need
to mine API libraries to get the relevance of the API method
to the incoming feature request.

For a new feature request FR and API documents, we inte-
grate the summary and description fields of the new feature
request into a whole textual format. Then, we compute the
similarity between the feature request and API documents
with the CNN natural language processing technique. The
feature relevant value between FR and method m is computed
in the following way:

RecScore® (FR, m) = CNN_NLP (FR;, mg) (12)

FR, is the description text in the feature request FR, and
myg 1is the description text of method m.

49876

4) INTEGRATOR
Finally, we combine three sets of results generated above to
get the final values for all potential API methods, as follows:

RecScore™ P (FR,m) = a X RecScore™ (FR, m)
+ 8 x RecScore' (FR, m)
+y x RecScore” (FR,m) (13)

«, B and y represent the weights of RecScore® (FR, m),
RecScore! (FR, m) and RecScoreP (FR, m) contributing to
the API recommendation by mining different software repos-
itories, respectively. To set appropriate values of these
weights, we employ a greedy approach based on Gibbs
sampling [17], which is shown in Section IV-D. Finally,
API methods are ranked and recommended based on the
RecScore™P (FR, m) values.

IV. EMPIRICAL STUDY

In this section, we show the evaluation of our approach. First,
we introduce the used dataset and evaluation metrics. Next,
we propose our research questions, followed by describ-
ing our experimental methodology and environment. Finally,
we present and discuss the empirical results.

A. DATASET

To evaluate our approach effectively and compare with
the state-of-the-art approach fairly, we choose the same
projects in JIRA® that are used by Thung et al., including
“Axis2/Java”, “CXF”, “Hadoop Common’, “Hbase” and
“Struts2”. Axis2/Java ° is a Web Services/SOAP/WSDL
engine, the successor to the widely used Apache Axis SOAP
stack. It has integrated support for the widely popular REST
style of Web services. CXF'? is an open source services
framework, which helps developers build and develop ser-
vices using frontend programming APIs, like JAX-WS and
JAX-RS. These services can speak a variety of protocols
such as SOAP, XML/HTTP, or RESTful HTTP and can work
over a variety of transports such as HTTP, JMS or JBIL.
HadoopCommon'! is one of the modules in the Apache
Hadoop project, which includes the common utilities to sup-
port distributed processing of large data sets across clusters
of computers using simple programming models for reliable,
scalable, distributed computing. Hbase'? is an open-source,
distributed, versioned, non-relational database modeled for
the Hadoop database, a distributed, scalable, big data store.
Struts2!3 is a free, open-source, MVC framework for creat-
ing elegant, modern Java web applications, which supports
convention over configuration. Moreover, it is extensible
by using the plugin architecture, and ships with plugins to
support REST, AJAX and JSON.

8https://www.atlassian.com/software/jira
9http://axis.apacherrg/axiSZ/java/corc:/
10http://cxf.21pache.0r§:,r

11 http://hadoop.apache.org
12http://hbase.apache.org

13 http://struts.apache.org

VOLUME 7, 2019

X. Sun et al.: Enabling Feature Location for APl Method Recommendation and Usage Location

IEEE Access

TABLE 1. Five apache subject projects for evaluation.

Subjects Period

Axis2/Java 2005/9/5 - 2017/1/5
CXF 2011/7/18 - 2017/7/20
Hadoop Common ~ 2012/11/21 - 2017/7/24
Hbase 2014/8/14 - 2017/7/22
Struts2 2006/1/28 -2017/7/19

To evaluate the effectiveness of APl method and usage
location recommendation in our study, we chose the latest
1000 closed or resolved feature requests of each project,
as Table 1 shows. For collecting methods from historical
similar requests, we also collected commit logs from Git
repositories of five projects. In addition, to collect the used
API methods in these projects, we refer to the work of
Thung et.al., and employ API methods from ten widely
used third-party libraries with the latest version in Apache
projects, i.e., commons-codec,'* commons-io,'> commons-
lang,'® commons-logging,!” easymock,'® junit,'® log4;j,?
servlet-api,”! slf4j-api,”” and slf4j-log4j12.23

B. EVALUATION METRICS

To evaluate the effectiveness of our approach for API recom-
mendation, we use the following metrics:

1) MEAN AVERAGE PRECISION (MAP)

MAP is the mean value of AP (average precision) results over
the evaluated feature requests, which takes all feature related
methods into account to show the overall recommendation,
defined as the following formula:

o % P(k) x pos(k)
= number of correctly recommended elements
(14)

M indicates the number of all the recommended results;
k represents the position in the recommendation list;
pos(k) indicates whether the result in this position (k) is
truly recommended (1 if the result is truly recommended,
otherwise 0.), and P(k) is the ratio of correctly recommended
results over top-k recommended results.

2) MEAN RECIPROCAL RANK (MRR)
The MRR indicates the reciprocal of the position of the
first feature relevant method, which is defined as the

14http://commons.apache.org /proper/commons-codec/

15 http://commons.apache.org/proper/commons-io/

1 6http://commons.apache.org/proper/commons—lang/
17http://cornmons.&pache.org/proper/commons—10 gging/

1 8http://easymock.org/api/

http://junit.org/junitd/

20https://logging.apache.org/logéi'j/1 2/

21 http://tomcat.apache.org/tomcat—7.0-doc/servletapi/

z http://www.programmingforfuture.com/2010/05/servlet-api.html
z3 https://www.versioneye.com/java/org.slf4j:slf4j-log4j12/1.7.25

VOLUME 7, 2019

following formula:

MRR = ! XQ: ! (15)
) P rank;
Q refers to the number of recommendation results; rank; is
the position of the first feature related method.

3) TOP-K RANK (HIT@N)

Hit@N is used to calculate the number of feature requests
where one of the related methods appears in the top N
(i.e., 1, 5, 10) results. For a feature request, if at least one of
its related methods occurs in the top N results, we consider
that the recommendation is effective, and the value of top N
is 1, otherwise it is O.

4) GAIN
Gain is used to show the improvement between two results
generated by two approaches:

R, — R

Gain = L 100% (16)

R
Ry and R, refer to the computation results of two
approaches, respectively.

C. RESEARCH QUESTIONS
To show the effectiveness of our approach, we propose the
following three research questions.

1) RQ1: DOES OUR APPROACH OUTPERFORM

THE STATE-OF-THE-ART APPROACH IN

API METHOD RECOMMENDATION?

Our approach extends Thung et al.’s approach by mining
more software repositories and employing the feature loca-
tion technique to recommend API methods. So we first inves-
tigate whether our approach can improve the effectiveness of
API method recommendation over Thung et al.’s approach.

2) RQ2: 1S OUR APPROACH EFFECTIVE IN

RECOMMENDING API USAGE LOCATION?

Our approach recommends not only API methods as tradi-
tional API recommendation techniques, but also their prob-
able usage locations. So we would like to show whether our
approach can recommend accurate API usage locations for
developers to use.

3) RQ3: HOW EFFECTIVE IS TO USE THE SOURCE CODE
REPOSITORY FOR APl RECOMMENDATION?

Our approach extends Thung et al.’s approach by mining
more software repositories, i.e., source code repository. So we
examine whether mining source code repository is useful for
API recommendation.

D. METHODOLOGY AND ENVIRONMENT
We evaluated our approach by performing stratified ten-
fold cross validations for all these five projects. Specifically,

49877

IEEE Access

X. Sun et al.: Enabling Feature Location for APl Method Recommendation and Usage Location

we first selected 1000 feature requests for each project from
their issue tracking systems, and divided them into ten groups.
Then, nine groups were combined as the historical feature
request repository, and one group was used as the set of
new feature requests. The historical feature request repository
was used to train parameters and the set of new feature
requests was used to evaluate the effectiveness. Our study
was conducted on a workstation with 24-core Intel Xeon
processor (2.4 GHz) and 32GB RAM

To obtain appropriate values for different weights in our
approach: «, B and y in Equation (13), b1 —bs in Equation (7),
a and b in Equation (9), we employed a greedy approach
based on Gibbs sampling [17] to iteratively execute for rela-
tively optimal values of these weights. During each iteration,
each weight is optimized independently (with 0.1 increment
at each iteration from O to 1) and other weights are set as
constants. Then, in the similar way, several other iterations
were performed to further optimize the other weights. During
the iteration process, we employed MAP as the goal for
iterations. When the value of MAP is the highest and does not
change any more, the iteration is finished. Finally, we obtain
the values of different weights as shown in Table 2.

TABLE 2. Values of various weights based on Gibbs sampling.

Subjects a b b1 bo bs ba bs
Axis2/Java 036 084 068 052 066 0.01 0.40
CXF 047 066 084 040 0.60 020 040
Hadoop Common 026 0.62 059 086 0.14 0.08 0.76
Hbase 027 0.68 091 0.1 0.32 0.1 0.94
Struts2 0.11 026 090 040 0.60 0.00 0.40
Average 029 061 078 045 046 0.08 0.58

To answer RQ1, we re-ran Thung et al.’s approach in the
same environment with the same dataset and compared the
two approaches with the same evaluation metrics defined
above, i.e., Hit@5 and Hit @10 values. We also referred to
Thung et al.’s evaluation approach to employ a ‘gold standard
set’ criterion to process feature requests [3]. To answer RQ2,
we validated our approach with 5000 feature requests from
these five projects. We employed three evaluation metrics
(MAP, MRR and Hit @N) to measure the effectiveness of our
approach for API usage location recommendation, and these
metrics were commonly used in existing works [18]-[21].
To answer RQ3, we tuned suitable weights for recommenda-
tion of APl usage locations, which can reflect the contribution
of the source code repository in recommending API methods.

E. EMPIRICAL RESULTS

1) RQ1: EFFECTIVENESS IN RECOMMENDING APl METHODS
For API method recommendation, the comparative results
of our approach and Thung et al.’s are shown in Table 3,
which shows that, on average, the values of Hitr@5 and
Hit @10 are improved to 0.772 and 0.832, respectively. This
means that our approach can recommend at least one feature
related method with the accuracy of 77.2% and 83.2% in the
top five and ten recommended API methods, respectively.

49878

TABLE 3. Results of our approach VS thung et al’s approach.

Subjects Technique Hit@Q5 Gain Hit@Ql0 Gain
. Our approach 0.952 0.960
Axis2/Java Thung’s approach 0.818 16.38% 0.909 561%
Our approach 0.614 0.757
CXF Thung’s approach 0.563 9.05% 0.750 0.93%
Hadoop Our approach 0.699 0.778
Common Thung’s approach 0.482 45.02% 0.660 17.88%
Our approach 0.870 0.937
Hbase Thung’s approach 0.649 34.05% 0.863 8.57%
) Our approach 0.726 oy 0.727
Struts2 Thung’s approach 0.462 57.14% 0.615 18.21%
Our approach 0.772 0.832
Average Thung’s approach 0.595 29.7% 0.759 9.6%
TABLE 4. Results of API usage location recommendation.
Subjects MAP MRR Hit@l Hit@5 Hit@10
Axis2/Java 0.234 0.409 0.296 0.550 0.627
CXF 0.180 0.283 0.137 0.438 0.562
Hadoop Common 0363 0.509 0.375 0.684 0.754
Hbase 0.273 0475 0.344 0.644 0.740
Struts2 0416 0.492 0.364 0.692 0.740
Average 0.293 0.434 0.303 0.602 0.685

In addition, the average gain results of Hit @5 and Hit @ 10 for
our approach is 29.7% and 9.6% over Thung et al.’s approach.
For the Struts2 project, the Hit @5 and Hit @10 values of our
approach are improved by 57.14% and 18.21%, respectively.
Moreover, for API method recommendation, the improve-
ment scale of Hit@5 value is higher than Hit@ 10 as shown
in Table 3, which means that useful API methods can be more
easily identified for usage in the top five results with our
approach. Based on these results, we can conclude that our
approach is more accurate to recommend API methods com-
pared with the state-of-the-art technique, i.e., Thung et al.’s
approach, especially for the top five recommendation.

2) RQ2: EFFECTIVENESS IN RECOMMENDING

API USAGE LOCATIONS

Table 4 shows the accuracy of the results of our approach
in recommending API usage locations. The average values
of Hit@1, Hit@5 and Hit@10 of our approach are 0.303,
0.602 and 0.685, respectively. With respect to the top one
file, our approach can correctly identify the feature related
files with the accuracy value between 13.7% and 37.5%. With
respect to the results of top five recommended usage loca-
tions, our approach can correctly identify the feature related
files with the accuracy value between 43.8% and 69.2%. With
respect to the top ten recommended locations, our approach
can recommend at least one related location with the accu-
racy value between 56.2% and 75.4%. From the MAP and
MRR results, we notice that their average values can reach
0.293 and 0.434, respectively. So from the results discussed
above, we can conclude that the API usage location recom-
mendation is also effective, which can help developers find
the locations where they will implement the incoming feature
request.

VOLUME 7, 2019

X. Sun et al.: Enabling Feature Location for APl Method Recommendation and Usage Location

IEEE Access

TABLE 5. Weights of recommendation by mining different software
repositories in our approach.

Subjects « B ¥
Axis2/Java 1.00 1.00 0.10
CXF 1.00 099 0.28
Hadoop Common 0.49 1.00 0.10
Hbase 0.61 1.00 0.10
Struts2 1.00 1.00 0.26
Average 0.82 0998 0.17

3) RQ3: EFFECTIVENESS OF SOURCE CODE REPOSITORY

IN APl RECOMMENDATION

Table 5 shows the results of @, § and y, which indicate
the weights for recommendation from API usage location,
recommendation from similar historical requests and recom-
mendation from mining API libraries, respectively. In our
approach, API method recommendation based on usage loca-
tion mainly depends on computing the relevance of the source
code files to the incoming feature request, and we use «
to show the role of mining source code repository for API
recommendation. From the results in Table 5, we notice that
recommendation from API usage location (&) is important
for recommending API methods, and the average value of «
achieves 0.82, which is about five times over recommenda-
tion from mining API libraries. That is to say, API usage loca-
tion is effective for improving the accuracy of API method
recommendation. Hence, we can conclude that mining source
code repository is effective for API recommendation.

In addition, we see from the results in Table 5 that the effec-
tiveness of API method recommendation based on mining
API libraries is the most weak. We attempted to investigate
into the experimental data in our study, and found that the
main reason is that most of descriptions of these API methods
in libraries are too short, which affect their effect in iden-
tifying relevant APIs. So using natural language processing
technique on the short text is not effective as on those data
of other software repositories with more textual descriptions.
In contrast, there are more rich information in source code
repository. So mining source code repository is more helpful
for API recommendation.

F. THREATS TO VALIDITY
First, we discuss threats to external validity used to indicate
the generalizability of our findings. In our study, we only used
5000 feature requests from five software systems and recom-
mended API methods from 10 third-party libraries. But dur-
ing the process of practical feature request implementation,
there are many existing APIs for usage. This limitation can
be reduced by conducting studies in more subject programs
(or even practical evolved projects) from more libraries.
Then, we discuss threats to internal validity indicating
experimenter bias and errors in our study. We used a greedy
algorithm to obtain weights for recommendations in our
study. However, the greedy algorithm may not always find
the best weight values. In addition, we only selected historical
feature requests from some periods for evaluation or training,

VOLUME 7, 2019

which may also affect the evaluation results of our approach.
To alleviate this limitation, we have carefully checked our
source code and performed testing to guarantee that our
techniques was correctly implemented.

Finally, we discuss threats to construct validity, used to
indicate the suitability of metrics in our study. We employed
Hit@N to evaluate the API method recommendation, which
is widely used in existing studies [3], [8], [22]-[24]. In addi-
tion, we employed MAP, MRR and Hit@N to evaluate our
approach in recommending API usage locations, which are
also well-known information retrieval metrics and widely
used in existing studies [21], [25]-[27]. However, the eval-
uation results may be different with other metrics.

V. RELATED WORK

A. API RECOMMENDATION

API recommendation is widely studied in the field of code
recommendation and reuse. In our previous work, we pro-
posed an approach called MULAPI [10]. MULAPI improves
API method recommendation based on the API usage loca-
tion. However, there are many parameters in MULAPI, which
is not well scaled for practice. In this work, we simplify
MULAPI to reduce its complexity, and the number of param-
eters is greatly reduced. In addition, with respect to the
information retrieval technology for computing similarity,
we employ CNN_NPL technology. Zheng et al. proposed an
approach to integrate relevant Web search results for a given
API to recommend potential APIs [28]. Thung et al. devel-
oped an approach that uses the APIs within a project to rec-
ommend additional relevant APIs for developers to use. Later,
they proposed a new technique, WebAPIRec. WebAPIRec
uses a personalized ranking model to recommend web APIs
for potential usage [22]. Nguyen et al. proposed an API
recommendation approach that provides relevant API rec-
ommendation based on statistical learning from fine-grained
code changes and the context of change modifications [29].
Rahman et al. developed a technique to recommend relevant
APIs by analyzing keyword-API associations in the crowd-
sourced knowledge of StackOverflow [23]. Chan ef al. [4]
proposed a technique, which uses the code search to get a
graph of API methods. First, they search for similar closed
or resolved feature requests in the software repositories, and
identify the modified API methods in these feature requests.
Then, they compute the similarity between the description of
feature request and the description of API methods to recom-
mend potential API methods. The above work mainly focuses
on API recommendation. In this paper, we further recom-
mend API usage locations to guide developers to implement
the new proposed feature request.

There are some other work on finer-level code recom-
mendation. Robillard proposed a technique, Suade, which
explores the topology of structural dependencies in the
program to recommend potential methods or program ele-
ments [S]. Long et al. [7] proposed an approach which rec-
ommends methods to a target method by analyzing variables.
These work mainly focuses on analyzing the structural

49879

IEEE Access

X. Sun et al.: Enabling Feature Location for APl Method Recommendation and Usage Location

dependency in the program, and recommends the potential
program elements for usage during their development and
maintenance activity. In this paper, we recommend the prob-
able API methods and their usage locations for developers to
refer for implementing a feature request during the software
maintenance activity.

B. FEATURE LOCATION

In our work, feature location is employed to recommend
API usage locations. The goal of feature location is to get
the source code corresponding to a description of a feature
request [11].

Poshyvanyk et al. proposed an approach, which uses Latent
Semantic Indexing to obtain the feature related program
code, and then uses Formal Concept Analysis to cluster the
results as a concept lattice [30]. Wang et al. proposed to
recommend potentially relevant program code in an inter-
active feature location process [31]. They considered ongo-
ing user context in an interactive manner and performed
example-based reasoning to determine relevance of program
elements. Wang et al. performed a study to compare the effec-
tiveness of ten information retrieval based feature location
techniques [32]. The results showed that traditional infor-
mation retrieval techniques such as vector space model can
work better than more recent and complicated information
retrieval models, such as the Latent Dirichlet Allocation
model. Gethers et al. proposed an approach, which combines
different techniques, such as information retrieval, dynamic
analysis, and software repository mining together to perform
feature location [33]. Daiki et al. combined both static and
dynamic constraints in object-oriented programs, and per-
formed an interactive feature location process [34].

In this paper, we also combined information retrieval and
software repository mining technique to recommend rele-
vant files as API usage locations corresponding to a fea-
ture request. Then, we integrated the API usage locations to
recommend API methods.

VI. CONCLUSIONS

To accelerate the process of feature request implementation
during software maintenance and evolution, developers usu-
ally utilize third-party APIs or libraries. However, it is tedious
and difficult to find suitable API methods and use them in
the original software. To address this challenge, we use the
feature location technique to recommend API usage loca-
tions and API methods for developers to refer based on our
previous work [10]. We simplified the MULAPI by using
fewer parameters to improve its generalizability. The empir-
ical study showed that our approach can still improve the
Hit@5 and Hit @10 results by 29.7% and 9.6% respectively
in API method recommendation.

For future work, we plan to use the query reformulation
technique to pre-process the input of feature request to further
improve the accuracy of our approach [35], [36]. We also plan
to study personalized API usage location technique based on
developers’ experiences and habits [37], [38].

49880

REFERENCES

[1] W. Shi, X. Sun, B. Li, Y. Duan, and X. Liu, “Using feature-interface
graph for automatic interface recommendation: A case study,” in Proc. 3rd
Int. Conf. Adv. Cloud Big Data (CBD), Yangzhou, China, Oct./Nov. 2015,
pp. 296-303. doi: 10.1109/CBD.2015.55.

[2] X. Sun, B. Li, Y. Duan, W. Shi, and X. Liu, “Mining software reposito-
ries for automatic interface recommendation,” Sci. Program., vol. 2016,
May 2016, Art. no. 5475964. doi: 10.1155/2016/5475964.

[3] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic recommendation of
API methods from feature requests,” in Proc. 28th IEEE/ACM Int. Conf.
Automated Softw. Eng., Nov. 2013, pp. 290-300.

[4] W.-K. Chan, H. Cheng, and D. Lo, ““Searching connected api subgraph via

text phrases,” in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng.,

2012, p. 10.

M. P. Robillard, “Automatic generation of suggestions for program investi-

gation,” in Proc. 13th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2005,

vol. 30, no. 5, pp. 11-20.

[6] X. Sun, W. Xu, X. Xia, X. Chen, and B. Li, “Personalized project

recommendation on GitHub,” Sci. China Inf. Sci., vol. 61, no. 5, 2018,

Art. no. 050106. doi: 10.1007/s11432-017-9419-x.

F. Long, X. Wang, and Y. Cai, “Api hyperlinking via structural overlap,”

in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp.

Found. Softw. Eng., 2009, pp. 203-212.

[8] H.Yu, W. Song, and T. Mine, “APIBook: An effective approach for finding
APIs,” in Proc. 8th Asia-Pacific Symp. Internetware, 2016, pp. 45-53.

[9] C.Xu,B.Min, X. Sun,J. Hu, B. Li, and Y. Duan, “MULAPI: A tool for API
method and usage location recommendation,” in Proc. Int. Conf. Softw.
Eng. (ICSE), 2019.

[10] C. Xu, X. Sun, B. Li, X. Li, and H. Guo, “MULAPI: Improving API
method recommendation with APTusage location,” J. Syst. Softw., vol. 142,
pp. 195-205, Aug. 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121218300840

[11] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “‘Feature location in
source code: A taxonomy and survey,” J. Softw., Evol. Process, vol. 25,
no. 1, pp. 53-95, 2013.

[12] X. Sun, B. Li, H. Leung, B. Li, and P. Li, “MSR4SM: Using topic mod-
els to effectively mining software repositories for software maintenance
tasks,” Inf. Softw. Technol., vol. 66, pp. 1-12, Oct. 2015. doi: 10.1016/
j-infsof.2015.05.003.

[13] M. Hashimoto and A. Mori, “Diff/ts: A tool for fine-grained struc-
tural change analysis,” in Proc. 15th Work. Conf. Reverse Eng., 2008,
pp. 279-288.

[14] M. Hashimoto, A. Mori, and T. Izumida, “A comprehensive and scalable
method for analyzing fine-grained source code change patterns,” in Proc.
IEEE 22nd Int. Conf. Softw. Anal., Evol., Reeng. (SANER), Mar. 2015,
pp. 351-360.

[15] X.Sun, X. Liu, J. Hu, and J. Zhu, “Empirical studies on the nlp techniques
for source code data preprocessing,” in Proc. 3rd Int. Workshop Evidential
Assessment Softw. Technol., 2014, pp. 32-39.

[16] F. Thung, D. Lo, and J. Lawall, “‘Automated library recommendation,”
in Proc. 20th Work. Conf. Reverse Eng. (WCRE), Oct. 2013, pp. 182-191.

[17] G. Casella and E. 1. George, “Explaining the Gibbs sampler,” Amer.
Statist., vol. 46, no. 3, pp. 167-174, 1992.

[18] R.K.Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug local-
ization using structured information retrieval,” in Proc. 28th IEEE/ACM
Int. Conf. Automated Softw. Eng., Nov. 2013, pp. 345-355.

[19] B. Sisman and A. C. Kak, “Incorporating version histories in information
retrieval based bug localization,” in Proc. 9th IEEE Work. Conf. Mining
Softw. Repositories, Jun. 2012, pp. 50-59.

[20] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug
reports,” in Proc. 34th Int. Conf. Softw. Eng., Jun. 2012, pp. 14-24.

[21] S. Wang and D. Lo, “Version history, similar report, and structure: Putting
them together for improved bug localization,” in Proc. 22nd Int. Conf.
Program Comprehension, 2014, pp. 53-63.

[22] F. Thung, R.J. Oentaryo, D. Lo, and Y. Tian, “WebAPIRec: Recommend-
ing web APIs to software projects via personalized ranking,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 1, no. 3, pp. 145-156, Jun. 2017.

[23] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic API recom-
mendation using crowdsourced knowledge,” in Proc. IEEE 23rd Int. Conf.
Softw. Anal., Evol., Reeng. (SANER), vol. 1, 2016, pp. 349-359.

[24] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in Proc.
24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016, pp. 631-642.

[5

—

[7

—

VOLUME 7, 2019

http://dx.doi.org/10.1109/CBD.2015.55
http://dx.doi.org/10.1155/2016/5475964
http://dx.doi.org/10.1007/s11432-017-9419-x
http://dx.doi.org/10.1016/j.infsof.2015.05.003
http://dx.doi.org/10.1016/j.infsof.2015.05.003

X. Sun et al.: Enabling Feature Location for APl Method Recommendation and Usage Location

IEEE Access

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

A.T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun, “Duplicate
bug report detection with a combination of information retrieval and topic
modeling,” in Proc. 27th IEEE/ACM Int. Conf. Automated Softw. Eng.,
Sep. 2012, pp. 70-79.

P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Proc. 29th Int. Conf.
Softw. Eng., 2007, pp. 499-510.

C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, ‘““Towards more accurate retrieval
of duplicate bug reports,” in Proc. 26th IEEE/ACM Int. Conf. Automated
Softw. Eng., Nov. 2011, pp. 253-262.

W. Zheng, Q. Zhang, and M. R. Lyu, “Cross-library api recommendation
using web search engines,” in Proc. 19th ACM SIGSOFT Symp. 13th
Eur.conference Found. Softw. Eng., 2011, pp. 480—483.

A. T. Nguyen et al., “API code recommendation using statistical learning
from fine-grained changes,” in Proc. 24th ACM SIGSOFT Int. Symp.
Found. Softw. Eng., 2016, pp. 511-522.

D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location using
formal concept analysis and information retrieval,” ACM Trans. Softw.
Eng. Methodol., vol. 21, no. 4, p. 23, 2012.

J. Wang, X. Peng, Z. Xing, K. Fu, and W. Zhao, “Contextual recom-
mendation of relevant program elements in an interactive feature location
process,” in Proc. IEEE 17th Int. Work. Conf. Source Code Anal. Manipu-
lation (SCAM), Sep. 2017, pp. 61-70.

S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization using
information retrieval: An empirical study on linux kernel,” in Proc. 18th
Work. Conf. Reverse Eng., Oct. 2011, pp. 92-96.

M. Gethers, B. Dit, H. H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” in Proc. 34th Int. Conf. Softw.
Eng., Jun. 2012, pp. 430-440.

D. Fujioka and N. Nitta, “Constraints based approach to interactive feature
location,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME),
Sep. 2017, pp. 499-503.

M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion via word-
net for effective code search,” in Proc. IEEE 22nd Int. Conf. Softw. Anal.,
Evol., Ree. (SANER), Montreal, QC, Canada, Mar. 2015, pp. 545-549.
doi: 10.1109/SANER.2015.7081874.

J. Lu, Y. Wei, X. Sun, B. Li, W. Wen, and C. Zhou, “Interactive query
reformulation for source-code search with word relations,” IEEE Access,
vol. 6, pp. 75660-75668, 2018. doi: 10.1109/ACCESS.2018.2883963.

X. Sun, H. Yang, H. Leung, B. Li, H. J. Li, and L. Liao, “Effectiveness of
exploring historical commits for developer recommendation: An empir-
ical study,” Frontiers Comput. Sci., vol. 12, no. 3, pp. 528-544, 2018.
doi: 10.1007/s11704-016-6023-3.

X. Sun, H. Yang, X. Xia, and B. Li, “Enhancing developer recom-
mendation with supplementary information via mining historical com-
mits,” J. Syst. Softw., vol. 134, pp. 355-368, Dec. 2017. doi: 10.1016/
jj$s.2017.09.021.

XIAOBING SUN (M’ 15) received the B.S. degree
in computer science and technology from the
Jiangsu University of Science and Technology,
Jiangsu, China, in 2007, and the Ph.D. degree
in computer software and theory from Southeast
University, Jiangsu, in 2012. He is currently an
Associate Professor with Yangzhou University,
Jiangsu. His research interest includes software
maintenance and evolution.

VOLUME 7, 2019

CONGYING XU is currently pursuing the degree
with the School of Information Engineering,
Yangzhou University. His current research interest
includes recommendation systems.

BIN LI received the B.S. degree in computer
science and technology from Fudan University,
Shanghai, China, in 1986, and the Ph.D. degree
in computer software and engineering from the
Nanjing University of Aeronautics and Astronau-
tics, Jiangsu, China, in 2012. He is currently a
Professor with Yangzhou University, Jiangsu. His
research interest includes software engineering.

YUCONG DUAN is currently a Professor with the
College of Information Science and Technology,
Hainan University. His current research interests
include empirical software engineering, model-
driven development, knowledge engineering, data
engineering, and cloud computing.

XINTONG LU is currently pursuing the degree
with the School of Information Engineering,
Yangzhou University. Her current research inter-
ests include recommendation systems and knowl-
edge graph.

49881

http://dx.doi.org/10.1109/SANER.2015.7081874
http://dx.doi.org/10.1109/ACCESS.2018.2883963
http://dx.doi.org/10.1007/s11704-016-6023-3
http://dx.doi.org/10.1016/j.jss.2017.09.021
http://dx.doi.org/10.1016/j.jss.2017.09.021

	INTRODUCTION
	PRELIMINARIES
	FEATURE LOCATION
	NATURAL LANGUAGE PROCESSING

	OUR APPROACH
	MINING SOFTWARE REPOSITORIES
	MINING SOURCE CODE REPOSITORY
	MINING HISTORICAL FEATURE REQUEST REPOSITORY
	MINING API LIBRARIES

	FEATURE LOCATION
	COLLECTING FEATURE RELATED FILES FROM SIMILAR HISTORICAL REQUESTS
	INTEGRATING FEATURE LOCATION RESULTS

	API METHOD RECOMMENDATION
	RECOMMENDING API METHODS FROM API USAGE LOCATIONS
	COLLECTING API METHODS FROM SIMILAR HISTORICAL FEATURE REQUESTS FOR RECOMMENDATION
	MINING API LIBRARIES FOR FEATURE RELATED METHODS
	INTEGRATOR

	EMPIRICAL STUDY
	DATASET
	EVALUATION METRICS
	MEAN AVERAGE PRECISION (MAP)
	MEAN RECIPROCAL RANK (MRR)
	TOP-K RANK (HIT@N)
	GAIN

	RESEARCH QUESTIONS
	RQ1: DOES OUR APPROACH OUTPERFORM THE STATE-OF-THE-ART APPROACH IN API METHOD RECOMMENDATION?
	RQ2: IS OUR APPROACH EFFECTIVE IN RECOMMENDING API USAGE LOCATION?
	RQ3: HOW EFFECTIVE IS TO USE THE SOURCE CODE REPOSITORY FOR API RECOMMENDATION?

	METHODOLOGY AND ENVIRONMENT
	EMPIRICAL RESULTS
	RQ1: EFFECTIVENESS IN RECOMMENDING API METHODS
	RQ2: EFFECTIVENESS IN RECOMMENDING API USAGE LOCATIONS
	RQ3: EFFECTIVENESS OF SOURCE CODE REPOSITORY IN API RECOMMENDATION

	THREATS TO VALIDITY

	RELATED WORK
	API RECOMMENDATION
	FEATURE LOCATION

	CONCLUSIONS
	REFERENCES
	Biographies
	XIAOBING SUN
	CONGYING XU
	BIN LI
	YUCONG DUAN
	XINTONG LU

